Properties

Label 45.5.g.b.28.1
Level $45$
Weight $5$
Character 45.28
Analytic conductor $4.652$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,5,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 5)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 28.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 45.28
Dual form 45.5.g.b.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +14.0000i q^{4} +(-20.0000 + 15.0000i) q^{5} +(-26.0000 + 26.0000i) q^{7} +(30.0000 + 30.0000i) q^{8} +(-5.00000 + 35.0000i) q^{10} +8.00000 q^{11} +(139.000 + 139.000i) q^{13} +52.0000i q^{14} -164.000 q^{16} +(1.00000 - 1.00000i) q^{17} -180.000i q^{19} +(-210.000 - 280.000i) q^{20} +(8.00000 - 8.00000i) q^{22} +(166.000 + 166.000i) q^{23} +(175.000 - 600.000i) q^{25} +278.000 q^{26} +(-364.000 - 364.000i) q^{28} -480.000i q^{29} +572.000 q^{31} +(-644.000 + 644.000i) q^{32} -2.00000i q^{34} +(130.000 - 910.000i) q^{35} +(-251.000 + 251.000i) q^{37} +(-180.000 - 180.000i) q^{38} +(-1050.00 - 150.000i) q^{40} +1688.00 q^{41} +(1474.00 + 1474.00i) q^{43} +112.000i q^{44} +332.000 q^{46} +(-2474.00 + 2474.00i) q^{47} +1049.00i q^{49} +(-425.000 - 775.000i) q^{50} +(-1946.00 + 1946.00i) q^{52} +(3331.00 + 3331.00i) q^{53} +(-160.000 + 120.000i) q^{55} -1560.00 q^{56} +(-480.000 - 480.000i) q^{58} -3660.00i q^{59} +1592.00 q^{61} +(572.000 - 572.000i) q^{62} -1336.00i q^{64} +(-4865.00 - 695.000i) q^{65} +(874.000 - 874.000i) q^{67} +(14.0000 + 14.0000i) q^{68} +(-780.000 - 1040.00i) q^{70} +6068.00 q^{71} +(-791.000 - 791.000i) q^{73} +502.000i q^{74} +2520.00 q^{76} +(-208.000 + 208.000i) q^{77} -9120.00i q^{79} +(3280.00 - 2460.00i) q^{80} +(1688.00 - 1688.00i) q^{82} +(-5654.00 - 5654.00i) q^{83} +(-5.00000 + 35.0000i) q^{85} +2948.00 q^{86} +(240.000 + 240.000i) q^{88} +2160.00i q^{89} -7228.00 q^{91} +(-2324.00 + 2324.00i) q^{92} +4948.00i q^{94} +(2700.00 + 3600.00i) q^{95} +(-6551.00 + 6551.00i) q^{97} +(1049.00 + 1049.00i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 40 q^{5} - 52 q^{7} + 60 q^{8} - 10 q^{10} + 16 q^{11} + 278 q^{13} - 328 q^{16} + 2 q^{17} - 420 q^{20} + 16 q^{22} + 332 q^{23} + 350 q^{25} + 556 q^{26} - 728 q^{28} + 1144 q^{31} - 1288 q^{32}+ \cdots + 2098 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.250000 0.250000i −0.570971 0.820971i \(-0.693433\pi\)
0.820971 + 0.570971i \(0.193433\pi\)
\(3\) 0 0
\(4\) 14.0000i 0.875000i
\(5\) −20.0000 + 15.0000i −0.800000 + 0.600000i
\(6\) 0 0
\(7\) −26.0000 + 26.0000i −0.530612 + 0.530612i −0.920755 0.390142i \(-0.872426\pi\)
0.390142 + 0.920755i \(0.372426\pi\)
\(8\) 30.0000 + 30.0000i 0.468750 + 0.468750i
\(9\) 0 0
\(10\) −5.00000 + 35.0000i −0.0500000 + 0.350000i
\(11\) 8.00000 0.0661157 0.0330579 0.999453i \(-0.489475\pi\)
0.0330579 + 0.999453i \(0.489475\pi\)
\(12\) 0 0
\(13\) 139.000 + 139.000i 0.822485 + 0.822485i 0.986464 0.163979i \(-0.0524328\pi\)
−0.163979 + 0.986464i \(0.552433\pi\)
\(14\) 52.0000i 0.265306i
\(15\) 0 0
\(16\) −164.000 −0.640625
\(17\) 1.00000 1.00000i 0.00346021 0.00346021i −0.705375 0.708835i \(-0.749221\pi\)
0.708835 + 0.705375i \(0.249221\pi\)
\(18\) 0 0
\(19\) 180.000i 0.498615i −0.968424 0.249307i \(-0.919797\pi\)
0.968424 0.249307i \(-0.0802030\pi\)
\(20\) −210.000 280.000i −0.525000 0.700000i
\(21\) 0 0
\(22\) 8.00000 8.00000i 0.0165289 0.0165289i
\(23\) 166.000 + 166.000i 0.313800 + 0.313800i 0.846380 0.532580i \(-0.178777\pi\)
−0.532580 + 0.846380i \(0.678777\pi\)
\(24\) 0 0
\(25\) 175.000 600.000i 0.280000 0.960000i
\(26\) 278.000 0.411243
\(27\) 0 0
\(28\) −364.000 364.000i −0.464286 0.464286i
\(29\) 480.000i 0.570749i −0.958416 0.285375i \(-0.907882\pi\)
0.958416 0.285375i \(-0.0921180\pi\)
\(30\) 0 0
\(31\) 572.000 0.595213 0.297607 0.954689i \(-0.403812\pi\)
0.297607 + 0.954689i \(0.403812\pi\)
\(32\) −644.000 + 644.000i −0.628906 + 0.628906i
\(33\) 0 0
\(34\) 2.00000i 0.00173010i
\(35\) 130.000 910.000i 0.106122 0.742857i
\(36\) 0 0
\(37\) −251.000 + 251.000i −0.183346 + 0.183346i −0.792812 0.609466i \(-0.791384\pi\)
0.609466 + 0.792812i \(0.291384\pi\)
\(38\) −180.000 180.000i −0.124654 0.124654i
\(39\) 0 0
\(40\) −1050.00 150.000i −0.656250 0.0937500i
\(41\) 1688.00 1.00416 0.502082 0.864820i \(-0.332568\pi\)
0.502082 + 0.864820i \(0.332568\pi\)
\(42\) 0 0
\(43\) 1474.00 + 1474.00i 0.797188 + 0.797188i 0.982651 0.185463i \(-0.0593786\pi\)
−0.185463 + 0.982651i \(0.559379\pi\)
\(44\) 112.000i 0.0578512i
\(45\) 0 0
\(46\) 332.000 0.156900
\(47\) −2474.00 + 2474.00i −1.11996 + 1.11996i −0.128218 + 0.991746i \(0.540926\pi\)
−0.991746 + 0.128218i \(0.959074\pi\)
\(48\) 0 0
\(49\) 1049.00i 0.436901i
\(50\) −425.000 775.000i −0.170000 0.310000i
\(51\) 0 0
\(52\) −1946.00 + 1946.00i −0.719675 + 0.719675i
\(53\) 3331.00 + 3331.00i 1.18583 + 1.18583i 0.978209 + 0.207622i \(0.0665724\pi\)
0.207622 + 0.978209i \(0.433428\pi\)
\(54\) 0 0
\(55\) −160.000 + 120.000i −0.0528926 + 0.0396694i
\(56\) −1560.00 −0.497449
\(57\) 0 0
\(58\) −480.000 480.000i −0.142687 0.142687i
\(59\) 3660.00i 1.05142i −0.850663 0.525711i \(-0.823799\pi\)
0.850663 0.525711i \(-0.176201\pi\)
\(60\) 0 0
\(61\) 1592.00 0.427842 0.213921 0.976851i \(-0.431376\pi\)
0.213921 + 0.976851i \(0.431376\pi\)
\(62\) 572.000 572.000i 0.148803 0.148803i
\(63\) 0 0
\(64\) 1336.00i 0.326172i
\(65\) −4865.00 695.000i −1.15148 0.164497i
\(66\) 0 0
\(67\) 874.000 874.000i 0.194698 0.194698i −0.603025 0.797723i \(-0.706038\pi\)
0.797723 + 0.603025i \(0.206038\pi\)
\(68\) 14.0000 + 14.0000i 0.00302768 + 0.00302768i
\(69\) 0 0
\(70\) −780.000 1040.00i −0.159184 0.212245i
\(71\) 6068.00 1.20373 0.601865 0.798598i \(-0.294425\pi\)
0.601865 + 0.798598i \(0.294425\pi\)
\(72\) 0 0
\(73\) −791.000 791.000i −0.148433 0.148433i 0.628985 0.777418i \(-0.283471\pi\)
−0.777418 + 0.628985i \(0.783471\pi\)
\(74\) 502.000i 0.0916728i
\(75\) 0 0
\(76\) 2520.00 0.436288
\(77\) −208.000 + 208.000i −0.0350818 + 0.0350818i
\(78\) 0 0
\(79\) 9120.00i 1.46130i −0.682750 0.730652i \(-0.739216\pi\)
0.682750 0.730652i \(-0.260784\pi\)
\(80\) 3280.00 2460.00i 0.512500 0.384375i
\(81\) 0 0
\(82\) 1688.00 1688.00i 0.251041 0.251041i
\(83\) −5654.00 5654.00i −0.820729 0.820729i 0.165484 0.986213i \(-0.447081\pi\)
−0.986213 + 0.165484i \(0.947081\pi\)
\(84\) 0 0
\(85\) −5.00000 + 35.0000i −0.000692042 + 0.00484429i
\(86\) 2948.00 0.398594
\(87\) 0 0
\(88\) 240.000 + 240.000i 0.0309917 + 0.0309917i
\(89\) 2160.00i 0.272693i 0.990661 + 0.136346i \(0.0435360\pi\)
−0.990661 + 0.136346i \(0.956464\pi\)
\(90\) 0 0
\(91\) −7228.00 −0.872841
\(92\) −2324.00 + 2324.00i −0.274575 + 0.274575i
\(93\) 0 0
\(94\) 4948.00i 0.559982i
\(95\) 2700.00 + 3600.00i 0.299169 + 0.398892i
\(96\) 0 0
\(97\) −6551.00 + 6551.00i −0.696248 + 0.696248i −0.963599 0.267351i \(-0.913852\pi\)
0.267351 + 0.963599i \(0.413852\pi\)
\(98\) 1049.00 + 1049.00i 0.109225 + 0.109225i
\(99\) 0 0
\(100\) 8400.00 + 2450.00i 0.840000 + 0.245000i
\(101\) −16102.0 −1.57847 −0.789236 0.614090i \(-0.789523\pi\)
−0.789236 + 0.614090i \(0.789523\pi\)
\(102\) 0 0
\(103\) 994.000 + 994.000i 0.0936940 + 0.0936940i 0.752400 0.658706i \(-0.228896\pi\)
−0.658706 + 0.752400i \(0.728896\pi\)
\(104\) 8340.00i 0.771080i
\(105\) 0 0
\(106\) 6662.00 0.592916
\(107\) 8326.00 8326.00i 0.727225 0.727225i −0.242841 0.970066i \(-0.578079\pi\)
0.970066 + 0.242841i \(0.0780793\pi\)
\(108\) 0 0
\(109\) 17010.0i 1.43170i 0.698255 + 0.715849i \(0.253960\pi\)
−0.698255 + 0.715849i \(0.746040\pi\)
\(110\) −40.0000 + 280.000i −0.00330579 + 0.0231405i
\(111\) 0 0
\(112\) 4264.00 4264.00i 0.339923 0.339923i
\(113\) 5161.00 + 5161.00i 0.404182 + 0.404182i 0.879704 0.475522i \(-0.157741\pi\)
−0.475522 + 0.879704i \(0.657741\pi\)
\(114\) 0 0
\(115\) −5810.00 830.000i −0.439319 0.0627599i
\(116\) 6720.00 0.499405
\(117\) 0 0
\(118\) −3660.00 3660.00i −0.262856 0.262856i
\(119\) 52.0000i 0.00367206i
\(120\) 0 0
\(121\) −14577.0 −0.995629
\(122\) 1592.00 1592.00i 0.106960 0.106960i
\(123\) 0 0
\(124\) 8008.00i 0.520812i
\(125\) 5500.00 + 14625.0i 0.352000 + 0.936000i
\(126\) 0 0
\(127\) 12574.0 12574.0i 0.779590 0.779590i −0.200171 0.979761i \(-0.564150\pi\)
0.979761 + 0.200171i \(0.0641499\pi\)
\(128\) −11640.0 11640.0i −0.710449 0.710449i
\(129\) 0 0
\(130\) −5560.00 + 4170.00i −0.328994 + 0.246746i
\(131\) −20272.0 −1.18128 −0.590642 0.806934i \(-0.701125\pi\)
−0.590642 + 0.806934i \(0.701125\pi\)
\(132\) 0 0
\(133\) 4680.00 + 4680.00i 0.264571 + 0.264571i
\(134\) 1748.00i 0.0973491i
\(135\) 0 0
\(136\) 60.0000 0.00324394
\(137\) 10351.0 10351.0i 0.551494 0.551494i −0.375378 0.926872i \(-0.622487\pi\)
0.926872 + 0.375378i \(0.122487\pi\)
\(138\) 0 0
\(139\) 27060.0i 1.40055i −0.713874 0.700274i \(-0.753061\pi\)
0.713874 0.700274i \(-0.246939\pi\)
\(140\) 12740.0 + 1820.00i 0.650000 + 0.0928571i
\(141\) 0 0
\(142\) 6068.00 6068.00i 0.300932 0.300932i
\(143\) 1112.00 + 1112.00i 0.0543792 + 0.0543792i
\(144\) 0 0
\(145\) 7200.00 + 9600.00i 0.342449 + 0.456599i
\(146\) −1582.00 −0.0742166
\(147\) 0 0
\(148\) −3514.00 3514.00i −0.160427 0.160427i
\(149\) 16350.0i 0.736453i −0.929736 0.368227i \(-0.879965\pi\)
0.929736 0.368227i \(-0.120035\pi\)
\(150\) 0 0
\(151\) 1052.00 0.0461383 0.0230692 0.999734i \(-0.492656\pi\)
0.0230692 + 0.999734i \(0.492656\pi\)
\(152\) 5400.00 5400.00i 0.233726 0.233726i
\(153\) 0 0
\(154\) 416.000i 0.0175409i
\(155\) −11440.0 + 8580.00i −0.476171 + 0.357128i
\(156\) 0 0
\(157\) 6499.00 6499.00i 0.263662 0.263662i −0.562878 0.826540i \(-0.690306\pi\)
0.826540 + 0.562878i \(0.190306\pi\)
\(158\) −9120.00 9120.00i −0.365326 0.365326i
\(159\) 0 0
\(160\) 3220.00 22540.0i 0.125781 0.880469i
\(161\) −8632.00 −0.333012
\(162\) 0 0
\(163\) −19286.0 19286.0i −0.725884 0.725884i 0.243913 0.969797i \(-0.421569\pi\)
−0.969797 + 0.243913i \(0.921569\pi\)
\(164\) 23632.0i 0.878644i
\(165\) 0 0
\(166\) −11308.0 −0.410364
\(167\) 15526.0 15526.0i 0.556707 0.556707i −0.371661 0.928368i \(-0.621212\pi\)
0.928368 + 0.371661i \(0.121212\pi\)
\(168\) 0 0
\(169\) 10081.0i 0.352964i
\(170\) 30.0000 + 40.0000i 0.00103806 + 0.00138408i
\(171\) 0 0
\(172\) −20636.0 + 20636.0i −0.697539 + 0.697539i
\(173\) 16891.0 + 16891.0i 0.564369 + 0.564369i 0.930545 0.366176i \(-0.119333\pi\)
−0.366176 + 0.930545i \(0.619333\pi\)
\(174\) 0 0
\(175\) 11050.0 + 20150.0i 0.360816 + 0.657959i
\(176\) −1312.00 −0.0423554
\(177\) 0 0
\(178\) 2160.00 + 2160.00i 0.0681732 + 0.0681732i
\(179\) 10620.0i 0.331450i 0.986172 + 0.165725i \(0.0529965\pi\)
−0.986172 + 0.165725i \(0.947004\pi\)
\(180\) 0 0
\(181\) 24122.0 0.736302 0.368151 0.929766i \(-0.379991\pi\)
0.368151 + 0.929766i \(0.379991\pi\)
\(182\) −7228.00 + 7228.00i −0.218210 + 0.218210i
\(183\) 0 0
\(184\) 9960.00i 0.294187i
\(185\) 1255.00 8785.00i 0.0366691 0.256684i
\(186\) 0 0
\(187\) 8.00000 8.00000i 0.000228774 0.000228774i
\(188\) −34636.0 34636.0i −0.979968 0.979968i
\(189\) 0 0
\(190\) 6300.00 + 900.000i 0.174515 + 0.0249307i
\(191\) 45188.0 1.23867 0.619336 0.785126i \(-0.287402\pi\)
0.619336 + 0.785126i \(0.287402\pi\)
\(192\) 0 0
\(193\) 39199.0 + 39199.0i 1.05235 + 1.05235i 0.998552 + 0.0537986i \(0.0171329\pi\)
0.0537986 + 0.998552i \(0.482867\pi\)
\(194\) 13102.0i 0.348124i
\(195\) 0 0
\(196\) −14686.0 −0.382289
\(197\) −28349.0 + 28349.0i −0.730475 + 0.730475i −0.970714 0.240239i \(-0.922774\pi\)
0.240239 + 0.970714i \(0.422774\pi\)
\(198\) 0 0
\(199\) 1800.00i 0.0454534i 0.999742 + 0.0227267i \(0.00723476\pi\)
−0.999742 + 0.0227267i \(0.992765\pi\)
\(200\) 23250.0 12750.0i 0.581250 0.318750i
\(201\) 0 0
\(202\) −16102.0 + 16102.0i −0.394618 + 0.394618i
\(203\) 12480.0 + 12480.0i 0.302846 + 0.302846i
\(204\) 0 0
\(205\) −33760.0 + 25320.0i −0.803331 + 0.602499i
\(206\) 1988.00 0.0468470
\(207\) 0 0
\(208\) −22796.0 22796.0i −0.526905 0.526905i
\(209\) 1440.00i 0.0329663i
\(210\) 0 0
\(211\) 18392.0 0.413108 0.206554 0.978435i \(-0.433775\pi\)
0.206554 + 0.978435i \(0.433775\pi\)
\(212\) −46634.0 + 46634.0i −1.03760 + 1.03760i
\(213\) 0 0
\(214\) 16652.0i 0.363613i
\(215\) −51590.0 7370.00i −1.11606 0.159438i
\(216\) 0 0
\(217\) −14872.0 + 14872.0i −0.315827 + 0.315827i
\(218\) 17010.0 + 17010.0i 0.357924 + 0.357924i
\(219\) 0 0
\(220\) −1680.00 2240.00i −0.0347107 0.0462810i
\(221\) 278.000 0.00569194
\(222\) 0 0
\(223\) −866.000 866.000i −0.0174144 0.0174144i 0.698346 0.715760i \(-0.253920\pi\)
−0.715760 + 0.698346i \(0.753920\pi\)
\(224\) 33488.0i 0.667411i
\(225\) 0 0
\(226\) 10322.0 0.202091
\(227\) 45226.0 45226.0i 0.877681 0.877681i −0.115614 0.993294i \(-0.536883\pi\)
0.993294 + 0.115614i \(0.0368835\pi\)
\(228\) 0 0
\(229\) 39120.0i 0.745981i −0.927835 0.372991i \(-0.878332\pi\)
0.927835 0.372991i \(-0.121668\pi\)
\(230\) −6640.00 + 4980.00i −0.125520 + 0.0941399i
\(231\) 0 0
\(232\) 14400.0 14400.0i 0.267539 0.267539i
\(233\) 33121.0 + 33121.0i 0.610087 + 0.610087i 0.942969 0.332882i \(-0.108021\pi\)
−0.332882 + 0.942969i \(0.608021\pi\)
\(234\) 0 0
\(235\) 12370.0 86590.0i 0.223993 1.56795i
\(236\) 51240.0 0.919994
\(237\) 0 0
\(238\) 52.0000 + 52.0000i 0.000918014 + 0.000918014i
\(239\) 88440.0i 1.54829i −0.633007 0.774146i \(-0.718180\pi\)
0.633007 0.774146i \(-0.281820\pi\)
\(240\) 0 0
\(241\) 20312.0 0.349718 0.174859 0.984593i \(-0.444053\pi\)
0.174859 + 0.984593i \(0.444053\pi\)
\(242\) −14577.0 + 14577.0i −0.248907 + 0.248907i
\(243\) 0 0
\(244\) 22288.0i 0.374362i
\(245\) −15735.0 20980.0i −0.262141 0.349521i
\(246\) 0 0
\(247\) 25020.0 25020.0i 0.410103 0.410103i
\(248\) 17160.0 + 17160.0i 0.279006 + 0.279006i
\(249\) 0 0
\(250\) 20125.0 + 9125.00i 0.322000 + 0.146000i
\(251\) −74752.0 −1.18652 −0.593260 0.805011i \(-0.702160\pi\)
−0.593260 + 0.805011i \(0.702160\pi\)
\(252\) 0 0
\(253\) 1328.00 + 1328.00i 0.0207471 + 0.0207471i
\(254\) 25148.0i 0.389795i
\(255\) 0 0
\(256\) −1904.00 −0.0290527
\(257\) −37799.0 + 37799.0i −0.572287 + 0.572287i −0.932767 0.360480i \(-0.882613\pi\)
0.360480 + 0.932767i \(0.382613\pi\)
\(258\) 0 0
\(259\) 13052.0i 0.194571i
\(260\) 9730.00 68110.0i 0.143935 1.00754i
\(261\) 0 0
\(262\) −20272.0 + 20272.0i −0.295321 + 0.295321i
\(263\) 33586.0 + 33586.0i 0.485564 + 0.485564i 0.906903 0.421339i \(-0.138440\pi\)
−0.421339 + 0.906903i \(0.638440\pi\)
\(264\) 0 0
\(265\) −116585. 16655.0i −1.66016 0.237166i
\(266\) 9360.00 0.132286
\(267\) 0 0
\(268\) 12236.0 + 12236.0i 0.170361 + 0.170361i
\(269\) 28530.0i 0.394273i 0.980376 + 0.197137i \(0.0631642\pi\)
−0.980376 + 0.197137i \(0.936836\pi\)
\(270\) 0 0
\(271\) −7468.00 −0.101687 −0.0508435 0.998707i \(-0.516191\pi\)
−0.0508435 + 0.998707i \(0.516191\pi\)
\(272\) −164.000 + 164.000i −0.00221670 + 0.00221670i
\(273\) 0 0
\(274\) 20702.0i 0.275747i
\(275\) 1400.00 4800.00i 0.0185124 0.0634711i
\(276\) 0 0
\(277\) 6499.00 6499.00i 0.0847007 0.0847007i −0.663487 0.748188i \(-0.730924\pi\)
0.748188 + 0.663487i \(0.230924\pi\)
\(278\) −27060.0 27060.0i −0.350137 0.350137i
\(279\) 0 0
\(280\) 31200.0 23400.0i 0.397959 0.298469i
\(281\) 97928.0 1.24021 0.620104 0.784520i \(-0.287091\pi\)
0.620104 + 0.784520i \(0.287091\pi\)
\(282\) 0 0
\(283\) 59854.0 + 59854.0i 0.747344 + 0.747344i 0.973980 0.226636i \(-0.0727728\pi\)
−0.226636 + 0.973980i \(0.572773\pi\)
\(284\) 84952.0i 1.05326i
\(285\) 0 0
\(286\) 2224.00 0.0271896
\(287\) −43888.0 + 43888.0i −0.532822 + 0.532822i
\(288\) 0 0
\(289\) 83519.0i 0.999976i
\(290\) 16800.0 + 2400.00i 0.199762 + 0.0285375i
\(291\) 0 0
\(292\) 11074.0 11074.0i 0.129879 0.129879i
\(293\) −28499.0 28499.0i −0.331967 0.331967i 0.521366 0.853333i \(-0.325423\pi\)
−0.853333 + 0.521366i \(0.825423\pi\)
\(294\) 0 0
\(295\) 54900.0 + 73200.0i 0.630853 + 0.841138i
\(296\) −15060.0 −0.171886
\(297\) 0 0
\(298\) −16350.0 16350.0i −0.184113 0.184113i
\(299\) 46148.0i 0.516191i
\(300\) 0 0
\(301\) −76648.0 −0.845995
\(302\) 1052.00 1052.00i 0.0115346 0.0115346i
\(303\) 0 0
\(304\) 29520.0i 0.319425i
\(305\) −31840.0 + 23880.0i −0.342274 + 0.256705i
\(306\) 0 0
\(307\) −117926. + 117926.i −1.25122 + 1.25122i −0.296043 + 0.955175i \(0.595667\pi\)
−0.955175 + 0.296043i \(0.904333\pi\)
\(308\) −2912.00 2912.00i −0.0306966 0.0306966i
\(309\) 0 0
\(310\) −2860.00 + 20020.0i −0.0297607 + 0.208325i
\(311\) −3892.00 −0.0402395 −0.0201197 0.999798i \(-0.506405\pi\)
−0.0201197 + 0.999798i \(0.506405\pi\)
\(312\) 0 0
\(313\) −49961.0 49961.0i −0.509967 0.509967i 0.404549 0.914516i \(-0.367429\pi\)
−0.914516 + 0.404549i \(0.867429\pi\)
\(314\) 12998.0i 0.131831i
\(315\) 0 0
\(316\) 127680. 1.27864
\(317\) −17099.0 + 17099.0i −0.170158 + 0.170158i −0.787049 0.616891i \(-0.788392\pi\)
0.616891 + 0.787049i \(0.288392\pi\)
\(318\) 0 0
\(319\) 3840.00i 0.0377355i
\(320\) 20040.0 + 26720.0i 0.195703 + 0.260937i
\(321\) 0 0
\(322\) −8632.00 + 8632.00i −0.0832530 + 0.0832530i
\(323\) −180.000 180.000i −0.00172531 0.00172531i
\(324\) 0 0
\(325\) 107725. 59075.0i 1.01988 0.559290i
\(326\) −38572.0 −0.362942
\(327\) 0 0
\(328\) 50640.0 + 50640.0i 0.470702 + 0.470702i
\(329\) 128648.i 1.18853i
\(330\) 0 0
\(331\) −143128. −1.30638 −0.653189 0.757195i \(-0.726569\pi\)
−0.653189 + 0.757195i \(0.726569\pi\)
\(332\) 79156.0 79156.0i 0.718138 0.718138i
\(333\) 0 0
\(334\) 31052.0i 0.278353i
\(335\) −4370.00 + 30590.0i −0.0389396 + 0.272577i
\(336\) 0 0
\(337\) 103249. 103249.i 0.909130 0.909130i −0.0870719 0.996202i \(-0.527751\pi\)
0.996202 + 0.0870719i \(0.0277510\pi\)
\(338\) 10081.0 + 10081.0i 0.0882410 + 0.0882410i
\(339\) 0 0
\(340\) −490.000 70.0000i −0.00423875 0.000605536i
\(341\) 4576.00 0.0393529
\(342\) 0 0
\(343\) −89700.0 89700.0i −0.762437 0.762437i
\(344\) 88440.0i 0.747363i
\(345\) 0 0
\(346\) 33782.0 0.282185
\(347\) 104626. 104626.i 0.868922 0.868922i −0.123431 0.992353i \(-0.539390\pi\)
0.992353 + 0.123431i \(0.0393899\pi\)
\(348\) 0 0
\(349\) 94800.0i 0.778319i −0.921170 0.389159i \(-0.872766\pi\)
0.921170 0.389159i \(-0.127234\pi\)
\(350\) 31200.0 + 9100.00i 0.254694 + 0.0742857i
\(351\) 0 0
\(352\) −5152.00 + 5152.00i −0.0415806 + 0.0415806i
\(353\) −63569.0 63569.0i −0.510148 0.510148i 0.404424 0.914572i \(-0.367472\pi\)
−0.914572 + 0.404424i \(0.867472\pi\)
\(354\) 0 0
\(355\) −121360. + 91020.0i −0.962984 + 0.722238i
\(356\) −30240.0 −0.238606
\(357\) 0 0
\(358\) 10620.0 + 10620.0i 0.0828626 + 0.0828626i
\(359\) 141840.i 1.10055i 0.834983 + 0.550275i \(0.185477\pi\)
−0.834983 + 0.550275i \(0.814523\pi\)
\(360\) 0 0
\(361\) 97921.0 0.751383
\(362\) 24122.0 24122.0i 0.184076 0.184076i
\(363\) 0 0
\(364\) 101192.i 0.763736i
\(365\) 27685.0 + 3955.00i 0.207806 + 0.0296866i
\(366\) 0 0
\(367\) 142174. 142174.i 1.05557 1.05557i 0.0572103 0.998362i \(-0.481779\pi\)
0.998362 0.0572103i \(-0.0182206\pi\)
\(368\) −27224.0 27224.0i −0.201028 0.201028i
\(369\) 0 0
\(370\) −7530.00 10040.0i −0.0550037 0.0733382i
\(371\) −173212. −1.25843
\(372\) 0 0
\(373\) 10309.0 + 10309.0i 0.0740967 + 0.0740967i 0.743184 0.669087i \(-0.233315\pi\)
−0.669087 + 0.743184i \(0.733315\pi\)
\(374\) 16.0000i 0.000114387i
\(375\) 0 0
\(376\) −148440. −1.04997
\(377\) 66720.0 66720.0i 0.469433 0.469433i
\(378\) 0 0
\(379\) 115380.i 0.803253i 0.915804 + 0.401626i \(0.131555\pi\)
−0.915804 + 0.401626i \(0.868445\pi\)
\(380\) −50400.0 + 37800.0i −0.349030 + 0.261773i
\(381\) 0 0
\(382\) 45188.0 45188.0i 0.309668 0.309668i
\(383\) −62654.0 62654.0i −0.427121 0.427121i 0.460525 0.887647i \(-0.347661\pi\)
−0.887647 + 0.460525i \(0.847661\pi\)
\(384\) 0 0
\(385\) 1040.00 7280.00i 0.00701636 0.0491145i
\(386\) 78398.0 0.526175
\(387\) 0 0
\(388\) −91714.0 91714.0i −0.609217 0.609217i
\(389\) 132690.i 0.876878i −0.898761 0.438439i \(-0.855532\pi\)
0.898761 0.438439i \(-0.144468\pi\)
\(390\) 0 0
\(391\) 332.000 0.00217162
\(392\) −31470.0 + 31470.0i −0.204797 + 0.204797i
\(393\) 0 0
\(394\) 56698.0i 0.365237i
\(395\) 136800. + 182400.i 0.876783 + 1.16904i
\(396\) 0 0
\(397\) −88451.0 + 88451.0i −0.561205 + 0.561205i −0.929650 0.368444i \(-0.879890\pi\)
0.368444 + 0.929650i \(0.379890\pi\)
\(398\) 1800.00 + 1800.00i 0.0113633 + 0.0113633i
\(399\) 0 0
\(400\) −28700.0 + 98400.0i −0.179375 + 0.615000i
\(401\) −63202.0 −0.393045 −0.196522 0.980499i \(-0.562965\pi\)
−0.196522 + 0.980499i \(0.562965\pi\)
\(402\) 0 0
\(403\) 79508.0 + 79508.0i 0.489554 + 0.489554i
\(404\) 225428.i 1.38116i
\(405\) 0 0
\(406\) 24960.0 0.151423
\(407\) −2008.00 + 2008.00i −0.0121220 + 0.0121220i
\(408\) 0 0
\(409\) 52890.0i 0.316175i −0.987425 0.158087i \(-0.949467\pi\)
0.987425 0.158087i \(-0.0505327\pi\)
\(410\) −8440.00 + 59080.0i −0.0502082 + 0.351457i
\(411\) 0 0
\(412\) −13916.0 + 13916.0i −0.0819823 + 0.0819823i
\(413\) 95160.0 + 95160.0i 0.557897 + 0.557897i
\(414\) 0 0
\(415\) 197890. + 28270.0i 1.14902 + 0.164146i
\(416\) −179032. −1.03453
\(417\) 0 0
\(418\) −1440.00 1440.00i −0.00824157 0.00824157i
\(419\) 256980.i 1.46376i 0.681431 + 0.731882i \(0.261358\pi\)
−0.681431 + 0.731882i \(0.738642\pi\)
\(420\) 0 0
\(421\) 186632. 1.05298 0.526492 0.850180i \(-0.323507\pi\)
0.526492 + 0.850180i \(0.323507\pi\)
\(422\) 18392.0 18392.0i 0.103277 0.103277i
\(423\) 0 0
\(424\) 199860.i 1.11172i
\(425\) −425.000 775.000i −0.00235294 0.00429066i
\(426\) 0 0
\(427\) −41392.0 + 41392.0i −0.227018 + 0.227018i
\(428\) 116564. + 116564.i 0.636322 + 0.636322i
\(429\) 0 0
\(430\) −58960.0 + 44220.0i −0.318875 + 0.239156i
\(431\) 208028. 1.11987 0.559935 0.828537i \(-0.310826\pi\)
0.559935 + 0.828537i \(0.310826\pi\)
\(432\) 0 0
\(433\) −151271. 151271.i −0.806826 0.806826i 0.177326 0.984152i \(-0.443255\pi\)
−0.984152 + 0.177326i \(0.943255\pi\)
\(434\) 29744.0i 0.157914i
\(435\) 0 0
\(436\) −238140. −1.25274
\(437\) 29880.0 29880.0i 0.156465 0.156465i
\(438\) 0 0
\(439\) 158640.i 0.823159i 0.911374 + 0.411579i \(0.135023\pi\)
−0.911374 + 0.411579i \(0.864977\pi\)
\(440\) −8400.00 1200.00i −0.0433884 0.00619835i
\(441\) 0 0
\(442\) 278.000 278.000i 0.00142298 0.00142298i
\(443\) −252974. 252974.i −1.28905 1.28905i −0.935367 0.353679i \(-0.884930\pi\)
−0.353679 0.935367i \(-0.615070\pi\)
\(444\) 0 0
\(445\) −32400.0 43200.0i −0.163616 0.218154i
\(446\) −1732.00 −0.00870719
\(447\) 0 0
\(448\) 34736.0 + 34736.0i 0.173071 + 0.173071i
\(449\) 123750.i 0.613836i 0.951736 + 0.306918i \(0.0992978\pi\)
−0.951736 + 0.306918i \(0.900702\pi\)
\(450\) 0 0
\(451\) 13504.0 0.0663910
\(452\) −72254.0 + 72254.0i −0.353659 + 0.353659i
\(453\) 0 0
\(454\) 90452.0i 0.438840i
\(455\) 144560. 108420.i 0.698273 0.523705i
\(456\) 0 0
\(457\) −32201.0 + 32201.0i −0.154183 + 0.154183i −0.779983 0.625800i \(-0.784773\pi\)
0.625800 + 0.779983i \(0.284773\pi\)
\(458\) −39120.0 39120.0i −0.186495 0.186495i
\(459\) 0 0
\(460\) 11620.0 81340.0i 0.0549149 0.384405i
\(461\) −75142.0 −0.353574 −0.176787 0.984249i \(-0.556570\pi\)
−0.176787 + 0.984249i \(0.556570\pi\)
\(462\) 0 0
\(463\) 235714. + 235714.i 1.09957 + 1.09957i 0.994461 + 0.105111i \(0.0335197\pi\)
0.105111 + 0.994461i \(0.466480\pi\)
\(464\) 78720.0i 0.365636i
\(465\) 0 0
\(466\) 66242.0 0.305043
\(467\) −28574.0 + 28574.0i −0.131020 + 0.131020i −0.769576 0.638556i \(-0.779532\pi\)
0.638556 + 0.769576i \(0.279532\pi\)
\(468\) 0 0
\(469\) 45448.0i 0.206618i
\(470\) −74220.0 98960.0i −0.335989 0.447986i
\(471\) 0 0
\(472\) 109800. 109800.i 0.492854 0.492854i
\(473\) 11792.0 + 11792.0i 0.0527066 + 0.0527066i
\(474\) 0 0
\(475\) −108000. 31500.0i −0.478670 0.139612i
\(476\) −728.000 −0.00321305
\(477\) 0 0
\(478\) −88440.0 88440.0i −0.387073 0.387073i
\(479\) 26520.0i 0.115585i 0.998329 + 0.0577926i \(0.0184062\pi\)
−0.998329 + 0.0577926i \(0.981594\pi\)
\(480\) 0 0
\(481\) −69778.0 −0.301598
\(482\) 20312.0 20312.0i 0.0874296 0.0874296i
\(483\) 0 0
\(484\) 204078.i 0.871175i
\(485\) 32755.0 229285.i 0.139250 0.974748i
\(486\) 0 0
\(487\) 41374.0 41374.0i 0.174449 0.174449i −0.614482 0.788931i \(-0.710635\pi\)
0.788931 + 0.614482i \(0.210635\pi\)
\(488\) 47760.0 + 47760.0i 0.200551 + 0.200551i
\(489\) 0 0
\(490\) −36715.0 5245.00i −0.152915 0.0218451i
\(491\) 149288. 0.619244 0.309622 0.950860i \(-0.399797\pi\)
0.309622 + 0.950860i \(0.399797\pi\)
\(492\) 0 0
\(493\) −480.000 480.000i −0.00197491 0.00197491i
\(494\) 50040.0i 0.205052i
\(495\) 0 0
\(496\) −93808.0 −0.381309
\(497\) −157768. + 157768.i −0.638714 + 0.638714i
\(498\) 0 0
\(499\) 284100.i 1.14096i −0.821312 0.570480i \(-0.806757\pi\)
0.821312 0.570480i \(-0.193243\pi\)
\(500\) −204750. + 77000.0i −0.819000 + 0.308000i
\(501\) 0 0
\(502\) −74752.0 + 74752.0i −0.296630 + 0.296630i
\(503\) 117406. + 117406.i 0.464039 + 0.464039i 0.899977 0.435938i \(-0.143583\pi\)
−0.435938 + 0.899977i \(0.643583\pi\)
\(504\) 0 0
\(505\) 322040. 241530.i 1.26278 0.947084i
\(506\) 2656.00 0.0103735
\(507\) 0 0
\(508\) 176036. + 176036.i 0.682141 + 0.682141i
\(509\) 234960.i 0.906898i −0.891282 0.453449i \(-0.850193\pi\)
0.891282 0.453449i \(-0.149807\pi\)
\(510\) 0 0
\(511\) 41132.0 0.157521
\(512\) 184336. 184336.i 0.703186 0.703186i
\(513\) 0 0
\(514\) 75598.0i 0.286144i
\(515\) −34790.0 4970.00i −0.131172 0.0187388i
\(516\) 0 0
\(517\) −19792.0 + 19792.0i −0.0740472 + 0.0740472i
\(518\) −13052.0 13052.0i −0.0486427 0.0486427i
\(519\) 0 0
\(520\) −125100. 166800.i −0.462648 0.616864i
\(521\) 171218. 0.630774 0.315387 0.948963i \(-0.397866\pi\)
0.315387 + 0.948963i \(0.397866\pi\)
\(522\) 0 0
\(523\) −332666. 332666.i −1.21620 1.21620i −0.968952 0.247248i \(-0.920474\pi\)
−0.247248 0.968952i \(-0.579526\pi\)
\(524\) 283808.i 1.03362i
\(525\) 0 0
\(526\) 67172.0 0.242782
\(527\) 572.000 572.000i 0.00205956 0.00205956i
\(528\) 0 0
\(529\) 224729.i 0.803060i
\(530\) −133240. + 99930.0i −0.474333 + 0.355749i
\(531\) 0 0
\(532\) −65520.0 + 65520.0i −0.231500 + 0.231500i
\(533\) 234632. + 234632.i 0.825910 + 0.825910i
\(534\) 0 0
\(535\) −41630.0 + 291410.i −0.145445 + 1.01812i
\(536\) 52440.0 0.182530
\(537\) 0 0
\(538\) 28530.0 + 28530.0i 0.0985683 + 0.0985683i
\(539\) 8392.00i 0.0288860i
\(540\) 0 0
\(541\) 13862.0 0.0473621 0.0236811 0.999720i \(-0.492461\pi\)
0.0236811 + 0.999720i \(0.492461\pi\)
\(542\) −7468.00 + 7468.00i −0.0254218 + 0.0254218i
\(543\) 0 0
\(544\) 1288.00i 0.00435229i
\(545\) −255150. 340200.i −0.859019 1.14536i
\(546\) 0 0
\(547\) −180026. + 180026.i −0.601673 + 0.601673i −0.940756 0.339083i \(-0.889883\pi\)
0.339083 + 0.940756i \(0.389883\pi\)
\(548\) 144914. + 144914.i 0.482558 + 0.482558i
\(549\) 0 0
\(550\) −3400.00 6200.00i −0.0112397 0.0204959i
\(551\) −86400.0 −0.284584
\(552\) 0 0
\(553\) 237120. + 237120.i 0.775386 + 0.775386i
\(554\) 12998.0i 0.0423503i
\(555\) 0 0
\(556\) 378840. 1.22548
\(557\) −422549. + 422549.i −1.36197 + 1.36197i −0.490560 + 0.871408i \(0.663208\pi\)
−0.871408 + 0.490560i \(0.836792\pi\)
\(558\) 0 0
\(559\) 409772.i 1.31135i
\(560\) −21320.0 + 149240.i −0.0679847 + 0.475893i
\(561\) 0 0
\(562\) 97928.0 97928.0i 0.310052 0.310052i
\(563\) −105314. 105314.i −0.332253 0.332253i 0.521188 0.853442i \(-0.325489\pi\)
−0.853442 + 0.521188i \(0.825489\pi\)
\(564\) 0 0
\(565\) −180635. 25805.0i −0.565855 0.0808364i
\(566\) 119708. 0.373672
\(567\) 0 0
\(568\) 182040. + 182040.i 0.564248 + 0.564248i
\(569\) 85830.0i 0.265103i 0.991176 + 0.132551i \(0.0423170\pi\)
−0.991176 + 0.132551i \(0.957683\pi\)
\(570\) 0 0
\(571\) −142168. −0.436043 −0.218022 0.975944i \(-0.569960\pi\)
−0.218022 + 0.975944i \(0.569960\pi\)
\(572\) −15568.0 + 15568.0i −0.0475818 + 0.0475818i
\(573\) 0 0
\(574\) 87776.0i 0.266411i
\(575\) 128650. 70550.0i 0.389112 0.213384i
\(576\) 0 0
\(577\) −154601. + 154601.i −0.464366 + 0.464366i −0.900084 0.435717i \(-0.856495\pi\)
0.435717 + 0.900084i \(0.356495\pi\)
\(578\) 83519.0 + 83519.0i 0.249994 + 0.249994i
\(579\) 0 0
\(580\) −134400. + 100800.i −0.399524 + 0.299643i
\(581\) 294008. 0.870977
\(582\) 0 0
\(583\) 26648.0 + 26648.0i 0.0784021 + 0.0784021i
\(584\) 47460.0i 0.139156i
\(585\) 0 0
\(586\) −56998.0 −0.165983
\(587\) −222974. + 222974.i −0.647110 + 0.647110i −0.952294 0.305184i \(-0.901282\pi\)
0.305184 + 0.952294i \(0.401282\pi\)
\(588\) 0 0
\(589\) 102960.i 0.296782i
\(590\) 128100. + 18300.0i 0.367998 + 0.0525711i
\(591\) 0 0
\(592\) 41164.0 41164.0i 0.117456 0.117456i
\(593\) −148049. 148049.i −0.421014 0.421014i 0.464539 0.885553i \(-0.346220\pi\)
−0.885553 + 0.464539i \(0.846220\pi\)
\(594\) 0 0
\(595\) −780.000 1040.00i −0.00220323 0.00293765i
\(596\) 228900. 0.644397
\(597\) 0 0
\(598\) 46148.0 + 46148.0i 0.129048 + 0.129048i
\(599\) 31800.0i 0.0886285i 0.999018 + 0.0443143i \(0.0141103\pi\)
−0.999018 + 0.0443143i \(0.985890\pi\)
\(600\) 0 0
\(601\) −71848.0 −0.198914 −0.0994571 0.995042i \(-0.531711\pi\)
−0.0994571 + 0.995042i \(0.531711\pi\)
\(602\) −76648.0 + 76648.0i −0.211499 + 0.211499i
\(603\) 0 0
\(604\) 14728.0i 0.0403710i
\(605\) 291540. 218655.i 0.796503 0.597377i
\(606\) 0 0
\(607\) −13526.0 + 13526.0i −0.0367106 + 0.0367106i −0.725224 0.688513i \(-0.758264\pi\)
0.688513 + 0.725224i \(0.258264\pi\)
\(608\) 115920. + 115920.i 0.313582 + 0.313582i
\(609\) 0 0
\(610\) −7960.00 + 55720.0i −0.0213921 + 0.149745i
\(611\) −687772. −1.84231
\(612\) 0 0
\(613\) −303461. 303461.i −0.807573 0.807573i 0.176693 0.984266i \(-0.443460\pi\)
−0.984266 + 0.176693i \(0.943460\pi\)
\(614\) 235852.i 0.625609i
\(615\) 0 0
\(616\) −12480.0 −0.0328892
\(617\) −122399. + 122399.i −0.321520 + 0.321520i −0.849350 0.527830i \(-0.823006\pi\)
0.527830 + 0.849350i \(0.323006\pi\)
\(618\) 0 0
\(619\) 110220.i 0.287660i 0.989602 + 0.143830i \(0.0459418\pi\)
−0.989602 + 0.143830i \(0.954058\pi\)
\(620\) −120120. 160160.i −0.312487 0.416649i
\(621\) 0 0
\(622\) −3892.00 + 3892.00i −0.0100599 + 0.0100599i
\(623\) −56160.0 56160.0i −0.144694 0.144694i
\(624\) 0 0
\(625\) −329375. 210000.i −0.843200 0.537600i
\(626\) −99922.0 −0.254984
\(627\) 0 0
\(628\) 90986.0 + 90986.0i 0.230704 + 0.230704i
\(629\) 502.000i 0.00126883i
\(630\) 0 0
\(631\) 620372. 1.55809 0.779047 0.626966i \(-0.215703\pi\)
0.779047 + 0.626966i \(0.215703\pi\)
\(632\) 273600. 273600.i 0.684986 0.684986i
\(633\) 0 0
\(634\) 34198.0i 0.0850790i
\(635\) −62870.0 + 440090.i −0.155918 + 1.09143i
\(636\) 0 0
\(637\) −145811. + 145811.i −0.359345 + 0.359345i
\(638\) −3840.00 3840.00i −0.00943387 0.00943387i
\(639\) 0 0
\(640\) 407400. + 58200.0i 0.994629 + 0.142090i
\(641\) 722888. 1.75936 0.879680 0.475565i \(-0.157756\pi\)
0.879680 + 0.475565i \(0.157756\pi\)
\(642\) 0 0
\(643\) −393026. 393026.i −0.950603 0.950603i 0.0482328 0.998836i \(-0.484641\pi\)
−0.998836 + 0.0482328i \(0.984641\pi\)
\(644\) 120848.i 0.291385i
\(645\) 0 0
\(646\) −360.000 −0.000862656
\(647\) 338626. 338626.i 0.808931 0.808931i −0.175541 0.984472i \(-0.556167\pi\)
0.984472 + 0.175541i \(0.0561674\pi\)
\(648\) 0 0
\(649\) 29280.0i 0.0695155i
\(650\) 48650.0 166800.i 0.115148 0.394793i
\(651\) 0 0
\(652\) 270004. 270004.i 0.635148 0.635148i
\(653\) −254669. 254669.i −0.597241 0.597241i 0.342336 0.939577i \(-0.388782\pi\)
−0.939577 + 0.342336i \(0.888782\pi\)
\(654\) 0 0
\(655\) 405440. 304080.i 0.945027 0.708770i
\(656\) −276832. −0.643293
\(657\) 0 0
\(658\) −128648. 128648.i −0.297133 0.297133i
\(659\) 603660.i 1.39002i −0.718999 0.695011i \(-0.755400\pi\)
0.718999 0.695011i \(-0.244600\pi\)
\(660\) 0 0
\(661\) 14792.0 0.0338551 0.0169275 0.999857i \(-0.494612\pi\)
0.0169275 + 0.999857i \(0.494612\pi\)
\(662\) −143128. + 143128.i −0.326594 + 0.326594i
\(663\) 0 0
\(664\) 339240.i 0.769433i
\(665\) −163800. 23400.0i −0.370400 0.0529142i
\(666\) 0 0
\(667\) 79680.0 79680.0i 0.179101 0.179101i
\(668\) 217364. + 217364.i 0.487119 + 0.487119i
\(669\) 0 0
\(670\) 26220.0 + 34960.0i 0.0584094 + 0.0778793i
\(671\) 12736.0 0.0282871
\(672\) 0 0
\(673\) 300409. + 300409.i 0.663258 + 0.663258i 0.956147 0.292888i \(-0.0946164\pi\)
−0.292888 + 0.956147i \(0.594616\pi\)
\(674\) 206498.i 0.454565i
\(675\) 0 0
\(676\) −141134. −0.308843
\(677\) 256051. 256051.i 0.558662 0.558662i −0.370264 0.928926i \(-0.620733\pi\)
0.928926 + 0.370264i \(0.120733\pi\)
\(678\) 0 0
\(679\) 340652.i 0.738876i
\(680\) −1200.00 + 900.000i −0.00259516 + 0.00194637i
\(681\) 0 0
\(682\) 4576.00 4576.00i 0.00983824 0.00983824i
\(683\) −341954. 341954.i −0.733038 0.733038i 0.238183 0.971220i \(-0.423448\pi\)
−0.971220 + 0.238183i \(0.923448\pi\)
\(684\) 0 0
\(685\) −51755.0 + 362285.i −0.110299 + 0.772092i
\(686\) −179400. −0.381219
\(687\) 0 0
\(688\) −241736. 241736.i −0.510698 0.510698i
\(689\) 926018.i 1.95066i
\(690\) 0 0
\(691\) −717688. −1.50307 −0.751536 0.659692i \(-0.770687\pi\)
−0.751536 + 0.659692i \(0.770687\pi\)
\(692\) −236474. + 236474.i −0.493823 + 0.493823i
\(693\) 0 0
\(694\) 209252.i 0.434461i
\(695\) 405900. + 541200.i 0.840329 + 1.12044i
\(696\) 0 0
\(697\) 1688.00 1688.00i 0.00347462 0.00347462i
\(698\) −94800.0 94800.0i −0.194580 0.194580i
\(699\) 0 0
\(700\) −282100. + 154700.i −0.575714 + 0.315714i
\(701\) −267352. −0.544061 −0.272030 0.962289i \(-0.587695\pi\)
−0.272030 + 0.962289i \(0.587695\pi\)
\(702\) 0 0
\(703\) 45180.0 + 45180.0i 0.0914188 + 0.0914188i
\(704\) 10688.0i 0.0215651i
\(705\) 0 0
\(706\) −127138. −0.255074
\(707\) 418652. 418652.i 0.837557 0.837557i
\(708\) 0 0
\(709\) 159360.i 0.317020i 0.987357 + 0.158510i \(0.0506690\pi\)
−0.987357 + 0.158510i \(0.949331\pi\)
\(710\) −30340.0 + 212380.i −0.0601865 + 0.421305i
\(711\) 0 0
\(712\) −64800.0 + 64800.0i −0.127825 + 0.127825i
\(713\) 94952.0 + 94952.0i 0.186778 + 0.186778i
\(714\) 0 0
\(715\) −38920.0 5560.00i −0.0761309 0.0108758i
\(716\) −148680. −0.290019
\(717\) 0 0
\(718\) 141840. + 141840.i 0.275138 + 0.275138i
\(719\) 364680.i 0.705430i 0.935731 + 0.352715i \(0.114742\pi\)
−0.935731 + 0.352715i \(0.885258\pi\)
\(720\) 0 0
\(721\) −51688.0 −0.0994304
\(722\) 97921.0 97921.0i 0.187846 0.187846i
\(723\) 0 0
\(724\) 337708.i 0.644265i
\(725\) −288000. 84000.0i −0.547919 0.159810i
\(726\) 0 0
\(727\) 716374. 716374.i 1.35541 1.35541i 0.475925 0.879486i \(-0.342113\pi\)
0.879486 0.475925i \(-0.157887\pi\)
\(728\) −216840. 216840.i −0.409144 0.409144i
\(729\) 0 0
\(730\) 31640.0 23730.0i 0.0593732 0.0445299i
\(731\) 2948.00 0.00551687
\(732\) 0 0
\(733\) 641029. + 641029.i 1.19308 + 1.19308i 0.976198 + 0.216883i \(0.0695889\pi\)
0.216883 + 0.976198i \(0.430411\pi\)
\(734\) 284348.i 0.527786i
\(735\) 0 0
\(736\) −213808. −0.394701
\(737\) 6992.00 6992.00i 0.0128726 0.0128726i
\(738\) 0 0
\(739\) 607140.i 1.11173i 0.831272 + 0.555866i \(0.187613\pi\)
−0.831272 + 0.555866i \(0.812387\pi\)
\(740\) 122990. + 17570.0i 0.224598 + 0.0320855i
\(741\) 0 0
\(742\) −173212. + 173212.i −0.314608 + 0.314608i
\(743\) 248026. + 248026.i 0.449283 + 0.449283i 0.895116 0.445833i \(-0.147093\pi\)
−0.445833 + 0.895116i \(0.647093\pi\)
\(744\) 0 0
\(745\) 245250. + 327000.i 0.441872 + 0.589163i
\(746\) 20618.0 0.0370484
\(747\) 0 0
\(748\) 112.000 + 112.000i 0.000200177 + 0.000200177i
\(749\) 432952.i 0.771749i
\(750\) 0 0
\(751\) 169052. 0.299737 0.149869 0.988706i \(-0.452115\pi\)
0.149869 + 0.988706i \(0.452115\pi\)
\(752\) 405736. 405736.i 0.717477 0.717477i
\(753\) 0 0
\(754\) 133440.i 0.234716i
\(755\) −21040.0 + 15780.0i −0.0369107 + 0.0276830i
\(756\) 0 0
\(757\) −166301. + 166301.i −0.290204 + 0.290204i −0.837161 0.546957i \(-0.815786\pi\)
0.546957 + 0.837161i \(0.315786\pi\)
\(758\) 115380. + 115380.i 0.200813 + 0.200813i
\(759\) 0 0
\(760\) −27000.0 + 189000.i −0.0467452 + 0.327216i
\(761\) −557842. −0.963256 −0.481628 0.876376i \(-0.659954\pi\)
−0.481628 + 0.876376i \(0.659954\pi\)
\(762\) 0 0
\(763\) −442260. 442260.i −0.759676 0.759676i
\(764\) 632632.i 1.08384i
\(765\) 0 0
\(766\) −125308. −0.213561
\(767\) 508740. 508740.i 0.864779 0.864779i
\(768\) 0 0
\(769\) 678720.i 1.14773i 0.818952 + 0.573863i \(0.194556\pi\)
−0.818952 + 0.573863i \(0.805444\pi\)
\(770\) −6240.00 8320.00i −0.0105245 0.0140327i
\(771\) 0 0
\(772\) −548786. + 548786.i −0.920807 + 0.920807i
\(773\) 164341. + 164341.i 0.275034 + 0.275034i 0.831123 0.556089i \(-0.187699\pi\)
−0.556089 + 0.831123i \(0.687699\pi\)
\(774\) 0 0
\(775\) 100100. 343200.i 0.166660 0.571405i
\(776\) −393060. −0.652733
\(777\) 0 0
\(778\) −132690. 132690.i −0.219219 0.219219i
\(779\) 303840.i 0.500691i
\(780\) 0 0
\(781\) 48544.0 0.0795854
\(782\) 332.000 332.000i 0.000542906 0.000542906i
\(783\) 0 0
\(784\) 172036.i 0.279890i
\(785\) −32495.0 + 227465.i −0.0527324 + 0.369127i
\(786\) 0 0
\(787\) 323074. 323074.i 0.521618 0.521618i −0.396442 0.918060i \(-0.629755\pi\)
0.918060 + 0.396442i \(0.129755\pi\)
\(788\) −396886. 396886.i −0.639166 0.639166i
\(789\) 0 0
\(790\) 319200. + 45600.0i 0.511456 + 0.0730652i
\(791\) −268372. −0.428928
\(792\) 0 0
\(793\) 221288. + 221288.i 0.351894 + 0.351894i
\(794\) 176902.i 0.280603i
\(795\) 0 0
\(796\) −25200.0 −0.0397717
\(797\) −510299. + 510299.i −0.803356 + 0.803356i −0.983619 0.180262i \(-0.942305\pi\)
0.180262 + 0.983619i \(0.442305\pi\)
\(798\) 0 0
\(799\) 4948.00i 0.00775061i
\(800\) 273700. + 499100.i 0.427656 + 0.779844i
\(801\) 0 0
\(802\) −63202.0 + 63202.0i −0.0982612 + 0.0982612i
\(803\) −6328.00 6328.00i −0.00981376 0.00981376i
\(804\) 0 0
\(805\) 172640. 129480.i 0.266409 0.199807i
\(806\) 159016. 0.244777
\(807\) 0 0
\(808\) −483060. 483060.i −0.739909 0.739909i
\(809\) 1.18656e6i 1.81298i −0.422229 0.906489i \(-0.638752\pi\)
0.422229 0.906489i \(-0.361248\pi\)
\(810\) 0 0
\(811\) −431008. −0.655305 −0.327653 0.944798i \(-0.606258\pi\)
−0.327653 + 0.944798i \(0.606258\pi\)
\(812\) −174720. + 174720.i −0.264991 + 0.264991i
\(813\) 0 0
\(814\) 4016.00i 0.00606101i
\(815\) 675010. + 96430.0i 1.01624 + 0.145177i
\(816\) 0 0
\(817\) 265320. 265320.i 0.397490 0.397490i
\(818\) −52890.0 52890.0i −0.0790436 0.0790436i
\(819\) 0 0
\(820\) −354480. 472640.i −0.527186 0.702915i
\(821\) 639368. 0.948560 0.474280 0.880374i \(-0.342709\pi\)
0.474280 + 0.880374i \(0.342709\pi\)
\(822\) 0 0
\(823\) −74966.0 74966.0i −0.110679 0.110679i 0.649599 0.760277i \(-0.274937\pi\)
−0.760277 + 0.649599i \(0.774937\pi\)
\(824\) 59640.0i 0.0878382i
\(825\) 0 0
\(826\) 190320. 0.278949
\(827\) 144226. 144226.i 0.210879 0.210879i −0.593762 0.804641i \(-0.702358\pi\)
0.804641 + 0.593762i \(0.202358\pi\)
\(828\) 0 0
\(829\) 685170.i 0.996987i −0.866894 0.498493i \(-0.833887\pi\)
0.866894 0.498493i \(-0.166113\pi\)
\(830\) 226160. 169620.i 0.328291 0.246219i
\(831\) 0 0
\(832\) 185704. 185704.i 0.268272 0.268272i
\(833\) 1049.00 + 1049.00i 0.00151177 + 0.00151177i
\(834\) 0 0
\(835\) −77630.0 + 543410.i −0.111341 + 0.779390i
\(836\) 20160.0 0.0288455
\(837\) 0 0
\(838\) 256980. + 256980.i 0.365941 + 0.365941i
\(839\) 445560.i 0.632969i 0.948598 + 0.316484i \(0.102502\pi\)
−0.948598 + 0.316484i \(0.897498\pi\)
\(840\) 0 0
\(841\) 476881. 0.674245
\(842\) 186632. 186632.i 0.263246 0.263246i
\(843\) 0 0
\(844\) 257488.i 0.361470i
\(845\) −151215. 201620.i −0.211778 0.282371i
\(846\) 0 0
\(847\) 379002. 379002.i 0.528293 0.528293i
\(848\) −546284. 546284.i −0.759673 0.759673i
\(849\) 0 0
\(850\) −1200.00 350.000i −0.00166090 0.000484429i
\(851\) −83332.0 −0.115068
\(852\) 0 0
\(853\) −319781. 319781.i −0.439496 0.439496i 0.452347 0.891842i \(-0.350587\pi\)
−0.891842 + 0.452347i \(0.850587\pi\)
\(854\) 82784.0i 0.113509i
\(855\) 0 0
\(856\) 499560. 0.681774
\(857\) −576449. + 576449.i −0.784873 + 0.784873i −0.980649 0.195776i \(-0.937277\pi\)
0.195776 + 0.980649i \(0.437277\pi\)
\(858\) 0 0
\(859\) 807540.i 1.09440i −0.837001 0.547202i \(-0.815693\pi\)
0.837001 0.547202i \(-0.184307\pi\)
\(860\) 103180. 722260.i 0.139508 0.976555i
\(861\) 0 0
\(862\) 208028. 208028.i 0.279967 0.279967i
\(863\) −507914. 507914.i −0.681975 0.681975i 0.278470 0.960445i \(-0.410173\pi\)
−0.960445 + 0.278470i \(0.910173\pi\)
\(864\) 0 0
\(865\) −591185. 84455.0i −0.790117 0.112874i
\(866\) −302542. −0.403413
\(867\) 0 0
\(868\) −208208. 208208.i −0.276349 0.276349i
\(869\) 72960.0i 0.0966152i
\(870\) 0 0
\(871\) 242972. 0.320273
\(872\) −510300. + 510300.i −0.671108 + 0.671108i
\(873\) 0 0
\(874\) 59760.0i 0.0782326i
\(875\) −523250. 237250.i −0.683429 0.309878i
\(876\) 0 0
\(877\) −673901. + 673901.i −0.876187 + 0.876187i −0.993138 0.116951i \(-0.962688\pi\)
0.116951 + 0.993138i \(0.462688\pi\)
\(878\) 158640. + 158640.i 0.205790 + 0.205790i
\(879\) 0 0
\(880\) 26240.0 19680.0i 0.0338843 0.0254132i
\(881\) 1.33753e6 1.72326 0.861631 0.507536i \(-0.169444\pi\)
0.861631 + 0.507536i \(0.169444\pi\)
\(882\) 0 0
\(883\) 131554. + 131554.i 0.168726 + 0.168726i 0.786419 0.617693i \(-0.211933\pi\)
−0.617693 + 0.786419i \(0.711933\pi\)
\(884\) 3892.00i 0.00498045i
\(885\) 0 0
\(886\) −505948. −0.644523
\(887\) 327826. 327826.i 0.416674 0.416674i −0.467382 0.884056i \(-0.654803\pi\)
0.884056 + 0.467382i \(0.154803\pi\)
\(888\) 0 0
\(889\) 653848.i 0.827320i
\(890\) −75600.0 10800.0i −0.0954425 0.0136346i
\(891\) 0 0
\(892\) 12124.0 12124.0i 0.0152376 0.0152376i
\(893\) 445320. + 445320.i 0.558431 + 0.558431i
\(894\) 0 0
\(895\) −159300. 212400.i −0.198870 0.265160i
\(896\) 605280. 0.753946
\(897\) 0 0
\(898\) 123750. + 123750.i 0.153459 + 0.153459i
\(899\) 274560.i 0.339717i
\(900\) 0 0
\(901\) 6662.00 0.00820644
\(902\) 13504.0 13504.0i 0.0165978 0.0165978i
\(903\) 0 0
\(904\) 309660.i 0.378921i
\(905\) −482440. + 361830.i −0.589042 + 0.441781i
\(906\) 0 0
\(907\) 105274. 105274.i 0.127970 0.127970i −0.640221 0.768191i \(-0.721157\pi\)
0.768191 + 0.640221i \(0.221157\pi\)
\(908\) 633164. + 633164.i 0.767970 + 0.767970i
\(909\) 0 0
\(910\) 36140.0 252980.i 0.0436421 0.305495i
\(911\) −1.59209e6 −1.91837 −0.959183 0.282787i \(-0.908741\pi\)
−0.959183 + 0.282787i \(0.908741\pi\)
\(912\) 0 0
\(913\) −45232.0 45232.0i −0.0542631 0.0542631i
\(914\) 64402.0i 0.0770916i
\(915\) 0 0
\(916\) 547680. 0.652734
\(917\) 527072. 527072.i 0.626803 0.626803i
\(918\) 0 0
\(919\) 515880.i 0.610826i −0.952220 0.305413i \(-0.901205\pi\)
0.952220 0.305413i \(-0.0987946\pi\)
\(920\) −149400. 199200.i −0.176512 0.235350i
\(921\) 0 0
\(922\) −75142.0 + 75142.0i −0.0883936 + 0.0883936i
\(923\) 843452. + 843452.i 0.990050 + 0.990050i
\(924\) 0 0
\(925\) 106675. + 194525.i 0.124675 + 0.227348i
\(926\) 471428. 0.549786
\(927\) 0 0
\(928\) 309120. + 309120.i 0.358948 + 0.358948i
\(929\) 1.60023e6i 1.85418i −0.374844 0.927088i \(-0.622304\pi\)
0.374844 0.927088i \(-0.377696\pi\)
\(930\) 0 0
\(931\) 188820. 0.217846
\(932\) −463694. + 463694.i −0.533826 + 0.533826i
\(933\) 0 0
\(934\) 57148.0i 0.0655100i
\(935\) −40.0000 + 280.000i −4.57548e−5 + 0.000320284i
\(936\) 0 0
\(937\) −908801. + 908801.i −1.03512 + 1.03512i −0.0357569 + 0.999361i \(0.511384\pi\)
−0.999361 + 0.0357569i \(0.988616\pi\)
\(938\) 45448.0 + 45448.0i 0.0516546 + 0.0516546i
\(939\) 0 0
\(940\) 1.21226e6 + 173180.i 1.37196 + 0.195994i
\(941\) −455962. −0.514931 −0.257466 0.966287i \(-0.582887\pi\)
−0.257466 + 0.966287i \(0.582887\pi\)
\(942\) 0 0
\(943\) 280208. + 280208.i 0.315106 + 0.315106i
\(944\) 600240.i 0.673567i
\(945\) 0 0
\(946\) 23584.0 0.0263533
\(947\) −463274. + 463274.i −0.516580 + 0.516580i −0.916535 0.399955i \(-0.869026\pi\)
0.399955 + 0.916535i \(0.369026\pi\)
\(948\) 0 0
\(949\) 219898.i 0.244168i
\(950\) −139500. + 76500.0i −0.154571 + 0.0847645i
\(951\) 0 0
\(952\) −1560.00 + 1560.00i −0.00172128 + 0.00172128i
\(953\) 1.03428e6 + 1.03428e6i 1.13881 + 1.13881i 0.988663 + 0.150151i \(0.0479759\pi\)
0.150151 + 0.988663i \(0.452024\pi\)
\(954\) 0 0
\(955\) −903760. + 677820.i −0.990938 + 0.743203i
\(956\) 1.23816e6 1.35476
\(957\) 0 0
\(958\) 26520.0 + 26520.0i 0.0288963 + 0.0288963i
\(959\) 538252.i 0.585259i
\(960\) 0 0
\(961\) −596337. −0.645721
\(962\) −69778.0 + 69778.0i −0.0753995 + 0.0753995i
\(963\) 0 0
\(964\) 284368.i 0.306004i
\(965\) −1.37196e6 195995.i −1.47329 0.210470i
\(966\) 0 0
\(967\) −1.10253e6 + 1.10253e6i −1.17906 + 1.17906i −0.199076 + 0.979984i \(0.563794\pi\)
−0.979984 + 0.199076i \(0.936206\pi\)
\(968\) −437310. 437310.i −0.466701 0.466701i
\(969\) 0 0
\(970\) −196530. 262040.i −0.208874 0.278499i
\(971\) 264368. 0.280395 0.140198 0.990124i \(-0.455226\pi\)
0.140198 + 0.990124i \(0.455226\pi\)
\(972\) 0 0
\(973\) 703560. + 703560.i 0.743148 + 0.743148i
\(974\) 82748.0i 0.0872247i
\(975\) 0 0
\(976\) −261088. −0.274086
\(977\) −866249. + 866249.i −0.907515 + 0.907515i −0.996071 0.0885566i \(-0.971775\pi\)
0.0885566 + 0.996071i \(0.471775\pi\)
\(978\) 0 0
\(979\) 17280.0i 0.0180293i
\(980\) 293720. 220290.i 0.305831 0.229373i
\(981\) 0 0
\(982\) 149288. 149288.i 0.154811 0.154811i
\(983\) −1.08205e6 1.08205e6i −1.11980 1.11980i −0.991770 0.128034i \(-0.959133\pi\)
−0.128034 0.991770i \(-0.540867\pi\)
\(984\) 0 0
\(985\) 141745. 992215.i 0.146095 1.02266i
\(986\) −960.000 −0.000987455
\(987\) 0 0
\(988\) 350280. + 350280.i 0.358840 + 0.358840i
\(989\) 489368.i 0.500314i
\(990\) 0 0
\(991\) −54988.0 −0.0559913 −0.0279957 0.999608i \(-0.508912\pi\)
−0.0279957 + 0.999608i \(0.508912\pi\)
\(992\) −368368. + 368368.i −0.374333 + 0.374333i
\(993\) 0 0
\(994\) 315536.i 0.319357i
\(995\) −27000.0 36000.0i −0.0272720 0.0363627i
\(996\) 0 0
\(997\) 73099.0 73099.0i 0.0735396 0.0735396i −0.669380 0.742920i \(-0.733440\pi\)
0.742920 + 0.669380i \(0.233440\pi\)
\(998\) −284100. 284100.i −0.285240 0.285240i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.5.g.b.28.1 2
3.2 odd 2 5.5.c.a.3.1 yes 2
5.2 odd 4 inner 45.5.g.b.37.1 2
5.3 odd 4 225.5.g.b.82.1 2
5.4 even 2 225.5.g.b.118.1 2
12.11 even 2 80.5.p.d.33.1 2
15.2 even 4 5.5.c.a.2.1 2
15.8 even 4 25.5.c.a.7.1 2
15.14 odd 2 25.5.c.a.18.1 2
24.5 odd 2 320.5.p.h.193.1 2
24.11 even 2 320.5.p.c.193.1 2
60.23 odd 4 400.5.p.a.257.1 2
60.47 odd 4 80.5.p.d.17.1 2
60.59 even 2 400.5.p.a.193.1 2
120.77 even 4 320.5.p.h.257.1 2
120.107 odd 4 320.5.p.c.257.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.5.c.a.2.1 2 15.2 even 4
5.5.c.a.3.1 yes 2 3.2 odd 2
25.5.c.a.7.1 2 15.8 even 4
25.5.c.a.18.1 2 15.14 odd 2
45.5.g.b.28.1 2 1.1 even 1 trivial
45.5.g.b.37.1 2 5.2 odd 4 inner
80.5.p.d.17.1 2 60.47 odd 4
80.5.p.d.33.1 2 12.11 even 2
225.5.g.b.82.1 2 5.3 odd 4
225.5.g.b.118.1 2 5.4 even 2
320.5.p.c.193.1 2 24.11 even 2
320.5.p.c.257.1 2 120.107 odd 4
320.5.p.h.193.1 2 24.5 odd 2
320.5.p.h.257.1 2 120.77 even 4
400.5.p.a.193.1 2 60.59 even 2
400.5.p.a.257.1 2 60.23 odd 4