Properties

Label 45.5.g.e.28.4
Level $45$
Weight $5$
Character 45.28
Analytic conductor $4.652$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,5,Mod(28,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.28");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 60x^{5} + 1973x^{4} - 3300x^{3} + 1800x^{2} + 31560x + 276676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 28.4
Root \(-5.02811 - 5.02811i\) of defining polynomial
Character \(\chi\) \(=\) 45.28
Dual form 45.5.g.e.37.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.02811 - 5.02811i) q^{2} -34.5637i q^{4} +(23.8949 - 7.35070i) q^{5} +(-38.5593 + 38.5593i) q^{7} +(-93.3405 - 93.3405i) q^{8} +(83.1861 - 157.106i) q^{10} +40.4333 q^{11} +(20.8688 + 20.8688i) q^{13} +387.760i q^{14} -385.633 q^{16} +(-15.8713 + 15.8713i) q^{17} +314.926i q^{19} +(-254.068 - 825.898i) q^{20} +(203.303 - 203.303i) q^{22} +(572.869 + 572.869i) q^{23} +(516.934 - 351.289i) q^{25} +209.862 q^{26} +(1332.75 + 1332.75i) q^{28} -824.433i q^{29} -1347.19 q^{31} +(-445.555 + 445.555i) q^{32} +159.606i q^{34} +(-637.933 + 1204.81i) q^{35} +(-589.843 + 589.843i) q^{37} +(1583.48 + 1583.48i) q^{38} +(-2916.48 - 1544.25i) q^{40} -1856.55 q^{41} +(-671.078 - 671.078i) q^{43} -1397.53i q^{44} +5760.90 q^{46} +(-504.865 + 504.865i) q^{47} -572.636i q^{49} +(832.883 - 4365.52i) q^{50} +(721.305 - 721.305i) q^{52} +(-2251.32 - 2251.32i) q^{53} +(966.151 - 297.213i) q^{55} +7198.29 q^{56} +(-4145.34 - 4145.34i) q^{58} -2585.03i q^{59} -3276.74 q^{61} +(-6773.81 + 6773.81i) q^{62} -1689.53i q^{64} +(652.060 + 345.259i) q^{65} +(-3428.94 + 3428.94i) q^{67} +(548.573 + 548.573i) q^{68} +(2850.31 + 9265.50i) q^{70} +5679.51 q^{71} +(4450.06 + 4450.06i) q^{73} +5931.59i q^{74} +10885.0 q^{76} +(-1559.08 + 1559.08i) q^{77} -6465.77i q^{79} +(-9214.66 + 2834.67i) q^{80} +(-9334.92 + 9334.92i) q^{82} +(621.380 + 621.380i) q^{83} +(-262.579 + 495.910i) q^{85} -6748.50 q^{86} +(-3774.07 - 3774.07i) q^{88} -1856.76i q^{89} -1609.37 q^{91} +(19800.5 - 19800.5i) q^{92} +5077.03i q^{94} +(2314.93 + 7525.13i) q^{95} +(12383.5 - 12383.5i) q^{97} +(-2879.27 - 2879.27i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 84 q^{5} + 20 q^{7} - 180 q^{8} + 104 q^{10} + 288 q^{11} - 340 q^{13} + 620 q^{16} - 900 q^{17} - 564 q^{20} - 1100 q^{22} + 1560 q^{23} - 1204 q^{25} + 3024 q^{26} + 3580 q^{28} - 512 q^{31} - 4980 q^{32}+ \cdots - 46440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.02811 5.02811i 1.25703 1.25703i 0.304522 0.952505i \(-0.401503\pi\)
0.952505 0.304522i \(-0.0984966\pi\)
\(3\) 0 0
\(4\) 34.5637i 2.16023i
\(5\) 23.8949 7.35070i 0.955797 0.294028i
\(6\) 0 0
\(7\) −38.5593 + 38.5593i −0.786924 + 0.786924i −0.980989 0.194065i \(-0.937833\pi\)
0.194065 + 0.980989i \(0.437833\pi\)
\(8\) −93.3405 93.3405i −1.45845 1.45845i
\(9\) 0 0
\(10\) 83.1861 157.106i 0.831861 1.57106i
\(11\) 40.4333 0.334160 0.167080 0.985943i \(-0.446566\pi\)
0.167080 + 0.985943i \(0.446566\pi\)
\(12\) 0 0
\(13\) 20.8688 + 20.8688i 0.123484 + 0.123484i 0.766148 0.642664i \(-0.222171\pi\)
−0.642664 + 0.766148i \(0.722171\pi\)
\(14\) 387.760i 1.97837i
\(15\) 0 0
\(16\) −385.633 −1.50638
\(17\) −15.8713 + 15.8713i −0.0549181 + 0.0549181i −0.734032 0.679114i \(-0.762364\pi\)
0.679114 + 0.734032i \(0.262364\pi\)
\(18\) 0 0
\(19\) 314.926i 0.872371i 0.899857 + 0.436185i \(0.143671\pi\)
−0.899857 + 0.436185i \(0.856329\pi\)
\(20\) −254.068 825.898i −0.635170 2.06474i
\(21\) 0 0
\(22\) 203.303 203.303i 0.420048 0.420048i
\(23\) 572.869 + 572.869i 1.08293 + 1.08293i 0.996235 + 0.0866935i \(0.0276301\pi\)
0.0866935 + 0.996235i \(0.472370\pi\)
\(24\) 0 0
\(25\) 516.934 351.289i 0.827095 0.562062i
\(26\) 209.862 0.310446
\(27\) 0 0
\(28\) 1332.75 + 1332.75i 1.69994 + 1.69994i
\(29\) 824.433i 0.980301i −0.871638 0.490151i \(-0.836942\pi\)
0.871638 0.490151i \(-0.163058\pi\)
\(30\) 0 0
\(31\) −1347.19 −1.40186 −0.700931 0.713229i \(-0.747232\pi\)
−0.700931 + 0.713229i \(0.747232\pi\)
\(32\) −445.555 + 445.555i −0.435112 + 0.435112i
\(33\) 0 0
\(34\) 159.606i 0.138067i
\(35\) −637.933 + 1204.81i −0.520762 + 0.983517i
\(36\) 0 0
\(37\) −589.843 + 589.843i −0.430857 + 0.430857i −0.888920 0.458063i \(-0.848543\pi\)
0.458063 + 0.888920i \(0.348543\pi\)
\(38\) 1583.48 + 1583.48i 1.09659 + 1.09659i
\(39\) 0 0
\(40\) −2916.48 1544.25i −1.82280 0.965154i
\(41\) −1856.55 −1.10443 −0.552215 0.833702i \(-0.686217\pi\)
−0.552215 + 0.833702i \(0.686217\pi\)
\(42\) 0 0
\(43\) −671.078 671.078i −0.362941 0.362941i 0.501954 0.864894i \(-0.332615\pi\)
−0.864894 + 0.501954i \(0.832615\pi\)
\(44\) 1397.53i 0.721863i
\(45\) 0 0
\(46\) 5760.90 2.72254
\(47\) −504.865 + 504.865i −0.228549 + 0.228549i −0.812086 0.583537i \(-0.801668\pi\)
0.583537 + 0.812086i \(0.301668\pi\)
\(48\) 0 0
\(49\) 572.636i 0.238499i
\(50\) 832.883 4365.52i 0.333153 1.74621i
\(51\) 0 0
\(52\) 721.305 721.305i 0.266755 0.266755i
\(53\) −2251.32 2251.32i −0.801468 0.801468i 0.181857 0.983325i \(-0.441789\pi\)
−0.983325 + 0.181857i \(0.941789\pi\)
\(54\) 0 0
\(55\) 966.151 297.213i 0.319389 0.0982523i
\(56\) 7198.29 2.29537
\(57\) 0 0
\(58\) −4145.34 4145.34i −1.23227 1.23227i
\(59\) 2585.03i 0.742610i −0.928511 0.371305i \(-0.878910\pi\)
0.928511 0.371305i \(-0.121090\pi\)
\(60\) 0 0
\(61\) −3276.74 −0.880607 −0.440304 0.897849i \(-0.645129\pi\)
−0.440304 + 0.897849i \(0.645129\pi\)
\(62\) −6773.81 + 6773.81i −1.76218 + 1.76218i
\(63\) 0 0
\(64\) 1689.53i 0.412483i
\(65\) 652.060 + 345.259i 0.154334 + 0.0817180i
\(66\) 0 0
\(67\) −3428.94 + 3428.94i −0.763854 + 0.763854i −0.977017 0.213163i \(-0.931624\pi\)
0.213163 + 0.977017i \(0.431624\pi\)
\(68\) 548.573 + 548.573i 0.118636 + 0.118636i
\(69\) 0 0
\(70\) 2850.31 + 9265.50i 0.581696 + 1.89092i
\(71\) 5679.51 1.12666 0.563331 0.826231i \(-0.309519\pi\)
0.563331 + 0.826231i \(0.309519\pi\)
\(72\) 0 0
\(73\) 4450.06 + 4450.06i 0.835065 + 0.835065i 0.988205 0.153140i \(-0.0489385\pi\)
−0.153140 + 0.988205i \(0.548939\pi\)
\(74\) 5931.59i 1.08320i
\(75\) 0 0
\(76\) 10885.0 1.88453
\(77\) −1559.08 + 1559.08i −0.262958 + 0.262958i
\(78\) 0 0
\(79\) 6465.77i 1.03602i −0.855376 0.518008i \(-0.826674\pi\)
0.855376 0.518008i \(-0.173326\pi\)
\(80\) −9214.66 + 2834.67i −1.43979 + 0.442918i
\(81\) 0 0
\(82\) −9334.92 + 9334.92i −1.38830 + 1.38830i
\(83\) 621.380 + 621.380i 0.0901988 + 0.0901988i 0.750766 0.660568i \(-0.229684\pi\)
−0.660568 + 0.750766i \(0.729684\pi\)
\(84\) 0 0
\(85\) −262.579 + 495.910i −0.0363431 + 0.0686380i
\(86\) −6748.50 −0.912453
\(87\) 0 0
\(88\) −3774.07 3774.07i −0.487354 0.487354i
\(89\) 1856.76i 0.234410i −0.993108 0.117205i \(-0.962606\pi\)
0.993108 0.117205i \(-0.0373935\pi\)
\(90\) 0 0
\(91\) −1609.37 −0.194345
\(92\) 19800.5 19800.5i 2.33938 2.33938i
\(93\) 0 0
\(94\) 5077.03i 0.574585i
\(95\) 2314.93 + 7525.13i 0.256502 + 0.833809i
\(96\) 0 0
\(97\) 12383.5 12383.5i 1.31614 1.31614i 0.399332 0.916806i \(-0.369242\pi\)
0.916806 0.399332i \(-0.130758\pi\)
\(98\) −2879.27 2879.27i −0.299800 0.299800i
\(99\) 0 0
\(100\) −12141.9 17867.2i −1.21419 1.78672i
\(101\) 189.344 0.0185613 0.00928067 0.999957i \(-0.497046\pi\)
0.00928067 + 0.999957i \(0.497046\pi\)
\(102\) 0 0
\(103\) 14330.9 + 14330.9i 1.35083 + 1.35083i 0.884736 + 0.466092i \(0.154338\pi\)
0.466092 + 0.884736i \(0.345662\pi\)
\(104\) 3895.82i 0.360190i
\(105\) 0 0
\(106\) −22639.8 −2.01493
\(107\) 384.065 384.065i 0.0335457 0.0335457i −0.690135 0.723681i \(-0.742449\pi\)
0.723681 + 0.690135i \(0.242449\pi\)
\(108\) 0 0
\(109\) 14104.7i 1.18717i −0.804773 0.593583i \(-0.797713\pi\)
0.804773 0.593583i \(-0.202287\pi\)
\(110\) 3363.49 6352.33i 0.277974 0.524986i
\(111\) 0 0
\(112\) 14869.7 14869.7i 1.18540 1.18540i
\(113\) 12599.1 + 12599.1i 0.986693 + 0.986693i 0.999913 0.0132199i \(-0.00420816\pi\)
−0.0132199 + 0.999913i \(0.504208\pi\)
\(114\) 0 0
\(115\) 17899.7 + 9477.67i 1.35347 + 0.716648i
\(116\) −28495.5 −2.11768
\(117\) 0 0
\(118\) −12997.8 12997.8i −0.933481 0.933481i
\(119\) 1223.97i 0.0864328i
\(120\) 0 0
\(121\) −13006.1 −0.888337
\(122\) −16475.8 + 16475.8i −1.10695 + 1.10695i
\(123\) 0 0
\(124\) 46563.9i 3.02835i
\(125\) 9769.88 12193.9i 0.625272 0.780407i
\(126\) 0 0
\(127\) −10957.5 + 10957.5i −0.679367 + 0.679367i −0.959857 0.280490i \(-0.909503\pi\)
0.280490 + 0.959857i \(0.409503\pi\)
\(128\) −15624.0 15624.0i −0.953614 0.953614i
\(129\) 0 0
\(130\) 5014.63 1542.63i 0.296723 0.0912799i
\(131\) −10872.8 −0.633579 −0.316789 0.948496i \(-0.602605\pi\)
−0.316789 + 0.948496i \(0.602605\pi\)
\(132\) 0 0
\(133\) −12143.3 12143.3i −0.686489 0.686489i
\(134\) 34482.2i 1.92037i
\(135\) 0 0
\(136\) 2962.88 0.160190
\(137\) 3387.27 3387.27i 0.180471 0.180471i −0.611090 0.791561i \(-0.709269\pi\)
0.791561 + 0.611090i \(0.209269\pi\)
\(138\) 0 0
\(139\) 6096.09i 0.315516i 0.987478 + 0.157758i \(0.0504266\pi\)
−0.987478 + 0.157758i \(0.949573\pi\)
\(140\) 41642.7 + 22049.4i 2.12463 + 1.12497i
\(141\) 0 0
\(142\) 28557.2 28557.2i 1.41625 1.41625i
\(143\) 843.796 + 843.796i 0.0412634 + 0.0412634i
\(144\) 0 0
\(145\) −6060.17 19699.8i −0.288236 0.936969i
\(146\) 44750.8 2.09940
\(147\) 0 0
\(148\) 20387.2 + 20387.2i 0.930752 + 0.930752i
\(149\) 41060.3i 1.84948i −0.380600 0.924740i \(-0.624282\pi\)
0.380600 0.924740i \(-0.375718\pi\)
\(150\) 0 0
\(151\) 12096.5 0.530523 0.265262 0.964176i \(-0.414542\pi\)
0.265262 + 0.964176i \(0.414542\pi\)
\(152\) 29395.3 29395.3i 1.27231 1.27231i
\(153\) 0 0
\(154\) 15678.4i 0.661091i
\(155\) −32191.0 + 9902.79i −1.33989 + 0.412187i
\(156\) 0 0
\(157\) −21184.3 + 21184.3i −0.859440 + 0.859440i −0.991272 0.131832i \(-0.957914\pi\)
0.131832 + 0.991272i \(0.457914\pi\)
\(158\) −32510.6 32510.6i −1.30230 1.30230i
\(159\) 0 0
\(160\) −7371.35 + 13921.6i −0.287943 + 0.543814i
\(161\) −44178.8 −1.70436
\(162\) 0 0
\(163\) 3953.29 + 3953.29i 0.148793 + 0.148793i 0.777579 0.628786i \(-0.216448\pi\)
−0.628786 + 0.777579i \(0.716448\pi\)
\(164\) 64169.2i 2.38583i
\(165\) 0 0
\(166\) 6248.73 0.226765
\(167\) 7863.94 7863.94i 0.281973 0.281973i −0.551922 0.833895i \(-0.686106\pi\)
0.833895 + 0.551922i \(0.186106\pi\)
\(168\) 0 0
\(169\) 27690.0i 0.969503i
\(170\) 1173.21 + 3813.76i 0.0405956 + 0.131964i
\(171\) 0 0
\(172\) −23195.0 + 23195.0i −0.784037 + 0.784037i
\(173\) 20563.0 + 20563.0i 0.687059 + 0.687059i 0.961581 0.274522i \(-0.0885195\pi\)
−0.274522 + 0.961581i \(0.588520\pi\)
\(174\) 0 0
\(175\) −6387.16 + 33478.1i −0.208560 + 1.09316i
\(176\) −15592.4 −0.503371
\(177\) 0 0
\(178\) −9336.01 9336.01i −0.294660 0.294660i
\(179\) 11578.3i 0.361360i 0.983542 + 0.180680i \(0.0578298\pi\)
−0.983542 + 0.180680i \(0.942170\pi\)
\(180\) 0 0
\(181\) 15410.3 0.470385 0.235193 0.971949i \(-0.424428\pi\)
0.235193 + 0.971949i \(0.424428\pi\)
\(182\) −8092.11 + 8092.11i −0.244298 + 0.244298i
\(183\) 0 0
\(184\) 106944.i 3.15879i
\(185\) −9758.49 + 18430.0i −0.285128 + 0.538496i
\(186\) 0 0
\(187\) −641.731 + 641.731i −0.0183514 + 0.0183514i
\(188\) 17450.0 + 17450.0i 0.493720 + 0.493720i
\(189\) 0 0
\(190\) 49476.9 + 26197.5i 1.37055 + 0.725691i
\(191\) 8129.00 0.222828 0.111414 0.993774i \(-0.464462\pi\)
0.111414 + 0.993774i \(0.464462\pi\)
\(192\) 0 0
\(193\) −28495.5 28495.5i −0.765001 0.765001i 0.212220 0.977222i \(-0.431931\pi\)
−0.977222 + 0.212220i \(0.931931\pi\)
\(194\) 124532.i 3.30884i
\(195\) 0 0
\(196\) −19792.4 −0.515213
\(197\) 14908.5 14908.5i 0.384150 0.384150i −0.488445 0.872595i \(-0.662436\pi\)
0.872595 + 0.488445i \(0.162436\pi\)
\(198\) 0 0
\(199\) 3870.42i 0.0977353i 0.998805 + 0.0488677i \(0.0155613\pi\)
−0.998805 + 0.0488677i \(0.984439\pi\)
\(200\) −81040.4 15461.4i −2.02601 0.386536i
\(201\) 0 0
\(202\) 952.043 952.043i 0.0233321 0.0233321i
\(203\) 31789.6 + 31789.6i 0.771423 + 0.771423i
\(204\) 0 0
\(205\) −44362.1 + 13646.9i −1.05561 + 0.324734i
\(206\) 144115. 3.39606
\(207\) 0 0
\(208\) −8047.71 8047.71i −0.186014 0.186014i
\(209\) 12733.5i 0.291511i
\(210\) 0 0
\(211\) −17666.9 −0.396822 −0.198411 0.980119i \(-0.563578\pi\)
−0.198411 + 0.980119i \(0.563578\pi\)
\(212\) −77814.2 + 77814.2i −1.73136 + 1.73136i
\(213\) 0 0
\(214\) 3862.24i 0.0843358i
\(215\) −20968.2 11102.4i −0.453612 0.240183i
\(216\) 0 0
\(217\) 51946.6 51946.6i 1.10316 1.10316i
\(218\) −70920.0 70920.0i −1.49230 1.49230i
\(219\) 0 0
\(220\) −10272.8 33393.8i −0.212248 0.689954i
\(221\) −662.433 −0.0135630
\(222\) 0 0
\(223\) 10730.0 + 10730.0i 0.215768 + 0.215768i 0.806713 0.590944i \(-0.201245\pi\)
−0.590944 + 0.806713i \(0.701245\pi\)
\(224\) 34360.5i 0.684800i
\(225\) 0 0
\(226\) 126699. 2.48060
\(227\) 34199.9 34199.9i 0.663703 0.663703i −0.292548 0.956251i \(-0.594503\pi\)
0.956251 + 0.292548i \(0.0945032\pi\)
\(228\) 0 0
\(229\) 73430.0i 1.40024i 0.714026 + 0.700120i \(0.246870\pi\)
−0.714026 + 0.700120i \(0.753130\pi\)
\(230\) 137656. 42346.7i 2.60220 0.800504i
\(231\) 0 0
\(232\) −76953.1 + 76953.1i −1.42972 + 1.42972i
\(233\) −18203.1 18203.1i −0.335300 0.335300i 0.519295 0.854595i \(-0.326195\pi\)
−0.854595 + 0.519295i \(0.826195\pi\)
\(234\) 0 0
\(235\) −8352.59 + 15774.8i −0.151247 + 0.285646i
\(236\) −89348.2 −1.60421
\(237\) 0 0
\(238\) −6154.28 6154.28i −0.108648 0.108648i
\(239\) 102775.i 1.79925i 0.436661 + 0.899626i \(0.356161\pi\)
−0.436661 + 0.899626i \(0.643839\pi\)
\(240\) 0 0
\(241\) 69403.6 1.19495 0.597473 0.801889i \(-0.296172\pi\)
0.597473 + 0.801889i \(0.296172\pi\)
\(242\) −65396.3 + 65396.3i −1.11666 + 1.11666i
\(243\) 0 0
\(244\) 113256.i 1.90232i
\(245\) −4209.28 13683.1i −0.0701254 0.227956i
\(246\) 0 0
\(247\) −6572.14 + 6572.14i −0.107724 + 0.107724i
\(248\) 125747. + 125747.i 2.04454 + 2.04454i
\(249\) 0 0
\(250\) −12188.0 110436.i −0.195008 1.76698i
\(251\) 40858.0 0.648530 0.324265 0.945966i \(-0.394883\pi\)
0.324265 + 0.945966i \(0.394883\pi\)
\(252\) 0 0
\(253\) 23163.0 + 23163.0i 0.361871 + 0.361871i
\(254\) 110191.i 1.70796i
\(255\) 0 0
\(256\) −130086. −1.98495
\(257\) −53271.7 + 53271.7i −0.806548 + 0.806548i −0.984110 0.177562i \(-0.943179\pi\)
0.177562 + 0.984110i \(0.443179\pi\)
\(258\) 0 0
\(259\) 45487.9i 0.678103i
\(260\) 11933.4 22537.6i 0.176530 0.333397i
\(261\) 0 0
\(262\) −54669.8 + 54669.8i −0.796425 + 0.796425i
\(263\) −47788.6 47788.6i −0.690896 0.690896i 0.271533 0.962429i \(-0.412469\pi\)
−0.962429 + 0.271533i \(0.912469\pi\)
\(264\) 0 0
\(265\) −70344.0 37246.4i −1.00170 0.530387i
\(266\) −122116. −1.72587
\(267\) 0 0
\(268\) 118517. + 118517.i 1.65010 + 1.65010i
\(269\) 130832.i 1.80805i −0.427483 0.904023i \(-0.640600\pi\)
0.427483 0.904023i \(-0.359400\pi\)
\(270\) 0 0
\(271\) −116029. −1.57989 −0.789945 0.613178i \(-0.789891\pi\)
−0.789945 + 0.613178i \(0.789891\pi\)
\(272\) 6120.51 6120.51i 0.0827274 0.0827274i
\(273\) 0 0
\(274\) 34063.1i 0.453715i
\(275\) 20901.4 14203.8i 0.276382 0.187819i
\(276\) 0 0
\(277\) 41111.1 41111.1i 0.535796 0.535796i −0.386495 0.922291i \(-0.626314\pi\)
0.922291 + 0.386495i \(0.126314\pi\)
\(278\) 30651.8 + 30651.8i 0.396613 + 0.396613i
\(279\) 0 0
\(280\) 172003. 52912.5i 2.19391 0.674904i
\(281\) 61086.4 0.773627 0.386814 0.922158i \(-0.373576\pi\)
0.386814 + 0.922158i \(0.373576\pi\)
\(282\) 0 0
\(283\) 54739.9 + 54739.9i 0.683489 + 0.683489i 0.960785 0.277296i \(-0.0894382\pi\)
−0.277296 + 0.960785i \(0.589438\pi\)
\(284\) 196305.i 2.43386i
\(285\) 0 0
\(286\) 8485.40 0.103739
\(287\) 71587.1 71587.1i 0.869103 0.869103i
\(288\) 0 0
\(289\) 83017.2i 0.993968i
\(290\) −129524. 68581.4i −1.54012 0.815474i
\(291\) 0 0
\(292\) 153811. 153811.i 1.80394 1.80394i
\(293\) 33601.9 + 33601.9i 0.391406 + 0.391406i 0.875189 0.483782i \(-0.160737\pi\)
−0.483782 + 0.875189i \(0.660737\pi\)
\(294\) 0 0
\(295\) −19001.8 61769.0i −0.218348 0.709785i
\(296\) 110113. 1.25676
\(297\) 0 0
\(298\) −206456. 206456.i −2.32485 2.32485i
\(299\) 23910.2i 0.267449i
\(300\) 0 0
\(301\) 51752.5 0.571214
\(302\) 60822.3 60822.3i 0.666882 0.666882i
\(303\) 0 0
\(304\) 121446.i 1.31412i
\(305\) −78297.4 + 24086.3i −0.841681 + 0.258923i
\(306\) 0 0
\(307\) 84437.4 84437.4i 0.895897 0.895897i −0.0991732 0.995070i \(-0.531620\pi\)
0.995070 + 0.0991732i \(0.0316198\pi\)
\(308\) 53887.6 + 53887.6i 0.568051 + 0.568051i
\(309\) 0 0
\(310\) −112067. + 211652.i −1.16615 + 2.20241i
\(311\) −93477.0 −0.966460 −0.483230 0.875493i \(-0.660537\pi\)
−0.483230 + 0.875493i \(0.660537\pi\)
\(312\) 0 0
\(313\) −6979.59 6979.59i −0.0712429 0.0712429i 0.670588 0.741830i \(-0.266042\pi\)
−0.741830 + 0.670588i \(0.766042\pi\)
\(314\) 213034.i 2.16068i
\(315\) 0 0
\(316\) −223481. −2.23804
\(317\) −41396.6 + 41396.6i −0.411951 + 0.411951i −0.882418 0.470467i \(-0.844086\pi\)
0.470467 + 0.882418i \(0.344086\pi\)
\(318\) 0 0
\(319\) 33334.6i 0.327577i
\(320\) −12419.2 40371.2i −0.121282 0.394250i
\(321\) 0 0
\(322\) −222136. + 222136.i −2.14243 + 2.14243i
\(323\) −4998.29 4998.29i −0.0479090 0.0479090i
\(324\) 0 0
\(325\) 18118.8 + 3456.82i 0.171539 + 0.0327273i
\(326\) 39755.1 0.374074
\(327\) 0 0
\(328\) 173291. + 173291.i 1.61075 + 1.61075i
\(329\) 38934.5i 0.359702i
\(330\) 0 0
\(331\) 65879.3 0.601303 0.300651 0.953734i \(-0.402796\pi\)
0.300651 + 0.953734i \(0.402796\pi\)
\(332\) 21477.2 21477.2i 0.194851 0.194851i
\(333\) 0 0
\(334\) 79081.5i 0.708895i
\(335\) −56729.1 + 107139.i −0.505495 + 0.954684i
\(336\) 0 0
\(337\) 18022.9 18022.9i 0.158696 0.158696i −0.623293 0.781989i \(-0.714205\pi\)
0.781989 + 0.623293i \(0.214205\pi\)
\(338\) −139228. 139228.i −1.21869 1.21869i
\(339\) 0 0
\(340\) 17140.5 + 9075.71i 0.148274 + 0.0785096i
\(341\) −54471.3 −0.468445
\(342\) 0 0
\(343\) −70500.4 70500.4i −0.599244 0.599244i
\(344\) 125277.i 1.05866i
\(345\) 0 0
\(346\) 206786. 1.72730
\(347\) 32583.8 32583.8i 0.270610 0.270610i −0.558736 0.829346i \(-0.688713\pi\)
0.829346 + 0.558736i \(0.188713\pi\)
\(348\) 0 0
\(349\) 54340.9i 0.446145i 0.974802 + 0.223072i \(0.0716086\pi\)
−0.974802 + 0.223072i \(0.928391\pi\)
\(350\) 136216. + 200447.i 1.11197 + 1.63630i
\(351\) 0 0
\(352\) −18015.2 + 18015.2i −0.145397 + 0.145397i
\(353\) 11345.9 + 11345.9i 0.0910524 + 0.0910524i 0.751166 0.660114i \(-0.229492\pi\)
−0.660114 + 0.751166i \(0.729492\pi\)
\(354\) 0 0
\(355\) 135711. 41748.4i 1.07686 0.331271i
\(356\) −64176.7 −0.506381
\(357\) 0 0
\(358\) 58217.1 + 58217.1i 0.454239 + 0.454239i
\(359\) 26830.8i 0.208183i −0.994568 0.104091i \(-0.966807\pi\)
0.994568 0.104091i \(-0.0331934\pi\)
\(360\) 0 0
\(361\) 31142.7 0.238969
\(362\) 77484.6 77484.6i 0.591287 0.591287i
\(363\) 0 0
\(364\) 55626.0i 0.419832i
\(365\) 139045. + 73622.7i 1.04368 + 0.552620i
\(366\) 0 0
\(367\) −112367. + 112367.i −0.834267 + 0.834267i −0.988097 0.153830i \(-0.950839\pi\)
0.153830 + 0.988097i \(0.450839\pi\)
\(368\) −220917. 220917.i −1.63130 1.63130i
\(369\) 0 0
\(370\) 43601.4 + 141735.i 0.318491 + 1.03532i
\(371\) 173619. 1.26139
\(372\) 0 0
\(373\) −16877.0 16877.0i −0.121305 0.121305i 0.643848 0.765153i \(-0.277337\pi\)
−0.765153 + 0.643848i \(0.777337\pi\)
\(374\) 6453.38i 0.0461364i
\(375\) 0 0
\(376\) 94248.7 0.666653
\(377\) 17205.0 17205.0i 0.121052 0.121052i
\(378\) 0 0
\(379\) 50523.2i 0.351733i 0.984414 + 0.175866i \(0.0562726\pi\)
−0.984414 + 0.175866i \(0.943727\pi\)
\(380\) 260097. 80012.5i 1.80122 0.554104i
\(381\) 0 0
\(382\) 40873.5 40873.5i 0.280101 0.280101i
\(383\) −17592.0 17592.0i −0.119927 0.119927i 0.644596 0.764523i \(-0.277026\pi\)
−0.764523 + 0.644596i \(0.777026\pi\)
\(384\) 0 0
\(385\) −25793.7 + 48714.4i −0.174017 + 0.328652i
\(386\) −286557. −1.92325
\(387\) 0 0
\(388\) −428022. 428022.i −2.84317 2.84317i
\(389\) 6343.53i 0.0419210i −0.999780 0.0209605i \(-0.993328\pi\)
0.999780 0.0209605i \(-0.00667242\pi\)
\(390\) 0 0
\(391\) −18184.4 −0.118945
\(392\) −53450.1 + 53450.1i −0.347838 + 0.347838i
\(393\) 0 0
\(394\) 149923.i 0.965773i
\(395\) −47528.0 154499.i −0.304618 0.990221i
\(396\) 0 0
\(397\) −145003. + 145003.i −0.920018 + 0.920018i −0.997030 0.0770121i \(-0.975462\pi\)
0.0770121 + 0.997030i \(0.475462\pi\)
\(398\) 19460.9 + 19460.9i 0.122856 + 0.122856i
\(399\) 0 0
\(400\) −199347. + 135469.i −1.24592 + 0.846678i
\(401\) 299021. 1.85957 0.929786 0.368100i \(-0.119992\pi\)
0.929786 + 0.368100i \(0.119992\pi\)
\(402\) 0 0
\(403\) −28114.3 28114.3i −0.173108 0.173108i
\(404\) 6544.44i 0.0400968i
\(405\) 0 0
\(406\) 319683. 1.93940
\(407\) −23849.3 + 23849.3i −0.143975 + 0.143975i
\(408\) 0 0
\(409\) 17363.2i 0.103796i 0.998652 + 0.0518982i \(0.0165271\pi\)
−0.998652 + 0.0518982i \(0.983473\pi\)
\(410\) −154439. + 291675.i −0.918733 + 1.73513i
\(411\) 0 0
\(412\) 495331. 495331.i 2.91811 2.91811i
\(413\) 99676.8 + 99676.8i 0.584378 + 0.584378i
\(414\) 0 0
\(415\) 19415.4 + 10280.2i 0.112733 + 0.0596907i
\(416\) −18596.4 −0.107459
\(417\) 0 0
\(418\) 64025.4 + 64025.4i 0.366437 + 0.366437i
\(419\) 36236.3i 0.206403i 0.994660 + 0.103201i \(0.0329086\pi\)
−0.994660 + 0.103201i \(0.967091\pi\)
\(420\) 0 0
\(421\) −121899. −0.687761 −0.343881 0.939013i \(-0.611742\pi\)
−0.343881 + 0.939013i \(0.611742\pi\)
\(422\) −88831.2 + 88831.2i −0.498817 + 0.498817i
\(423\) 0 0
\(424\) 420280.i 2.33780i
\(425\) −2629.01 + 13779.9i −0.0145551 + 0.0762899i
\(426\) 0 0
\(427\) 126349. 126349.i 0.692971 0.692971i
\(428\) −13274.7 13274.7i −0.0724666 0.0724666i
\(429\) 0 0
\(430\) −161255. + 49606.2i −0.872119 + 0.268287i
\(431\) −330169. −1.77739 −0.888693 0.458504i \(-0.848386\pi\)
−0.888693 + 0.458504i \(0.848386\pi\)
\(432\) 0 0
\(433\) 140458. + 140458.i 0.749151 + 0.749151i 0.974320 0.225169i \(-0.0722934\pi\)
−0.225169 + 0.974320i \(0.572293\pi\)
\(434\) 522387.i 2.77340i
\(435\) 0 0
\(436\) −487512. −2.56455
\(437\) −180411. + 180411.i −0.944715 + 0.944715i
\(438\) 0 0
\(439\) 25797.9i 0.133861i −0.997758 0.0669306i \(-0.978679\pi\)
0.997758 0.0669306i \(-0.0213206\pi\)
\(440\) −117923. 62439.0i −0.609107 0.322515i
\(441\) 0 0
\(442\) −3330.78 + 3330.78i −0.0170491 + 0.0170491i
\(443\) −131776. 131776.i −0.671473 0.671473i 0.286583 0.958056i \(-0.407481\pi\)
−0.958056 + 0.286583i \(0.907481\pi\)
\(444\) 0 0
\(445\) −13648.5 44367.2i −0.0689232 0.224049i
\(446\) 107903. 0.542454
\(447\) 0 0
\(448\) 65147.1 + 65147.1i 0.324593 + 0.324593i
\(449\) 133600.i 0.662697i 0.943508 + 0.331349i \(0.107504\pi\)
−0.943508 + 0.331349i \(0.892496\pi\)
\(450\) 0 0
\(451\) −75066.4 −0.369056
\(452\) 435471. 435471.i 2.13149 2.13149i
\(453\) 0 0
\(454\) 343922.i 1.66858i
\(455\) −38455.9 + 11830.0i −0.185755 + 0.0571430i
\(456\) 0 0
\(457\) −147483. + 147483.i −0.706170 + 0.706170i −0.965728 0.259558i \(-0.916423\pi\)
0.259558 + 0.965728i \(0.416423\pi\)
\(458\) 369214. + 369214.i 1.76014 + 1.76014i
\(459\) 0 0
\(460\) 327584. 618679.i 1.54813 2.92381i
\(461\) −206578. −0.972034 −0.486017 0.873949i \(-0.661551\pi\)
−0.486017 + 0.873949i \(0.661551\pi\)
\(462\) 0 0
\(463\) −156702. 156702.i −0.730990 0.730990i 0.239826 0.970816i \(-0.422910\pi\)
−0.970816 + 0.239826i \(0.922910\pi\)
\(464\) 317928.i 1.47670i
\(465\) 0 0
\(466\) −183055. −0.842963
\(467\) 100008. 100008.i 0.458566 0.458566i −0.439619 0.898184i \(-0.644886\pi\)
0.898184 + 0.439619i \(0.144886\pi\)
\(468\) 0 0
\(469\) 264435.i 1.20219i
\(470\) 37319.8 + 121315.i 0.168944 + 0.549186i
\(471\) 0 0
\(472\) −241288. + 241288.i −1.08306 + 1.08306i
\(473\) −27133.9 27133.9i −0.121280 0.121280i
\(474\) 0 0
\(475\) 110630. + 162796.i 0.490327 + 0.721533i
\(476\) −42305.1 −0.186715
\(477\) 0 0
\(478\) 516764. + 516764.i 2.26171 + 2.26171i
\(479\) 124818.i 0.544010i −0.962296 0.272005i \(-0.912313\pi\)
0.962296 0.272005i \(-0.0876867\pi\)
\(480\) 0 0
\(481\) −24618.7 −0.106408
\(482\) 348969. 348969.i 1.50208 1.50208i
\(483\) 0 0
\(484\) 449541.i 1.91902i
\(485\) 204876. 386932.i 0.870979 1.64494i
\(486\) 0 0
\(487\) −106165. + 106165.i −0.447635 + 0.447635i −0.894568 0.446932i \(-0.852516\pi\)
0.446932 + 0.894568i \(0.352516\pi\)
\(488\) 305853. + 305853.i 1.28432 + 1.28432i
\(489\) 0 0
\(490\) −89964.7 47635.3i −0.374697 0.198398i
\(491\) −185092. −0.767758 −0.383879 0.923383i \(-0.625412\pi\)
−0.383879 + 0.923383i \(0.625412\pi\)
\(492\) 0 0
\(493\) 13084.9 + 13084.9i 0.0538363 + 0.0538363i
\(494\) 66090.8i 0.270824i
\(495\) 0 0
\(496\) 519520. 2.11173
\(497\) −218998. + 218998.i −0.886598 + 0.886598i
\(498\) 0 0
\(499\) 482480.i 1.93766i −0.247723 0.968831i \(-0.579682\pi\)
0.247723 0.968831i \(-0.420318\pi\)
\(500\) −421465. 337684.i −1.68586 1.35073i
\(501\) 0 0
\(502\) 205439. 205439.i 0.815220 0.815220i
\(503\) −224311. 224311.i −0.886572 0.886572i 0.107620 0.994192i \(-0.465677\pi\)
−0.994192 + 0.107620i \(0.965677\pi\)
\(504\) 0 0
\(505\) 4524.36 1391.81i 0.0177409 0.00545756i
\(506\) 232932. 0.909763
\(507\) 0 0
\(508\) 378732. + 378732.i 1.46759 + 1.46759i
\(509\) 390482.i 1.50718i 0.657344 + 0.753591i \(0.271680\pi\)
−0.657344 + 0.753591i \(0.728320\pi\)
\(510\) 0 0
\(511\) −343182. −1.31426
\(512\) −404102. + 404102.i −1.54153 + 1.54153i
\(513\) 0 0
\(514\) 535711.i 2.02770i
\(515\) 447779. + 237094.i 1.68830 + 0.893936i
\(516\) 0 0
\(517\) −20413.4 + 20413.4i −0.0763719 + 0.0763719i
\(518\) −228718. 228718.i −0.852394 0.852394i
\(519\) 0 0
\(520\) −28637.0 93090.2i −0.105906 0.344269i
\(521\) 71234.7 0.262432 0.131216 0.991354i \(-0.458112\pi\)
0.131216 + 0.991354i \(0.458112\pi\)
\(522\) 0 0
\(523\) −26895.3 26895.3i −0.0983272 0.0983272i 0.656232 0.754559i \(-0.272149\pi\)
−0.754559 + 0.656232i \(0.772149\pi\)
\(524\) 375806.i 1.36868i
\(525\) 0 0
\(526\) −480573. −1.73695
\(527\) 21381.7 21381.7i 0.0769876 0.0769876i
\(528\) 0 0
\(529\) 376517.i 1.34547i
\(530\) −540976. + 166419.i −1.92587 + 0.592448i
\(531\) 0 0
\(532\) −419718. + 419718.i −1.48298 + 1.48298i
\(533\) −38744.0 38744.0i −0.136380 0.136380i
\(534\) 0 0
\(535\) 6354.05 12000.3i 0.0221995 0.0419263i
\(536\) 640119. 2.22808
\(537\) 0 0
\(538\) −657838. 657838.i −2.27276 2.27276i
\(539\) 23153.6i 0.0796967i
\(540\) 0 0
\(541\) 293490. 1.00276 0.501382 0.865226i \(-0.332825\pi\)
0.501382 + 0.865226i \(0.332825\pi\)
\(542\) −583405. + 583405.i −1.98596 + 1.98596i
\(543\) 0 0
\(544\) 14143.1i 0.0477911i
\(545\) −103680. 337031.i −0.349060 1.13469i
\(546\) 0 0
\(547\) 178128. 178128.i 0.595330 0.595330i −0.343736 0.939066i \(-0.611693\pi\)
0.939066 + 0.343736i \(0.111693\pi\)
\(548\) −117077. 117077.i −0.389860 0.389860i
\(549\) 0 0
\(550\) 33676.2 176512.i 0.111326 0.583512i
\(551\) 259635. 0.855186
\(552\) 0 0
\(553\) 249316. + 249316.i 0.815266 + 0.815266i
\(554\) 413422.i 1.34702i
\(555\) 0 0
\(556\) 210704. 0.681589
\(557\) −122805. + 122805.i −0.395827 + 0.395827i −0.876758 0.480931i \(-0.840299\pi\)
0.480931 + 0.876758i \(0.340299\pi\)
\(558\) 0 0
\(559\) 28009.2i 0.0896349i
\(560\) 246008. 464614.i 0.784464 1.48155i
\(561\) 0 0
\(562\) 307149. 307149.i 0.972470 0.972470i
\(563\) 86662.0 + 86662.0i 0.273408 + 0.273408i 0.830471 0.557062i \(-0.188072\pi\)
−0.557062 + 0.830471i \(0.688072\pi\)
\(564\) 0 0
\(565\) 393666. + 208442.i 1.23319 + 0.652962i
\(566\) 550477. 1.71833
\(567\) 0 0
\(568\) −530128. 530128.i −1.64318 1.64318i
\(569\) 358179.i 1.10631i −0.833080 0.553153i \(-0.813425\pi\)
0.833080 0.553153i \(-0.186575\pi\)
\(570\) 0 0
\(571\) 420094. 1.28847 0.644234 0.764828i \(-0.277176\pi\)
0.644234 + 0.764828i \(0.277176\pi\)
\(572\) 29164.8 29164.8i 0.0891387 0.0891387i
\(573\) 0 0
\(574\) 719896.i 2.18497i
\(575\) 497378. + 94893.1i 1.50436 + 0.287011i
\(576\) 0 0
\(577\) −167153. + 167153.i −0.502068 + 0.502068i −0.912080 0.410012i \(-0.865524\pi\)
0.410012 + 0.912080i \(0.365524\pi\)
\(578\) 417419. + 417419.i 1.24944 + 1.24944i
\(579\) 0 0
\(580\) −680898. + 209462.i −2.02407 + 0.622658i
\(581\) −47919.9 −0.141959
\(582\) 0 0
\(583\) −91028.5 91028.5i −0.267818 0.267818i
\(584\) 830742.i 2.43579i
\(585\) 0 0
\(586\) 337908. 0.984017
\(587\) 43094.6 43094.6i 0.125068 0.125068i −0.641802 0.766870i \(-0.721813\pi\)
0.766870 + 0.641802i \(0.221813\pi\)
\(588\) 0 0
\(589\) 424265.i 1.22294i
\(590\) −406124. 215038.i −1.16669 0.617749i
\(591\) 0 0
\(592\) 227463. 227463.i 0.649033 0.649033i
\(593\) 114499. + 114499.i 0.325605 + 0.325605i 0.850912 0.525307i \(-0.176050\pi\)
−0.525307 + 0.850912i \(0.676050\pi\)
\(594\) 0 0
\(595\) −8997.08 29246.8i −0.0254137 0.0826122i
\(596\) −1.41920e6 −3.99531
\(597\) 0 0
\(598\) 120223. + 120223.i 0.336191 + 0.336191i
\(599\) 282109.i 0.786254i 0.919484 + 0.393127i \(0.128607\pi\)
−0.919484 + 0.393127i \(0.871393\pi\)
\(600\) 0 0
\(601\) −155225. −0.429747 −0.214874 0.976642i \(-0.568934\pi\)
−0.214874 + 0.976642i \(0.568934\pi\)
\(602\) 260217. 260217.i 0.718031 0.718031i
\(603\) 0 0
\(604\) 418099.i 1.14605i
\(605\) −310781. + 95604.4i −0.849070 + 0.261196i
\(606\) 0 0
\(607\) −262539. + 262539.i −0.712553 + 0.712553i −0.967069 0.254516i \(-0.918084\pi\)
0.254516 + 0.967069i \(0.418084\pi\)
\(608\) −140317. 140317.i −0.379579 0.379579i
\(609\) 0 0
\(610\) −272579. + 514797.i −0.732543 + 1.38349i
\(611\) −21071.9 −0.0564444
\(612\) 0 0
\(613\) −98919.2 98919.2i −0.263245 0.263245i 0.563126 0.826371i \(-0.309598\pi\)
−0.826371 + 0.563126i \(0.809598\pi\)
\(614\) 849121.i 2.25233i
\(615\) 0 0
\(616\) 291051. 0.767021
\(617\) 440524. 440524.i 1.15717 1.15717i 0.172095 0.985080i \(-0.444947\pi\)
0.985080 0.172095i \(-0.0550535\pi\)
\(618\) 0 0
\(619\) 468975.i 1.22396i 0.790871 + 0.611982i \(0.209628\pi\)
−0.790871 + 0.611982i \(0.790372\pi\)
\(620\) 342277. + 1.11264e6i 0.890420 + 2.89449i
\(621\) 0 0
\(622\) −470012. + 470012.i −1.21487 + 1.21487i
\(623\) 71595.5 + 71595.5i 0.184463 + 0.184463i
\(624\) 0 0
\(625\) 143817. 363187.i 0.368172 0.929758i
\(626\) −70188.3 −0.179108
\(627\) 0 0
\(628\) 732210. + 732210.i 1.85659 + 1.85659i
\(629\) 18723.2i 0.0473237i
\(630\) 0 0
\(631\) 327190. 0.821752 0.410876 0.911691i \(-0.365223\pi\)
0.410876 + 0.911691i \(0.365223\pi\)
\(632\) −603519. + 603519.i −1.51097 + 1.51097i
\(633\) 0 0
\(634\) 416293.i 1.03567i
\(635\) −181283. + 342374.i −0.449583 + 0.849089i
\(636\) 0 0
\(637\) 11950.2 11950.2i 0.0294509 0.0294509i
\(638\) −167610. 167610.i −0.411773 0.411773i
\(639\) 0 0
\(640\) −488182. 258487.i −1.19185 0.631072i
\(641\) 584738. 1.42313 0.711567 0.702619i \(-0.247986\pi\)
0.711567 + 0.702619i \(0.247986\pi\)
\(642\) 0 0
\(643\) −202062. 202062.i −0.488723 0.488723i 0.419180 0.907903i \(-0.362318\pi\)
−0.907903 + 0.419180i \(0.862318\pi\)
\(644\) 1.52699e6i 3.68183i
\(645\) 0 0
\(646\) −50263.9 −0.120446
\(647\) −119543. + 119543.i −0.285573 + 0.285573i −0.835327 0.549754i \(-0.814722\pi\)
0.549754 + 0.835327i \(0.314722\pi\)
\(648\) 0 0
\(649\) 104521.i 0.248150i
\(650\) 108485. 73722.1i 0.256768 0.174490i
\(651\) 0 0
\(652\) 136640. 136640.i 0.321428 0.321428i
\(653\) 279985. + 279985.i 0.656611 + 0.656611i 0.954577 0.297965i \(-0.0963080\pi\)
−0.297965 + 0.954577i \(0.596308\pi\)
\(654\) 0 0
\(655\) −259806. + 79923.0i −0.605572 + 0.186290i
\(656\) 715946. 1.66369
\(657\) 0 0
\(658\) −195767. 195767.i −0.452155 0.452155i
\(659\) 171782.i 0.395555i −0.980247 0.197778i \(-0.936628\pi\)
0.980247 0.197778i \(-0.0633724\pi\)
\(660\) 0 0
\(661\) 566188. 1.29586 0.647929 0.761701i \(-0.275635\pi\)
0.647929 + 0.761701i \(0.275635\pi\)
\(662\) 331248. 331248.i 0.755854 0.755854i
\(663\) 0 0
\(664\) 116000.i 0.263100i
\(665\) −379425. 200902.i −0.857992 0.454297i
\(666\) 0 0
\(667\) 472292. 472292.i 1.06160 1.06160i
\(668\) −271807. 271807.i −0.609128 0.609128i
\(669\) 0 0
\(670\) 253468. + 823949.i 0.564643 + 1.83548i
\(671\) −132489. −0.294263
\(672\) 0 0
\(673\) −115466. 115466.i −0.254932 0.254932i 0.568057 0.822989i \(-0.307695\pi\)
−0.822989 + 0.568057i \(0.807695\pi\)
\(674\) 181243.i 0.398970i
\(675\) 0 0
\(676\) −957070. −2.09435
\(677\) −255557. + 255557.i −0.557584 + 0.557584i −0.928619 0.371035i \(-0.879003\pi\)
0.371035 + 0.928619i \(0.379003\pi\)
\(678\) 0 0
\(679\) 955001.i 2.07140i
\(680\) 70797.7 21779.2i 0.153109 0.0471004i
\(681\) 0 0
\(682\) −273888. + 273888.i −0.588849 + 0.588849i
\(683\) −97131.8 97131.8i −0.208219 0.208219i 0.595291 0.803510i \(-0.297037\pi\)
−0.803510 + 0.595291i \(0.797037\pi\)
\(684\) 0 0
\(685\) 56039.6 105837.i 0.119430 0.225558i
\(686\) −708967. −1.50653
\(687\) 0 0
\(688\) 258789. + 258789.i 0.546726 + 0.546726i
\(689\) 93965.1i 0.197937i
\(690\) 0 0
\(691\) −40145.6 −0.0840778 −0.0420389 0.999116i \(-0.513385\pi\)
−0.0420389 + 0.999116i \(0.513385\pi\)
\(692\) 710734. 710734.i 1.48421 1.48421i
\(693\) 0 0
\(694\) 327670.i 0.680327i
\(695\) 44810.6 + 145666.i 0.0927707 + 0.301569i
\(696\) 0 0
\(697\) 29465.9 29465.9i 0.0606532 0.0606532i
\(698\) 273232. + 273232.i 0.560816 + 0.560816i
\(699\) 0 0
\(700\) 1.15713e6 + 220764.i 2.36148 + 0.450539i
\(701\) −225909. −0.459724 −0.229862 0.973223i \(-0.573828\pi\)
−0.229862 + 0.973223i \(0.573828\pi\)
\(702\) 0 0
\(703\) −185757. 185757.i −0.375867 0.375867i
\(704\) 68313.3i 0.137835i
\(705\) 0 0
\(706\) 114097. 0.228911
\(707\) −7300.97 + 7300.97i −0.0146064 + 0.0146064i
\(708\) 0 0
\(709\) 459779.i 0.914654i −0.889299 0.457327i \(-0.848807\pi\)
0.889299 0.457327i \(-0.151193\pi\)
\(710\) 472456. 892287.i 0.937227 1.77006i
\(711\) 0 0
\(712\) −173311. + 173311.i −0.341875 + 0.341875i
\(713\) −771763. 771763.i −1.51812 1.51812i
\(714\) 0 0
\(715\) 26364.9 + 13959.9i 0.0515721 + 0.0273068i
\(716\) 400191. 0.780622
\(717\) 0 0
\(718\) −134908. 134908.i −0.261691 0.261691i
\(719\) 633365.i 1.22517i 0.790405 + 0.612585i \(0.209870\pi\)
−0.790405 + 0.612585i \(0.790130\pi\)
\(720\) 0 0
\(721\) −1.10518e6 −2.12600
\(722\) 156589. 156589.i 0.300391 0.300391i
\(723\) 0 0
\(724\) 532637.i 1.01614i
\(725\) −289614. 426178.i −0.550990 0.810802i
\(726\) 0 0
\(727\) 483916. 483916.i 0.915590 0.915590i −0.0811152 0.996705i \(-0.525848\pi\)
0.996705 + 0.0811152i \(0.0258482\pi\)
\(728\) 150220. + 150220.i 0.283442 + 0.283442i
\(729\) 0 0
\(730\) 1.06932e6 328950.i 2.00660 0.617282i
\(731\) 21301.8 0.0398641
\(732\) 0 0
\(733\) −79446.4 79446.4i −0.147865 0.147865i 0.629298 0.777164i \(-0.283342\pi\)
−0.777164 + 0.629298i \(0.783342\pi\)
\(734\) 1.12998e6i 2.09739i
\(735\) 0 0
\(736\) −510489. −0.942390
\(737\) −138643. + 138643.i −0.255249 + 0.255249i
\(738\) 0 0
\(739\) 885328.i 1.62112i 0.585655 + 0.810561i \(0.300837\pi\)
−0.585655 + 0.810561i \(0.699163\pi\)
\(740\) 637010. + 337290.i 1.16328 + 0.615942i
\(741\) 0 0
\(742\) 872975. 872975.i 1.58560 1.58560i
\(743\) −693877. 693877.i −1.25691 1.25691i −0.952560 0.304352i \(-0.901560\pi\)
−0.304352 0.952560i \(-0.598440\pi\)
\(744\) 0 0
\(745\) −301822. 981133.i −0.543799 1.76773i
\(746\) −169719. −0.304967
\(747\) 0 0
\(748\) 22180.6 + 22180.6i 0.0396434 + 0.0396434i
\(749\) 29618.5i 0.0527959i
\(750\) 0 0
\(751\) −1.03267e6 −1.83097 −0.915487 0.402347i \(-0.868194\pi\)
−0.915487 + 0.402347i \(0.868194\pi\)
\(752\) 194692. 194692.i 0.344281 0.344281i
\(753\) 0 0
\(754\) 173017.i 0.304331i
\(755\) 289044. 88917.5i 0.507073 0.155989i
\(756\) 0 0
\(757\) −366937. + 366937.i −0.640323 + 0.640323i −0.950635 0.310312i \(-0.899567\pi\)
0.310312 + 0.950635i \(0.399567\pi\)
\(758\) 254036. + 254036.i 0.442137 + 0.442137i
\(759\) 0 0
\(760\) 486323. 918476.i 0.841972 1.59016i
\(761\) 721432. 1.24574 0.622868 0.782327i \(-0.285967\pi\)
0.622868 + 0.782327i \(0.285967\pi\)
\(762\) 0 0
\(763\) 543867. + 543867.i 0.934209 + 0.934209i
\(764\) 280969.i 0.481361i
\(765\) 0 0
\(766\) −176909. −0.301504
\(767\) 53946.5 53946.5i 0.0917007 0.0917007i
\(768\) 0 0
\(769\) 543034.i 0.918279i 0.888364 + 0.459139i \(0.151842\pi\)
−0.888364 + 0.459139i \(0.848158\pi\)
\(770\) 115248. + 374635.i 0.194379 + 0.631869i
\(771\) 0 0
\(772\) −984913. + 984913.i −1.65258 + 1.65258i
\(773\) 501793. + 501793.i 0.839780 + 0.839780i 0.988830 0.149050i \(-0.0476215\pi\)
−0.149050 + 0.988830i \(0.547622\pi\)
\(774\) 0 0
\(775\) −696408. + 473253.i −1.15947 + 0.787934i
\(776\) −2.31177e6 −3.83903
\(777\) 0 0
\(778\) −31895.9 31895.9i −0.0526958 0.0526958i
\(779\) 584675.i 0.963473i
\(780\) 0 0
\(781\) 229641. 0.376485
\(782\) −91433.1 + 91433.1i −0.149517 + 0.149517i
\(783\) 0 0
\(784\) 220827.i 0.359269i
\(785\) −350478. + 661918.i −0.568750 + 1.07415i
\(786\) 0 0
\(787\) −219605. + 219605.i −0.354562 + 0.354562i −0.861804 0.507242i \(-0.830665\pi\)
0.507242 + 0.861804i \(0.330665\pi\)
\(788\) −515293. 515293.i −0.829854 0.829854i
\(789\) 0 0
\(790\) −1.01581e6 537863.i −1.62765 0.861821i
\(791\) −971623. −1.55290
\(792\) 0 0
\(793\) −68381.7 68381.7i −0.108741 0.108741i
\(794\) 1.45818e6i 2.31298i
\(795\) 0 0
\(796\) 133776. 0.211131
\(797\) 311150. 311150.i 0.489839 0.489839i −0.418416 0.908255i \(-0.637415\pi\)
0.908255 + 0.418416i \(0.137415\pi\)
\(798\) 0 0
\(799\) 16025.8i 0.0251030i
\(800\) −73804.0 + 386841.i −0.115319 + 0.604439i
\(801\) 0 0
\(802\) 1.50351e6 1.50351e6i 2.33753 2.33753i
\(803\) 179931. + 179931.i 0.279045 + 0.279045i
\(804\) 0 0
\(805\) −1.05565e6 + 324746.i −1.62903 + 0.501131i
\(806\) −282723. −0.435202
\(807\) 0 0
\(808\) −17673.5 17673.5i −0.0270707 0.0270707i
\(809\) 827176.i 1.26387i 0.775023 + 0.631933i \(0.217738\pi\)
−0.775023 + 0.631933i \(0.782262\pi\)
\(810\) 0 0
\(811\) 1.22035e6 1.85542 0.927711 0.373300i \(-0.121774\pi\)
0.927711 + 0.373300i \(0.121774\pi\)
\(812\) 1.09877e6 1.09877e6i 1.66645 1.66645i
\(813\) 0 0
\(814\) 239834.i 0.361961i
\(815\) 123523. + 65404.0i 0.185966 + 0.0984667i
\(816\) 0 0
\(817\) 211340. 211340.i 0.316619 0.316619i
\(818\) 87303.8 + 87303.8i 0.130475 + 0.130475i
\(819\) 0 0
\(820\) 471689. + 1.53332e6i 0.701501 + 2.28037i
\(821\) 1.13223e6 1.67977 0.839884 0.542766i \(-0.182623\pi\)
0.839884 + 0.542766i \(0.182623\pi\)
\(822\) 0 0
\(823\) 504583. + 504583.i 0.744961 + 0.744961i 0.973528 0.228567i \(-0.0734041\pi\)
−0.228567 + 0.973528i \(0.573404\pi\)
\(824\) 2.67531e6i 3.94022i
\(825\) 0 0
\(826\) 1.00237e6 1.46916
\(827\) 707633. 707633.i 1.03466 1.03466i 0.0352807 0.999377i \(-0.488767\pi\)
0.999377 0.0352807i \(-0.0112325\pi\)
\(828\) 0 0
\(829\) 846141.i 1.23121i −0.788053 0.615607i \(-0.788911\pi\)
0.788053 0.615607i \(-0.211089\pi\)
\(830\) 149313. 45932.6i 0.216741 0.0666752i
\(831\) 0 0
\(832\) 35258.5 35258.5i 0.0509352 0.0509352i
\(833\) 9088.50 + 9088.50i 0.0130979 + 0.0130979i
\(834\) 0 0
\(835\) 130103. 245714.i 0.186601 0.352417i
\(836\) 440117. 0.629732
\(837\) 0 0
\(838\) 182200. + 182200.i 0.259454 + 0.259454i
\(839\) 499671.i 0.709839i −0.934897 0.354920i \(-0.884508\pi\)
0.934897 0.354920i \(-0.115492\pi\)
\(840\) 0 0
\(841\) 27590.7 0.0390096
\(842\) −612924. + 612924.i −0.864534 + 0.864534i
\(843\) 0 0
\(844\) 610635.i 0.857229i
\(845\) −203541. 661650.i −0.285061 0.926648i
\(846\) 0 0
\(847\) 501508. 501508.i 0.699054 0.699054i
\(848\) 868184. + 868184.i 1.20731 + 1.20731i
\(849\) 0 0
\(850\) 56067.7 + 82505.6i 0.0776023 + 0.114195i
\(851\) −675806. −0.933175
\(852\) 0 0
\(853\) −175495. 175495.i −0.241194 0.241194i 0.576150 0.817344i \(-0.304554\pi\)
−0.817344 + 0.576150i \(0.804554\pi\)
\(854\) 1.27059e6i 1.74217i
\(855\) 0 0
\(856\) −71697.7 −0.0978492
\(857\) −932907. + 932907.i −1.27021 + 1.27021i −0.324237 + 0.945976i \(0.605108\pi\)
−0.945976 + 0.324237i \(0.894892\pi\)
\(858\) 0 0
\(859\) 318689.i 0.431897i −0.976405 0.215948i \(-0.930716\pi\)
0.976405 0.215948i \(-0.0692843\pi\)
\(860\) −383742. + 724741.i −0.518851 + 0.979909i
\(861\) 0 0
\(862\) −1.66012e6 + 1.66012e6i −2.23422 + 2.23422i
\(863\) 834366. + 834366.i 1.12030 + 1.12030i 0.991696 + 0.128606i \(0.0410502\pi\)
0.128606 + 0.991696i \(0.458950\pi\)
\(864\) 0 0
\(865\) 642504. + 340199.i 0.858704 + 0.454674i
\(866\) 1.41247e6 1.88341
\(867\) 0 0
\(868\) −1.79547e6 1.79547e6i −2.38308 2.38308i
\(869\) 261433.i 0.346195i
\(870\) 0 0
\(871\) −143116. −0.188648
\(872\) −1.31654e6 + 1.31654e6i −1.73142 + 1.73142i
\(873\) 0 0
\(874\) 1.81426e6i 2.37507i
\(875\) 93466.6 + 846906.i 0.122079 + 1.10616i
\(876\) 0 0
\(877\) −218162. + 218162.i −0.283648 + 0.283648i −0.834562 0.550914i \(-0.814279\pi\)
0.550914 + 0.834562i \(0.314279\pi\)
\(878\) −129714. 129714.i −0.168267 0.168267i
\(879\) 0 0
\(880\) −372579. + 114615.i −0.481120 + 0.148005i
\(881\) 279844. 0.360549 0.180274 0.983616i \(-0.442301\pi\)
0.180274 + 0.983616i \(0.442301\pi\)
\(882\) 0 0
\(883\) 269641. + 269641.i 0.345831 + 0.345831i 0.858554 0.512723i \(-0.171363\pi\)
−0.512723 + 0.858554i \(0.671363\pi\)
\(884\) 22896.2i 0.0292994i
\(885\) 0 0
\(886\) −1.32517e6 −1.68812
\(887\) −566987. + 566987.i −0.720653 + 0.720653i −0.968738 0.248085i \(-0.920199\pi\)
0.248085 + 0.968738i \(0.420199\pi\)
\(888\) 0 0
\(889\) 845027.i 1.06922i
\(890\) −291710. 154457.i −0.368274 0.194997i
\(891\) 0 0
\(892\) 370867. 370867.i 0.466110 0.466110i
\(893\) −158995. 158995.i −0.199380 0.199380i
\(894\) 0 0
\(895\) 85108.9 + 276663.i 0.106250 + 0.345387i
\(896\) 1.20490e6 1.50084
\(897\) 0 0
\(898\) 671758. + 671758.i 0.833029 + 0.833029i
\(899\) 1.11067e6i 1.37425i
\(900\) 0 0
\(901\) 71463.1 0.0880303
\(902\) −377442. + 377442.i −0.463913 + 0.463913i
\(903\) 0 0
\(904\) 2.35201e6i 2.87808i
\(905\) 368228. 113276.i 0.449593 0.138306i
\(906\) 0 0
\(907\) 256644. 256644.i 0.311973 0.311973i −0.533700 0.845674i \(-0.679199\pi\)
0.845674 + 0.533700i \(0.179199\pi\)
\(908\) −1.18208e6 1.18208e6i −1.43375 1.43375i
\(909\) 0 0
\(910\) −133878. + 252843.i −0.161668 + 0.305329i
\(911\) 143826. 0.173301 0.0866506 0.996239i \(-0.472384\pi\)
0.0866506 + 0.996239i \(0.472384\pi\)
\(912\) 0 0
\(913\) 25124.4 + 25124.4i 0.0301408 + 0.0301408i
\(914\) 1.48312e6i 1.77535i
\(915\) 0 0
\(916\) 2.53801e6 3.02485
\(917\) 419249. 419249.i 0.498578 0.498578i
\(918\) 0 0
\(919\) 993411.i 1.17625i 0.808772 + 0.588123i \(0.200133\pi\)
−0.808772 + 0.588123i \(0.799867\pi\)
\(920\) −786113. 2.55541e6i −0.928772 3.01916i
\(921\) 0 0
\(922\) −1.03869e6 + 1.03869e6i −1.22187 + 1.22187i
\(923\) 118525. + 118525.i 0.139125 + 0.139125i
\(924\) 0 0
\(925\) −97704.7 + 512116.i −0.114191 + 0.598528i
\(926\) −1.57582e6 −1.83775
\(927\) 0 0
\(928\) 367330. + 367330.i 0.426541 + 0.426541i
\(929\) 1.39909e6i 1.62112i −0.585658 0.810558i \(-0.699164\pi\)
0.585658 0.810558i \(-0.300836\pi\)
\(930\) 0 0
\(931\) 180338. 0.208059
\(932\) −629168. + 629168.i −0.724327 + 0.724327i
\(933\) 0 0
\(934\) 1.00570e6i 1.15286i
\(935\) −10616.9 + 20051.3i −0.0121444 + 0.0229361i
\(936\) 0 0
\(937\) 482443. 482443.i 0.549499 0.549499i −0.376797 0.926296i \(-0.622975\pi\)
0.926296 + 0.376797i \(0.122975\pi\)
\(938\) −1.32961e6 1.32961e6i −1.51119 1.51119i
\(939\) 0 0
\(940\) 545237. + 288697.i 0.617063 + 0.326728i
\(941\) −494897. −0.558902 −0.279451 0.960160i \(-0.590152\pi\)
−0.279451 + 0.960160i \(0.590152\pi\)
\(942\) 0 0
\(943\) −1.06356e6 1.06356e6i −1.19602 1.19602i
\(944\) 996871.i 1.11865i
\(945\) 0 0
\(946\) −272864. −0.304905
\(947\) 1.05460e6 1.05460e6i 1.17595 1.17595i 0.195183 0.980767i \(-0.437470\pi\)
0.980767 0.195183i \(-0.0625300\pi\)
\(948\) 0 0
\(949\) 185735.i 0.206235i
\(950\) 1.37482e6 + 262296.i 1.52334 + 0.290633i
\(951\) 0 0
\(952\) −114246. + 114246.i −0.126058 + 0.126058i
\(953\) 319054. + 319054.i 0.351300 + 0.351300i 0.860593 0.509293i \(-0.170093\pi\)
−0.509293 + 0.860593i \(0.670093\pi\)
\(954\) 0 0
\(955\) 194242. 59753.9i 0.212979 0.0655178i
\(956\) 3.55229e6 3.88681
\(957\) 0 0
\(958\) −627599. 627599.i −0.683835 0.683835i
\(959\) 261221.i 0.284034i
\(960\) 0 0
\(961\) 891397. 0.965216
\(962\) −123785. + 123785.i −0.133758 + 0.133758i
\(963\) 0 0
\(964\) 2.39885e6i 2.58136i
\(965\) −890361. 471436.i −0.956118 0.506254i
\(966\) 0 0
\(967\) −1.01810e6 + 1.01810e6i −1.08877 + 1.08877i −0.0931182 + 0.995655i \(0.529683\pi\)
−0.995655 + 0.0931182i \(0.970317\pi\)
\(968\) 1.21400e6 + 1.21400e6i 1.29559 + 1.29559i
\(969\) 0 0
\(970\) −915395. 2.97567e6i −0.972893 3.16258i
\(971\) −610675. −0.647696 −0.323848 0.946109i \(-0.604977\pi\)
−0.323848 + 0.946109i \(0.604977\pi\)
\(972\) 0 0
\(973\) −235061. 235061.i −0.248287 0.248287i
\(974\) 1.06762e6i 1.12538i
\(975\) 0 0
\(976\) 1.26362e6 1.32653
\(977\) 90031.7 90031.7i 0.0943206 0.0943206i −0.658372 0.752693i \(-0.728755\pi\)
0.752693 + 0.658372i \(0.228755\pi\)
\(978\) 0 0
\(979\) 75075.1i 0.0783305i
\(980\) −472939. + 145488.i −0.492439 + 0.151487i
\(981\) 0 0
\(982\) −930662. + 930662.i −0.965093 + 0.965093i
\(983\) −406452. 406452.i −0.420632 0.420632i 0.464790 0.885421i \(-0.346130\pi\)
−0.885421 + 0.464790i \(0.846130\pi\)
\(984\) 0 0
\(985\) 246649. 465824.i 0.254218 0.480120i
\(986\) 131584. 0.135347
\(987\) 0 0
\(988\) 227158. + 227158.i 0.232709 + 0.232709i
\(989\) 768879.i 0.786078i
\(990\) 0 0
\(991\) −563990. −0.574281 −0.287140 0.957889i \(-0.592705\pi\)
−0.287140 + 0.957889i \(0.592705\pi\)
\(992\) 600246. 600246.i 0.609967 0.609967i
\(993\) 0 0
\(994\) 2.20229e6i 2.22896i
\(995\) 28450.3 + 92483.3i 0.0287369 + 0.0934151i
\(996\) 0 0
\(997\) 49988.1 49988.1i 0.0502894 0.0502894i −0.681515 0.731804i \(-0.738679\pi\)
0.731804 + 0.681515i \(0.238679\pi\)
\(998\) −2.42596e6 2.42596e6i −2.43569 2.43569i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.5.g.e.28.4 8
3.2 odd 2 15.5.f.a.13.1 yes 8
5.2 odd 4 inner 45.5.g.e.37.4 8
5.3 odd 4 225.5.g.m.82.1 8
5.4 even 2 225.5.g.m.118.1 8
12.11 even 2 240.5.bg.c.193.3 8
15.2 even 4 15.5.f.a.7.1 8
15.8 even 4 75.5.f.e.7.4 8
15.14 odd 2 75.5.f.e.43.4 8
60.47 odd 4 240.5.bg.c.97.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.f.a.7.1 8 15.2 even 4
15.5.f.a.13.1 yes 8 3.2 odd 2
45.5.g.e.28.4 8 1.1 even 1 trivial
45.5.g.e.37.4 8 5.2 odd 4 inner
75.5.f.e.7.4 8 15.8 even 4
75.5.f.e.43.4 8 15.14 odd 2
225.5.g.m.82.1 8 5.3 odd 4
225.5.g.m.118.1 8 5.4 even 2
240.5.bg.c.97.3 8 60.47 odd 4
240.5.bg.c.193.3 8 12.11 even 2