Properties

Label 45.8.b.b
Level 4545
Weight 88
Character orbit 45.b
Analytic conductor 14.05714.057
Analytic rank 00
Dimension 22
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,8,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 8 8
Character orbit: [χ][\chi] == 45.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 14.057326146814.0573261468
Analytic rank: 00
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{-5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+5 x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=5\beta = \sqrt{-5}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq2+123q4+125βq5+251βq8625q10+14489q16+13858βq1711596q19+15375βq20+44356βq2378125q25+206648q31++823543βq98+O(q100) q + \beta q^{2} + 123 q^{4} + 125 \beta q^{5} + 251 \beta q^{8} - 625 q^{10} + 14489 q^{16} + 13858 \beta q^{17} - 11596 q^{19} + 15375 \beta q^{20} + 44356 \beta q^{23} - 78125 q^{25} + 206648 q^{31}+ \cdots + 823543 \beta q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+246q41250q10+28978q1623192q19156250q25+413296q31138580q34313750q40443560q46+1647086q495549036q61+3243014q642852616q76++6148760q94+O(q100) 2 q + 246 q^{4} - 1250 q^{10} + 28978 q^{16} - 23192 q^{19} - 156250 q^{25} + 413296 q^{31} - 138580 q^{34} - 313750 q^{40} - 443560 q^{46} + 1647086 q^{49} - 5549036 q^{61} + 3243014 q^{64} - 2852616 q^{76}+ \cdots + 6148760 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/45Z)×\left(\mathbb{Z}/45\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
2.23607i
2.23607i
2.23607i 0 123.000 279.508i 0 0 561.253i 0 −625.000
19.2 2.23607i 0 123.000 279.508i 0 0 561.253i 0 −625.000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
3.b odd 2 1 inner
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.8.b.b 2
3.b odd 2 1 inner 45.8.b.b 2
5.b even 2 1 inner 45.8.b.b 2
5.c odd 4 2 225.8.a.m 2
15.d odd 2 1 CM 45.8.b.b 2
15.e even 4 2 225.8.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.8.b.b 2 1.a even 1 1 trivial
45.8.b.b 2 3.b odd 2 1 inner
45.8.b.b 2 5.b even 2 1 inner
45.8.b.b 2 15.d odd 2 1 CM
225.8.a.m 2 5.c odd 4 2
225.8.a.m 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T22+5 T_{2}^{2} + 5 acting on S8new(45,[χ])S_{8}^{\mathrm{new}}(45, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+5 T^{2} + 5 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+78125 T^{2} + 78125 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+960220820 T^{2} + 960220820 Copy content Toggle raw display
1919 (T+11596)2 (T + 11596)^{2} Copy content Toggle raw display
2323 T2+9837273680 T^{2} + 9837273680 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T206648)2 (T - 206648)^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2+1890362476880 T^{2} + 1890362476880 Copy content Toggle raw display
5353 T2+3136620967220 T^{2} + 3136620967220 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+2774518)2 (T + 2774518)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 (T8763536)2 (T - 8763536)^{2} Copy content Toggle raw display
8383 T2+5729722790720 T^{2} + 5729722790720 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less