Properties

Label 451.2.j.a.223.26
Level $451$
Weight $2$
Character 451.223
Analytic conductor $3.601$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [451,2,Mod(119,451)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(451, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([6, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("451.119");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 451 = 11 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 451.j (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.60125313116\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 223.26
Character \(\chi\) \(=\) 451.223
Dual form 451.2.j.a.180.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.797716 + 0.579574i) q^{2} +(-0.536191 - 1.65023i) q^{3} +(-0.317590 - 0.977442i) q^{4} +3.89637 q^{5} +(0.528701 - 1.62718i) q^{6} +(-1.79161 - 1.30168i) q^{7} +(0.922554 - 2.83933i) q^{8} +(-0.00869851 + 0.00631984i) q^{9} +O(q^{10})\) \(q+(0.797716 + 0.579574i) q^{2} +(-0.536191 - 1.65023i) q^{3} +(-0.317590 - 0.977442i) q^{4} +3.89637 q^{5} +(0.528701 - 1.62718i) q^{6} +(-1.79161 - 1.30168i) q^{7} +(0.922554 - 2.83933i) q^{8} +(-0.00869851 + 0.00631984i) q^{9} +(3.10820 + 2.25824i) q^{10} +(-2.52298 + 2.15281i) q^{11} +(-1.44271 + 1.04819i) q^{12} +(-0.839481 - 0.609919i) q^{13} +(-0.674773 - 2.07674i) q^{14} +(-2.08920 - 6.42990i) q^{15} +(0.718617 - 0.522106i) q^{16} +(1.50445 + 4.63022i) q^{17} -0.0106018 q^{18} -1.77238 q^{19} +(-1.23745 - 3.80848i) q^{20} +(-1.18742 + 3.65451i) q^{21} +(-3.26033 + 0.255078i) q^{22} +(-1.11863 - 3.44278i) q^{23} -5.18021 q^{24} +10.1817 q^{25} +(-0.316174 - 0.973084i) q^{26} +(-4.19621 - 3.04872i) q^{27} +(-0.703318 + 2.16459i) q^{28} +(-0.701031 - 2.15755i) q^{29} +(2.06002 - 6.34008i) q^{30} +9.43920 q^{31} -5.09505 q^{32} +(4.90542 + 3.00917i) q^{33} +(-1.48343 + 4.56554i) q^{34} +(-6.98076 - 5.07182i) q^{35} +(0.00893983 + 0.00649517i) q^{36} +(2.71138 + 8.34477i) q^{37} +(-1.41386 - 1.02723i) q^{38} +(-0.556382 + 1.71237i) q^{39} +(3.59461 - 11.0631i) q^{40} +(2.98289 - 5.66590i) q^{41} +(-3.06528 + 2.22706i) q^{42} +(2.68896 + 8.27576i) q^{43} +(2.90552 + 1.78235i) q^{44} +(-0.0338926 + 0.0246244i) q^{45} +(1.10300 - 3.39469i) q^{46} +(8.19167 - 5.95159i) q^{47} +(-1.24691 - 0.905932i) q^{48} +(-0.647633 - 1.99321i) q^{49} +(8.12211 + 5.90106i) q^{50} +(6.83424 - 4.96537i) q^{51} +(-0.329549 + 1.01425i) q^{52} +(-1.98199 + 6.09994i) q^{53} +(-1.58042 - 4.86403i) q^{54} +(-9.83045 + 8.38815i) q^{55} +(-5.34875 + 3.88609i) q^{56} +(0.950337 + 2.92484i) q^{57} +(0.691238 - 2.12741i) q^{58} -10.3717 q^{59} +(-5.62134 + 4.08414i) q^{60} +(-3.03823 + 2.20740i) q^{61} +(7.52980 + 5.47072i) q^{62} +0.0238107 q^{63} +(-5.50163 - 3.99717i) q^{64} +(-3.27093 - 2.37647i) q^{65} +(2.16910 + 5.24352i) q^{66} +(4.01207 - 2.91494i) q^{67} +(4.04797 - 2.94102i) q^{68} +(-5.08158 + 3.69198i) q^{69} +(-2.62917 - 8.09174i) q^{70} +(3.53857 + 10.8906i) q^{71} +(0.00991926 + 0.0305283i) q^{72} +(-1.31051 + 4.03332i) q^{73} +(-2.67350 + 8.22820i) q^{74} +(-5.45935 - 16.8021i) q^{75} +(0.562892 + 1.73240i) q^{76} +(7.32244 - 0.572884i) q^{77} +(-1.43628 + 1.04352i) q^{78} +(1.39125 - 1.01080i) q^{79} +(2.80000 - 2.03432i) q^{80} +(-2.79108 + 8.59008i) q^{81} +(5.66331 - 2.79097i) q^{82} +(8.74434 + 6.35314i) q^{83} +3.94918 q^{84} +(5.86190 + 18.0411i) q^{85} +(-2.65140 + 8.16016i) q^{86} +(-3.18456 + 2.31372i) q^{87} +(3.78496 + 9.14965i) q^{88} +(-0.598109 + 1.84079i) q^{89} -0.0413084 q^{90} +(0.710101 + 2.18547i) q^{91} +(-3.00985 + 2.18679i) q^{92} +(-5.06122 - 15.5768i) q^{93} +9.98402 q^{94} -6.90587 q^{95} +(2.73192 + 8.40798i) q^{96} +(-0.840410 + 2.58652i) q^{97} +(0.638586 - 1.96537i) q^{98} +(0.00834072 - 0.0346710i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + q^{2} - 7 q^{3} - 39 q^{4} - 6 q^{5} + 6 q^{6} - q^{7} + 3 q^{8} - 45 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 160 q + q^{2} - 7 q^{3} - 39 q^{4} - 6 q^{5} + 6 q^{6} - q^{7} + 3 q^{8} - 45 q^{9} + 12 q^{10} + 5 q^{11} + 7 q^{12} + 11 q^{13} - 10 q^{14} - 6 q^{15} - 21 q^{16} - 20 q^{17} - 6 q^{18} - 48 q^{19} - 27 q^{20} + 11 q^{21} + 10 q^{22} + 5 q^{23} + 26 q^{24} + 126 q^{25} + 5 q^{26} + 11 q^{27} + 17 q^{28} + 11 q^{29} - 24 q^{30} + 2 q^{31} - 28 q^{32} + q^{33} - 29 q^{34} - 41 q^{35} - 67 q^{36} - 6 q^{37} - 69 q^{38} + 19 q^{39} + 33 q^{40} - 13 q^{41} + 46 q^{42} - 7 q^{43} + 20 q^{44} - 53 q^{45} + 29 q^{46} - q^{47} - 21 q^{48} - 7 q^{49} + 13 q^{50} - 9 q^{51} - 109 q^{52} - 3 q^{53} + 69 q^{54} - 75 q^{55} + 11 q^{56} + 38 q^{57} - 19 q^{58} + 10 q^{59} + 92 q^{60} + 7 q^{61} - 7 q^{62} - 112 q^{63} + 11 q^{64} - 41 q^{65} + 62 q^{66} - 43 q^{67} + 11 q^{68} - 10 q^{69} + 73 q^{70} - 31 q^{71} - 19 q^{72} - 30 q^{73} + 151 q^{74} - 78 q^{75} - 62 q^{76} + 18 q^{77} + 50 q^{78} - 22 q^{79} + 24 q^{80} - 58 q^{81} + 35 q^{82} + 22 q^{83} + 66 q^{84} + 6 q^{85} - 10 q^{86} + 46 q^{87} + 60 q^{88} - 13 q^{89} - 440 q^{90} + 54 q^{91} + 103 q^{92} + 25 q^{93} + 106 q^{94} - 28 q^{95} + 94 q^{96} + 29 q^{97} + 35 q^{98} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/451\mathbb{Z}\right)^\times\).

\(n\) \(288\) \(375\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.797716 + 0.579574i 0.564070 + 0.409821i 0.832946 0.553354i \(-0.186652\pi\)
−0.268876 + 0.963175i \(0.586652\pi\)
\(3\) −0.536191 1.65023i −0.309570 0.952759i −0.977932 0.208923i \(-0.933004\pi\)
0.668362 0.743836i \(-0.266996\pi\)
\(4\) −0.317590 0.977442i −0.158795 0.488721i
\(5\) 3.89637 1.74251 0.871255 0.490830i \(-0.163306\pi\)
0.871255 + 0.490830i \(0.163306\pi\)
\(6\) 0.528701 1.62718i 0.215841 0.664292i
\(7\) −1.79161 1.30168i −0.677163 0.491988i 0.195252 0.980753i \(-0.437447\pi\)
−0.872415 + 0.488765i \(0.837447\pi\)
\(8\) 0.922554 2.83933i 0.326172 1.00385i
\(9\) −0.00869851 + 0.00631984i −0.00289950 + 0.00210661i
\(10\) 3.10820 + 2.25824i 0.982898 + 0.714117i
\(11\) −2.52298 + 2.15281i −0.760706 + 0.649097i
\(12\) −1.44271 + 1.04819i −0.416475 + 0.302587i
\(13\) −0.839481 0.609919i −0.232830 0.169161i 0.465253 0.885178i \(-0.345963\pi\)
−0.698083 + 0.716017i \(0.745963\pi\)
\(14\) −0.674773 2.07674i −0.180341 0.555032i
\(15\) −2.08920 6.42990i −0.539429 1.66019i
\(16\) 0.718617 0.522106i 0.179654 0.130526i
\(17\) 1.50445 + 4.63022i 0.364883 + 1.12299i 0.950055 + 0.312084i \(0.101027\pi\)
−0.585172 + 0.810909i \(0.698973\pi\)
\(18\) −0.0106018 −0.00249886
\(19\) −1.77238 −0.406613 −0.203306 0.979115i \(-0.565169\pi\)
−0.203306 + 0.979115i \(0.565169\pi\)
\(20\) −1.23745 3.80848i −0.276702 0.851601i
\(21\) −1.18742 + 3.65451i −0.259116 + 0.797478i
\(22\) −3.26033 + 0.255078i −0.695105 + 0.0543828i
\(23\) −1.11863 3.44278i −0.233250 0.717870i −0.997349 0.0727705i \(-0.976816\pi\)
0.764099 0.645099i \(-0.223184\pi\)
\(24\) −5.18021 −1.05741
\(25\) 10.1817 2.03634
\(26\) −0.316174 0.973084i −0.0620068 0.190837i
\(27\) −4.19621 3.04872i −0.807561 0.586727i
\(28\) −0.703318 + 2.16459i −0.132915 + 0.409069i
\(29\) −0.701031 2.15755i −0.130178 0.400647i 0.864631 0.502408i \(-0.167552\pi\)
−0.994809 + 0.101761i \(0.967552\pi\)
\(30\) 2.06002 6.34008i 0.376106 1.15754i
\(31\) 9.43920 1.69533 0.847665 0.530531i \(-0.178007\pi\)
0.847665 + 0.530531i \(0.178007\pi\)
\(32\) −5.09505 −0.900685
\(33\) 4.90542 + 3.00917i 0.853925 + 0.523829i
\(34\) −1.48343 + 4.56554i −0.254407 + 0.782984i
\(35\) −6.98076 5.07182i −1.17996 0.857294i
\(36\) 0.00893983 + 0.00649517i 0.00148997 + 0.00108253i
\(37\) 2.71138 + 8.34477i 0.445748 + 1.37187i 0.881661 + 0.471883i \(0.156425\pi\)
−0.435913 + 0.899989i \(0.643575\pi\)
\(38\) −1.41386 1.02723i −0.229358 0.166639i
\(39\) −0.556382 + 1.71237i −0.0890924 + 0.274198i
\(40\) 3.59461 11.0631i 0.568358 1.74923i
\(41\) 2.98289 5.66590i 0.465849 0.884864i
\(42\) −3.06528 + 2.22706i −0.472983 + 0.343642i
\(43\) 2.68896 + 8.27576i 0.410062 + 1.26204i 0.916594 + 0.399820i \(0.130927\pi\)
−0.506531 + 0.862222i \(0.669073\pi\)
\(44\) 2.90552 + 1.78235i 0.438023 + 0.268700i
\(45\) −0.0338926 + 0.0246244i −0.00505241 + 0.00367079i
\(46\) 1.10300 3.39469i 0.162629 0.500520i
\(47\) 8.19167 5.95159i 1.19488 0.868129i 0.201106 0.979569i \(-0.435546\pi\)
0.993771 + 0.111440i \(0.0355463\pi\)
\(48\) −1.24691 0.905932i −0.179976 0.130760i
\(49\) −0.647633 1.99321i −0.0925190 0.284744i
\(50\) 8.12211 + 5.90106i 1.14864 + 0.834536i
\(51\) 6.83424 4.96537i 0.956985 0.695291i
\(52\) −0.329549 + 1.01425i −0.0457002 + 0.140651i
\(53\) −1.98199 + 6.09994i −0.272247 + 0.837891i 0.717687 + 0.696366i \(0.245201\pi\)
−0.989935 + 0.141526i \(0.954799\pi\)
\(54\) −1.58042 4.86403i −0.215068 0.661911i
\(55\) −9.83045 + 8.38815i −1.32554 + 1.13106i
\(56\) −5.34875 + 3.88609i −0.714756 + 0.519301i
\(57\) 0.950337 + 2.92484i 0.125875 + 0.387404i
\(58\) 0.691238 2.12741i 0.0907640 0.279343i
\(59\) −10.3717 −1.35027 −0.675137 0.737692i \(-0.735916\pi\)
−0.675137 + 0.737692i \(0.735916\pi\)
\(60\) −5.62134 + 4.08414i −0.725712 + 0.527261i
\(61\) −3.03823 + 2.20740i −0.389005 + 0.282629i −0.765048 0.643973i \(-0.777285\pi\)
0.376042 + 0.926602i \(0.377285\pi\)
\(62\) 7.52980 + 5.47072i 0.956286 + 0.694782i
\(63\) 0.0238107 0.00299986
\(64\) −5.50163 3.99717i −0.687704 0.499646i
\(65\) −3.27093 2.37647i −0.405709 0.294765i
\(66\) 2.16910 + 5.24352i 0.266998 + 0.645433i
\(67\) 4.01207 2.91494i 0.490152 0.356117i −0.315090 0.949062i \(-0.602035\pi\)
0.805243 + 0.592945i \(0.202035\pi\)
\(68\) 4.04797 2.94102i 0.490889 0.356651i
\(69\) −5.08158 + 3.69198i −0.611750 + 0.444462i
\(70\) −2.62917 8.09174i −0.314245 0.967148i
\(71\) 3.53857 + 10.8906i 0.419951 + 1.29248i 0.907747 + 0.419518i \(0.137801\pi\)
−0.487796 + 0.872958i \(0.662199\pi\)
\(72\) 0.00991926 + 0.0305283i 0.00116900 + 0.00359780i
\(73\) −1.31051 + 4.03332i −0.153383 + 0.472065i −0.997993 0.0633168i \(-0.979832\pi\)
0.844610 + 0.535381i \(0.179832\pi\)
\(74\) −2.67350 + 8.22820i −0.310789 + 0.956509i
\(75\) −5.45935 16.8021i −0.630391 1.94014i
\(76\) 0.562892 + 1.73240i 0.0645681 + 0.198720i
\(77\) 7.32244 0.572884i 0.834470 0.0652862i
\(78\) −1.43628 + 1.04352i −0.162627 + 0.118155i
\(79\) 1.39125 1.01080i 0.156528 0.113724i −0.506764 0.862085i \(-0.669159\pi\)
0.663292 + 0.748360i \(0.269159\pi\)
\(80\) 2.80000 2.03432i 0.313049 0.227444i
\(81\) −2.79108 + 8.59008i −0.310121 + 0.954453i
\(82\) 5.66331 2.79097i 0.625407 0.308211i
\(83\) 8.74434 + 6.35314i 0.959816 + 0.697347i 0.953108 0.302630i \(-0.0978647\pi\)
0.00670835 + 0.999977i \(0.497865\pi\)
\(84\) 3.94918 0.430891
\(85\) 5.86190 + 18.0411i 0.635812 + 1.95683i
\(86\) −2.65140 + 8.16016i −0.285907 + 0.879932i
\(87\) −3.18456 + 2.31372i −0.341421 + 0.248057i
\(88\) 3.78496 + 9.14965i 0.403478 + 0.975356i
\(89\) −0.598109 + 1.84079i −0.0633994 + 0.195123i −0.977739 0.209825i \(-0.932711\pi\)
0.914340 + 0.404948i \(0.132711\pi\)
\(90\) −0.0413084 −0.00435429
\(91\) 0.710101 + 2.18547i 0.0744389 + 0.229099i
\(92\) −3.00985 + 2.18679i −0.313799 + 0.227988i
\(93\) −5.06122 15.5768i −0.524824 1.61524i
\(94\) 9.98402 1.02977
\(95\) −6.90587 −0.708527
\(96\) 2.73192 + 8.40798i 0.278825 + 0.858136i
\(97\) −0.840410 + 2.58652i −0.0853307 + 0.262621i −0.984613 0.174747i \(-0.944089\pi\)
0.899283 + 0.437368i \(0.144089\pi\)
\(98\) 0.638586 1.96537i 0.0645070 0.198532i
\(99\) 0.00834072 0.0346710i 0.000838274 0.00348457i
\(100\) −3.23361 9.95203i −0.323361 0.995203i
\(101\) 1.71176 + 5.26826i 0.170327 + 0.524211i 0.999389 0.0349443i \(-0.0111254\pi\)
−0.829063 + 0.559156i \(0.811125\pi\)
\(102\) 8.32958 0.824752
\(103\) 15.1142 + 10.9811i 1.48925 + 1.08200i 0.974427 + 0.224706i \(0.0721422\pi\)
0.514823 + 0.857297i \(0.327858\pi\)
\(104\) −2.50623 + 1.82088i −0.245756 + 0.178552i
\(105\) −4.62663 + 14.2393i −0.451513 + 1.38961i
\(106\) −5.11644 + 3.71731i −0.496952 + 0.361057i
\(107\) −17.2740 −1.66994 −0.834970 0.550296i \(-0.814515\pi\)
−0.834970 + 0.550296i \(0.814515\pi\)
\(108\) −1.64728 + 5.06979i −0.158509 + 0.487841i
\(109\) −0.532741 −0.0510274 −0.0255137 0.999674i \(-0.508122\pi\)
−0.0255137 + 0.999674i \(0.508122\pi\)
\(110\) −12.7035 + 0.993878i −1.21123 + 0.0947626i
\(111\) 12.3169 8.94879i 1.16907 0.849381i
\(112\) −1.96709 −0.185873
\(113\) 0.449516 1.38347i 0.0422870 0.130146i −0.927684 0.373366i \(-0.878204\pi\)
0.969971 + 0.243220i \(0.0782037\pi\)
\(114\) −0.937062 + 2.88398i −0.0877639 + 0.270110i
\(115\) −4.35859 13.4144i −0.406441 1.25090i
\(116\) −1.88624 + 1.37043i −0.175133 + 0.127242i
\(117\) 0.0111568 0.00103145
\(118\) −8.27363 6.01115i −0.761650 0.553371i
\(119\) 3.33167 10.2538i 0.305414 0.939968i
\(120\) −20.1840 −1.84254
\(121\) 1.73082 10.8630i 0.157347 0.987543i
\(122\) −3.70300 −0.335254
\(123\) −10.9494 1.88444i −0.987276 0.169914i
\(124\) −2.99780 9.22627i −0.269210 0.828543i
\(125\) 20.1899 1.80584
\(126\) 0.0189942 + 0.0138001i 0.00169213 + 0.00122941i
\(127\) −9.14073 −0.811109 −0.405555 0.914071i \(-0.632922\pi\)
−0.405555 + 0.914071i \(0.632922\pi\)
\(128\) 1.07683 + 3.31414i 0.0951792 + 0.292931i
\(129\) 12.2151 8.87478i 1.07548 0.781381i
\(130\) −1.23193 3.79150i −0.108048 0.332536i
\(131\) −7.75779 5.63636i −0.677801 0.492451i 0.194827 0.980838i \(-0.437586\pi\)
−0.872627 + 0.488387i \(0.837586\pi\)
\(132\) 1.38337 5.75045i 0.120407 0.500512i
\(133\) 3.17541 + 2.30707i 0.275343 + 0.200049i
\(134\) 4.88992 0.422425
\(135\) −16.3500 11.8790i −1.40718 1.02238i
\(136\) 14.5347 1.24634
\(137\) −12.2851 8.92568i −1.04959 0.762573i −0.0774564 0.996996i \(-0.524680\pi\)
−0.972135 + 0.234423i \(0.924680\pi\)
\(138\) −6.19343 −0.527220
\(139\) −6.97049 5.06435i −0.591229 0.429553i 0.251526 0.967851i \(-0.419068\pi\)
−0.842755 + 0.538298i \(0.819068\pi\)
\(140\) −2.74039 + 8.43405i −0.231605 + 0.712807i
\(141\) −14.2138 10.3269i −1.19702 0.869684i
\(142\) −3.48914 + 10.7385i −0.292802 + 0.901152i
\(143\) 3.43103 0.268433i 0.286917 0.0224475i
\(144\) −0.00295127 + 0.00908308i −0.000245939 + 0.000756923i
\(145\) −2.73148 8.40662i −0.226837 0.698132i
\(146\) −3.38302 + 2.45791i −0.279981 + 0.203418i
\(147\) −2.94199 + 2.13748i −0.242652 + 0.176297i
\(148\) 7.29542 5.30043i 0.599680 0.435693i
\(149\) 15.9426 1.30607 0.653033 0.757330i \(-0.273496\pi\)
0.653033 + 0.757330i \(0.273496\pi\)
\(150\) 5.38309 16.5674i 0.439527 1.35273i
\(151\) 3.99961 2.90589i 0.325484 0.236478i −0.413028 0.910718i \(-0.635529\pi\)
0.738512 + 0.674240i \(0.235529\pi\)
\(152\) −1.63512 + 5.03238i −0.132626 + 0.408180i
\(153\) −0.0423487 0.0307681i −0.00342369 0.00248746i
\(154\) 6.17326 + 3.78690i 0.497455 + 0.305157i
\(155\) 36.7786 2.95413
\(156\) 1.85044 0.148154
\(157\) 9.55192 0.762326 0.381163 0.924508i \(-0.375524\pi\)
0.381163 + 0.924508i \(0.375524\pi\)
\(158\) 1.69566 0.134899
\(159\) 11.1290 0.882589
\(160\) −19.8522 −1.56945
\(161\) −2.47725 + 7.62420i −0.195235 + 0.600871i
\(162\) −7.20508 + 5.23480i −0.566085 + 0.411285i
\(163\) 5.70184 4.14263i 0.446603 0.324476i −0.341650 0.939827i \(-0.610986\pi\)
0.788253 + 0.615351i \(0.210986\pi\)
\(164\) −6.48542 1.11617i −0.506426 0.0871579i
\(165\) 19.1134 + 11.7248i 1.48797 + 0.912777i
\(166\) 3.29339 + 10.1360i 0.255616 + 0.786706i
\(167\) −15.9179 + 11.5650i −1.23176 + 0.894929i −0.997021 0.0771280i \(-0.975425\pi\)
−0.234743 + 0.972057i \(0.575425\pi\)
\(168\) 9.28089 + 6.74296i 0.716036 + 0.520231i
\(169\) −3.68449 11.3397i −0.283423 0.872285i
\(170\) −5.78001 + 17.7890i −0.443307 + 1.36436i
\(171\) 0.0154171 0.0112012i 0.00117898 0.000856576i
\(172\) 7.23509 5.25660i 0.551670 0.400812i
\(173\) −0.377184 1.16085i −0.0286768 0.0882580i 0.935694 0.352813i \(-0.114775\pi\)
−0.964371 + 0.264555i \(0.914775\pi\)
\(174\) −3.88135 −0.294244
\(175\) −18.2416 13.2533i −1.37894 1.00186i
\(176\) −0.689059 + 2.86431i −0.0519398 + 0.215905i
\(177\) 5.56119 + 17.1156i 0.418005 + 1.28649i
\(178\) −1.54400 + 1.12178i −0.115727 + 0.0840808i
\(179\) 4.08351 + 2.96684i 0.305216 + 0.221752i 0.729841 0.683617i \(-0.239594\pi\)
−0.424625 + 0.905369i \(0.639594\pi\)
\(180\) 0.0348329 + 0.0253076i 0.00259629 + 0.00188632i
\(181\) −3.99564 12.2973i −0.296993 0.914051i −0.982545 0.186027i \(-0.940439\pi\)
0.685551 0.728024i \(-0.259561\pi\)
\(182\) −0.700182 + 2.15494i −0.0519009 + 0.159735i
\(183\) 5.27179 + 3.83018i 0.389702 + 0.283135i
\(184\) −10.8072 −0.796717
\(185\) 10.5645 + 32.5143i 0.776721 + 2.39050i
\(186\) 4.99052 15.3592i 0.365923 1.12619i
\(187\) −13.7637 8.44314i −1.00650 0.617424i
\(188\) −8.41893 6.11671i −0.614013 0.446107i
\(189\) 3.54949 + 10.9242i 0.258188 + 0.794620i
\(190\) −5.50892 4.00247i −0.399659 0.290369i
\(191\) 0.432514 1.33114i 0.0312956 0.0963180i −0.934189 0.356780i \(-0.883875\pi\)
0.965484 + 0.260462i \(0.0838747\pi\)
\(192\) −3.64631 + 11.2222i −0.263150 + 0.809892i
\(193\) 8.04238 0.578903 0.289452 0.957193i \(-0.406527\pi\)
0.289452 + 0.957193i \(0.406527\pi\)
\(194\) −2.16949 + 1.57622i −0.155760 + 0.113166i
\(195\) −2.16787 + 6.67202i −0.155244 + 0.477793i
\(196\) −1.74256 + 1.26605i −0.124469 + 0.0904319i
\(197\) 16.4901 + 11.9808i 1.17487 + 0.853594i 0.991584 0.129465i \(-0.0413261\pi\)
0.183287 + 0.983059i \(0.441326\pi\)
\(198\) 0.0267480 0.0228236i 0.00190090 0.00162200i
\(199\) −3.11483 9.58647i −0.220805 0.679567i −0.998690 0.0511612i \(-0.983708\pi\)
0.777886 0.628406i \(-0.216292\pi\)
\(200\) 9.39318 28.9092i 0.664198 2.04419i
\(201\) −6.96155 5.05786i −0.491030 0.356754i
\(202\) −1.68785 + 5.19467i −0.118757 + 0.365496i
\(203\) −1.55247 + 4.77800i −0.108962 + 0.335350i
\(204\) −7.02384 5.10312i −0.491767 0.357290i
\(205\) 11.6224 22.0764i 0.811746 1.54189i
\(206\) 5.69248 + 17.5196i 0.396614 + 1.22065i
\(207\) 0.0314882 + 0.0228775i 0.00218858 + 0.00159010i
\(208\) −0.921707 −0.0639089
\(209\) 4.47168 3.81561i 0.309313 0.263931i
\(210\) −11.9435 + 8.67745i −0.824178 + 0.598801i
\(211\) 14.5089 + 10.5413i 0.998832 + 0.725694i 0.961837 0.273621i \(-0.0882215\pi\)
0.0369948 + 0.999315i \(0.488222\pi\)
\(212\) 6.59180 0.452726
\(213\) 16.0746 11.6789i 1.10141 0.800224i
\(214\) −13.7797 10.0116i −0.941963 0.684376i
\(215\) 10.4772 + 32.2454i 0.714538 + 2.19912i
\(216\) −12.5276 + 9.10181i −0.852393 + 0.619300i
\(217\) −16.9113 12.2868i −1.14802 0.834082i
\(218\) −0.424976 0.308763i −0.0287830 0.0209121i
\(219\) 7.35858 0.497247
\(220\) 11.3210 + 6.94470i 0.763260 + 0.468212i
\(221\) 1.56110 4.80457i 0.105011 0.323191i
\(222\) 15.0119 1.00753
\(223\) −21.1590 + 15.3729i −1.41691 + 1.02944i −0.424637 + 0.905363i \(0.639598\pi\)
−0.992272 + 0.124081i \(0.960402\pi\)
\(224\) 9.12831 + 6.63211i 0.609911 + 0.443126i
\(225\) −0.0885657 + 0.0643468i −0.00590438 + 0.00428978i
\(226\) 1.16041 0.843087i 0.0771893 0.0560813i
\(227\) 19.5720 + 14.2199i 1.29904 + 0.943807i 0.999946 0.0104165i \(-0.00331573\pi\)
0.299094 + 0.954224i \(0.403316\pi\)
\(228\) 2.55704 1.85780i 0.169344 0.123036i
\(229\) −22.7946 −1.50631 −0.753154 0.657844i \(-0.771468\pi\)
−0.753154 + 0.657844i \(0.771468\pi\)
\(230\) 4.29771 13.2270i 0.283382 0.872161i
\(231\) −4.87162 11.7765i −0.320529 0.774838i
\(232\) −6.77274 −0.444652
\(233\) −9.67452 7.02895i −0.633799 0.460482i 0.223915 0.974609i \(-0.428116\pi\)
−0.857714 + 0.514127i \(0.828116\pi\)
\(234\) 0.00889997 + 0.00646621i 0.000581809 + 0.000422709i
\(235\) 31.9178 23.1896i 2.08209 1.51272i
\(236\) 3.29393 + 10.1377i 0.214417 + 0.659907i
\(237\) −2.41403 1.75390i −0.156808 0.113928i
\(238\) 8.60059 6.24869i 0.557493 0.405043i
\(239\) −10.6297 −0.687577 −0.343789 0.939047i \(-0.611710\pi\)
−0.343789 + 0.939047i \(0.611710\pi\)
\(240\) −4.85842 3.52985i −0.313610 0.227851i
\(241\) −3.93449 + 2.85857i −0.253443 + 0.184137i −0.707251 0.706962i \(-0.750065\pi\)
0.453809 + 0.891099i \(0.350065\pi\)
\(242\) 7.67661 7.66243i 0.493471 0.492560i
\(243\) 0.111737 0.00716793
\(244\) 3.12252 + 2.26864i 0.199899 + 0.145235i
\(245\) −2.52342 7.76629i −0.161215 0.496170i
\(246\) −7.64235 7.84925i −0.487259 0.500450i
\(247\) 1.48788 + 1.08101i 0.0946717 + 0.0687830i
\(248\) 8.70818 26.8010i 0.552970 1.70187i
\(249\) 5.79548 17.8367i 0.367274 1.13035i
\(250\) 16.1058 + 11.7015i 1.01862 + 0.740070i
\(251\) 0.239610 0.737443i 0.0151240 0.0465470i −0.943210 0.332198i \(-0.892210\pi\)
0.958334 + 0.285651i \(0.0922098\pi\)
\(252\) −0.00756204 0.0232736i −0.000476363 0.00146610i
\(253\) 10.2339 + 6.27787i 0.643402 + 0.394686i
\(254\) −7.29171 5.29774i −0.457523 0.332410i
\(255\) 26.6288 19.3469i 1.66756 1.21155i
\(256\) −5.26466 + 16.2030i −0.329041 + 1.01268i
\(257\) 2.24361 1.63008i 0.139953 0.101682i −0.515606 0.856826i \(-0.672433\pi\)
0.655559 + 0.755144i \(0.272433\pi\)
\(258\) 14.8878 0.926872
\(259\) 6.00448 18.4799i 0.373100 1.14828i
\(260\) −1.28405 + 3.95189i −0.0796331 + 0.245086i
\(261\) 0.0197333 + 0.0143371i 0.00122146 + 0.000887443i
\(262\) −2.92182 8.99243i −0.180510 0.555554i
\(263\) −24.4122 17.7365i −1.50532 1.09368i −0.968201 0.250173i \(-0.919512\pi\)
−0.537120 0.843506i \(-0.680488\pi\)
\(264\) 13.0695 11.1520i 0.804374 0.686358i
\(265\) −7.72257 + 23.7676i −0.474394 + 1.46003i
\(266\) 1.19596 + 3.68078i 0.0733288 + 0.225683i
\(267\) 3.35842 0.205532
\(268\) −4.12338 2.99581i −0.251875 0.182998i
\(269\) 6.15316 18.9375i 0.375165 1.15464i −0.568202 0.822889i \(-0.692361\pi\)
0.943367 0.331750i \(-0.107639\pi\)
\(270\) −6.15790 18.9521i −0.374758 1.15339i
\(271\) 6.07079 + 4.41069i 0.368774 + 0.267930i 0.756702 0.653759i \(-0.226809\pi\)
−0.387928 + 0.921690i \(0.626809\pi\)
\(272\) 3.49859 + 2.54187i 0.212133 + 0.154124i
\(273\) 3.22577 2.34366i 0.195232 0.141845i
\(274\) −4.62696 14.2403i −0.279525 0.860289i
\(275\) −25.6882 + 21.9193i −1.54906 + 1.32178i
\(276\) 5.22255 + 3.79441i 0.314361 + 0.228397i
\(277\) −17.4069 −1.04588 −0.522939 0.852370i \(-0.675164\pi\)
−0.522939 + 0.852370i \(0.675164\pi\)
\(278\) −2.62530 8.07983i −0.157455 0.484596i
\(279\) −0.0821070 + 0.0596542i −0.00491562 + 0.00357140i
\(280\) −20.8407 + 15.1417i −1.24547 + 0.904887i
\(281\) −4.92925 + 15.1707i −0.294054 + 0.905006i 0.689483 + 0.724302i \(0.257838\pi\)
−0.983537 + 0.180704i \(0.942162\pi\)
\(282\) −5.35334 16.4759i −0.318787 0.981125i
\(283\) −12.8190 9.31355i −0.762011 0.553633i 0.137516 0.990500i \(-0.456088\pi\)
−0.899526 + 0.436867i \(0.856088\pi\)
\(284\) 9.52111 6.91749i 0.564974 0.410477i
\(285\) 3.70287 + 11.3963i 0.219339 + 0.675056i
\(286\) 2.89256 + 1.77440i 0.171041 + 0.104923i
\(287\) −12.7193 + 6.26829i −0.750798 + 0.370006i
\(288\) 0.0443193 0.0321999i 0.00261154 0.00189739i
\(289\) −5.42228 + 3.93952i −0.318958 + 0.231736i
\(290\) 2.69332 8.28919i 0.158157 0.486758i
\(291\) 4.71896 0.276630
\(292\) 4.35854 0.255064
\(293\) −6.59881 −0.385507 −0.192753 0.981247i \(-0.561742\pi\)
−0.192753 + 0.981247i \(0.561742\pi\)
\(294\) −3.58571 −0.209123
\(295\) −40.4118 −2.35287
\(296\) 26.1949 1.52255
\(297\) 17.1503 1.34178i 0.995159 0.0778580i
\(298\) 12.7176 + 9.23990i 0.736713 + 0.535253i
\(299\) −1.16075 + 3.57242i −0.0671280 + 0.206599i
\(300\) −14.6893 + 10.6724i −0.848086 + 0.616170i
\(301\) 5.95482 18.3271i 0.343230 1.05635i
\(302\) 4.87473 0.280509
\(303\) 7.77600 5.64959i 0.446719 0.324561i
\(304\) −1.27366 + 0.925372i −0.0730497 + 0.0530737i
\(305\) −11.8381 + 8.60086i −0.677846 + 0.492484i
\(306\) −0.0159498 0.0490885i −0.000911790 0.00280620i
\(307\) −3.37311 + 10.3813i −0.192513 + 0.592495i 0.807483 + 0.589890i \(0.200829\pi\)
−0.999997 + 0.00260455i \(0.999171\pi\)
\(308\) −2.88550 6.97532i −0.164416 0.397456i
\(309\) 10.0172 30.8299i 0.569861 1.75385i
\(310\) 29.3389 + 21.3160i 1.66634 + 1.21067i
\(311\) 1.46996 4.52408i 0.0833539 0.256537i −0.900690 0.434462i \(-0.856938\pi\)
0.984044 + 0.177925i \(0.0569385\pi\)
\(312\) 4.34869 + 3.15950i 0.246196 + 0.178872i
\(313\) −6.15562 −0.347936 −0.173968 0.984751i \(-0.555659\pi\)
−0.173968 + 0.984751i \(0.555659\pi\)
\(314\) 7.61972 + 5.53605i 0.430005 + 0.312417i
\(315\) 0.0927753 0.00522730
\(316\) −1.42985 1.03884i −0.0804352 0.0584396i
\(317\) −18.1122 −1.01728 −0.508642 0.860978i \(-0.669852\pi\)
−0.508642 + 0.860978i \(0.669852\pi\)
\(318\) 8.87779 + 6.45009i 0.497842 + 0.361703i
\(319\) 6.41348 + 3.93426i 0.359086 + 0.220277i
\(320\) −21.4364 15.5745i −1.19833 0.870639i
\(321\) 9.26216 + 28.5060i 0.516964 + 1.59105i
\(322\) −6.39494 + 4.64619i −0.356376 + 0.258922i
\(323\) −2.66646 8.20653i −0.148366 0.456624i
\(324\) 9.28272 0.515707
\(325\) −8.54736 6.21002i −0.474122 0.344470i
\(326\) 6.94941 0.384892
\(327\) 0.285651 + 0.879144i 0.0157966 + 0.0486168i
\(328\) −13.3355 13.6965i −0.736328 0.756263i
\(329\) −22.4233 −1.23624
\(330\) 8.45161 + 20.4307i 0.465246 + 1.12467i
\(331\) 0.233621 0.0128410 0.00642048 0.999979i \(-0.497956\pi\)
0.00642048 + 0.999979i \(0.497956\pi\)
\(332\) 3.43270 10.5648i 0.188394 0.579818i
\(333\) −0.0763225 0.0554516i −0.00418245 0.00303873i
\(334\) −19.4008 −1.06156
\(335\) 15.6325 11.3577i 0.854096 0.620537i
\(336\) 1.05474 + 3.24615i 0.0575406 + 0.177092i
\(337\) 9.40949 28.9594i 0.512568 1.57752i −0.275097 0.961417i \(-0.588710\pi\)
0.787664 0.616105i \(-0.211290\pi\)
\(338\) 3.63302 11.1813i 0.197610 0.608183i
\(339\) −2.52407 −0.137088
\(340\) 15.7724 11.4593i 0.855378 0.621469i
\(341\) −23.8149 + 20.3208i −1.28965 + 1.10043i
\(342\) 0.0187904 0.00101607
\(343\) −6.22454 + 19.1572i −0.336094 + 1.03439i
\(344\) 25.9783 1.40066
\(345\) −19.7997 + 14.3853i −1.06598 + 0.774480i
\(346\) 0.371915 1.14464i 0.0199943 0.0615361i
\(347\) −9.58060 + 6.96071i −0.514313 + 0.373671i −0.814457 0.580223i \(-0.802965\pi\)
0.300144 + 0.953894i \(0.402965\pi\)
\(348\) 3.27291 + 2.37791i 0.175447 + 0.127469i
\(349\) −30.6743 −1.64196 −0.820978 0.570959i \(-0.806571\pi\)
−0.820978 + 0.570959i \(0.806571\pi\)
\(350\) −6.87035 21.1447i −0.367235 1.13023i
\(351\) 1.66316 + 5.11869i 0.0887731 + 0.273216i
\(352\) 12.8547 10.9687i 0.685157 0.584632i
\(353\) −7.75185 + 23.8577i −0.412589 + 1.26982i 0.501800 + 0.864984i \(0.332671\pi\)
−0.914390 + 0.404836i \(0.867329\pi\)
\(354\) −5.48351 + 16.8765i −0.291445 + 0.896976i
\(355\) 13.7876 + 42.4338i 0.731769 + 2.25215i
\(356\) 1.98922 0.105428
\(357\) −18.7076 −0.990110
\(358\) 1.53797 + 4.73339i 0.0812844 + 0.250168i
\(359\) 17.9934 13.0730i 0.949655 0.689965i −0.00107009 0.999999i \(-0.500341\pi\)
0.950725 + 0.310035i \(0.100341\pi\)
\(360\) 0.0386491 + 0.118950i 0.00203699 + 0.00626920i
\(361\) −15.8587 −0.834666
\(362\) 3.93982 12.1255i 0.207072 0.637303i
\(363\) −18.8544 + 2.96839i −0.989601 + 0.155800i
\(364\) 1.91065 1.38817i 0.100145 0.0727596i
\(365\) −5.10622 + 15.7153i −0.267272 + 0.822578i
\(366\) 1.98552 + 6.11079i 0.103785 + 0.319416i
\(367\) 3.89665 0.203404 0.101702 0.994815i \(-0.467571\pi\)
0.101702 + 0.994815i \(0.467571\pi\)
\(368\) −2.60136 1.89000i −0.135605 0.0985230i
\(369\) 0.00986087 + 0.0681362i 0.000513336 + 0.00354703i
\(370\) −10.4170 + 32.0601i −0.541552 + 1.66673i
\(371\) 11.4911 8.34878i 0.596588 0.433447i
\(372\) −13.6181 + 9.89409i −0.706063 + 0.512985i
\(373\) 13.8107 10.0341i 0.715093 0.519546i −0.169720 0.985492i \(-0.554286\pi\)
0.884813 + 0.465947i \(0.154286\pi\)
\(374\) −6.08607 14.7123i −0.314703 0.760755i
\(375\) −10.8256 33.3179i −0.559034 1.72053i
\(376\) −9.34128 28.7495i −0.481740 1.48264i
\(377\) −0.727429 + 2.23880i −0.0374645 + 0.115304i
\(378\) −3.49991 + 10.7716i −0.180016 + 0.554032i
\(379\) 2.74295 + 8.44193i 0.140896 + 0.433633i 0.996460 0.0840634i \(-0.0267898\pi\)
−0.855565 + 0.517696i \(0.826790\pi\)
\(380\) 2.19323 + 6.75008i 0.112511 + 0.346272i
\(381\) 4.90118 + 15.0843i 0.251095 + 0.772792i
\(382\) 1.11652 0.811199i 0.0571261 0.0415045i
\(383\) −12.1842 + 8.85233i −0.622583 + 0.452333i −0.853823 0.520564i \(-0.825722\pi\)
0.231240 + 0.972897i \(0.425722\pi\)
\(384\) 4.89170 3.55403i 0.249629 0.181366i
\(385\) 28.5310 2.23217i 1.45407 0.113762i
\(386\) 6.41553 + 4.66116i 0.326542 + 0.237247i
\(387\) −0.0756914 0.0549930i −0.00384761 0.00279545i
\(388\) 2.79507 0.141898
\(389\) −18.9144 13.7421i −0.958997 0.696752i −0.00607974 0.999982i \(-0.501935\pi\)
−0.952918 + 0.303229i \(0.901935\pi\)
\(390\) −5.59628 + 4.06593i −0.283379 + 0.205887i
\(391\) 14.2579 10.3590i 0.721054 0.523877i
\(392\) −6.25686 −0.316019
\(393\) −5.14162 + 15.8243i −0.259360 + 0.798229i
\(394\) 6.21067 + 19.1145i 0.312889 + 0.962974i
\(395\) 5.42083 3.93846i 0.272751 0.198165i
\(396\) −0.0365378 + 0.00285860i −0.00183610 + 0.000143650i
\(397\) 3.44992 + 10.6178i 0.173147 + 0.532890i 0.999544 0.0301970i \(-0.00961346\pi\)
−0.826397 + 0.563087i \(0.809613\pi\)
\(398\) 3.07132 9.45256i 0.153951 0.473814i
\(399\) 2.10457 6.47719i 0.105360 0.324265i
\(400\) 7.31675 5.31593i 0.365837 0.265796i
\(401\) −8.87788 6.45016i −0.443340 0.322105i 0.343621 0.939109i \(-0.388347\pi\)
−0.786961 + 0.617003i \(0.788347\pi\)
\(402\) −2.62193 8.06948i −0.130770 0.402469i
\(403\) −7.92403 5.75715i −0.394724 0.286784i
\(404\) 4.60578 3.34629i 0.229146 0.166484i
\(405\) −10.8751 + 33.4701i −0.540388 + 1.66314i
\(406\) −4.00763 + 2.91171i −0.198895 + 0.144506i
\(407\) −24.8054 15.2166i −1.22956 0.754257i
\(408\) −7.79336 23.9855i −0.385829 1.18746i
\(409\) 19.3121 14.0311i 0.954923 0.693792i 0.00295669 0.999996i \(-0.499059\pi\)
0.951966 + 0.306204i \(0.0990589\pi\)
\(410\) 22.0663 10.8747i 1.08978 0.537061i
\(411\) −8.14222 + 25.0592i −0.401626 + 1.23608i
\(412\) 5.93328 18.2608i 0.292312 0.899644i
\(413\) 18.5819 + 13.5006i 0.914356 + 0.664319i
\(414\) 0.0118594 + 0.0364995i 0.000582859 + 0.00179385i
\(415\) 34.0712 + 24.7542i 1.67249 + 1.21514i
\(416\) 4.27719 + 3.10756i 0.209707 + 0.152361i
\(417\) −4.61982 + 14.2184i −0.226234 + 0.696276i
\(418\) 5.77856 0.452096i 0.282639 0.0221127i
\(419\) −4.23389 −0.206839 −0.103420 0.994638i \(-0.532978\pi\)
−0.103420 + 0.994638i \(0.532978\pi\)
\(420\) 15.3875 0.750831
\(421\) 4.67427 14.3859i 0.227810 0.701126i −0.770184 0.637821i \(-0.779836\pi\)
0.997994 0.0633052i \(-0.0201642\pi\)
\(422\) 5.46448 + 16.8179i 0.266007 + 0.818685i
\(423\) −0.0336422 + 0.103540i −0.00163574 + 0.00503429i
\(424\) 15.4913 + 11.2551i 0.752322 + 0.546594i
\(425\) 15.3179 + 47.1436i 0.743026 + 2.28680i
\(426\) 19.5918 0.949224
\(427\) 8.31664 0.402470
\(428\) 5.48605 + 16.8843i 0.265178 + 0.816134i
\(429\) −2.28266 5.51805i −0.110208 0.266414i
\(430\) −10.3308 + 31.7950i −0.498197 + 1.53329i
\(431\) −5.05547 15.5591i −0.243513 0.749457i −0.995877 0.0907096i \(-0.971087\pi\)
0.752364 0.658748i \(-0.228913\pi\)
\(432\) −4.60722 −0.221665
\(433\) −26.4691 −1.27203 −0.636013 0.771679i \(-0.719417\pi\)
−0.636013 + 0.771679i \(0.719417\pi\)
\(434\) −6.36932 19.6027i −0.305737 0.940962i
\(435\) −12.4082 + 9.01512i −0.594930 + 0.432242i
\(436\) 0.169193 + 0.520723i 0.00810289 + 0.0249381i
\(437\) 1.98264 + 6.10194i 0.0948425 + 0.291895i
\(438\) 5.87006 + 4.26485i 0.280482 + 0.203782i
\(439\) 10.2920 7.47756i 0.491209 0.356884i −0.314440 0.949277i \(-0.601817\pi\)
0.805649 + 0.592393i \(0.201817\pi\)
\(440\) 14.7476 + 35.6504i 0.703064 + 1.69957i
\(441\) 0.0182302 + 0.0132450i 0.000868105 + 0.000630715i
\(442\) 4.02992 2.92791i 0.191684 0.139267i
\(443\) 1.25919 3.87540i 0.0598261 0.184126i −0.916677 0.399629i \(-0.869139\pi\)
0.976503 + 0.215503i \(0.0691391\pi\)
\(444\) −12.6587 9.19705i −0.600753 0.436473i
\(445\) −2.33045 + 7.17240i −0.110474 + 0.340004i
\(446\) −25.7886 −1.22112
\(447\) −8.54826 26.3088i −0.404319 1.24437i
\(448\) 4.65373 + 14.3227i 0.219868 + 0.676684i
\(449\) 6.41208 + 4.65865i 0.302605 + 0.219855i 0.728717 0.684815i \(-0.240117\pi\)
−0.426112 + 0.904670i \(0.640117\pi\)
\(450\) −0.107944 −0.00508853
\(451\) 4.67184 + 20.7165i 0.219989 + 0.975502i
\(452\) −1.49502 −0.0703199
\(453\) −6.93993 5.04216i −0.326067 0.236901i
\(454\) 7.37141 + 22.6869i 0.345957 + 1.06475i
\(455\) 2.76682 + 8.51539i 0.129710 + 0.399208i
\(456\) 9.18132 0.429955
\(457\) 0.0145381 0.0447437i 0.000680063 0.00209302i −0.950716 0.310063i \(-0.899650\pi\)
0.951396 + 0.307970i \(0.0996497\pi\)
\(458\) −18.1836 13.2112i −0.849663 0.617317i
\(459\) 7.80328 24.0160i 0.364226 1.12097i
\(460\) −11.7275 + 8.52054i −0.546798 + 0.397272i
\(461\) −12.8432 9.33112i −0.598167 0.434594i 0.247061 0.969000i \(-0.420535\pi\)
−0.845228 + 0.534406i \(0.820535\pi\)
\(462\) 2.93920 12.2178i 0.136744 0.568423i
\(463\) 13.4822 9.79541i 0.626572 0.455231i −0.228639 0.973511i \(-0.573428\pi\)
0.855211 + 0.518280i \(0.173428\pi\)
\(464\) −1.63024 1.18444i −0.0756821 0.0549863i
\(465\) −19.7204 60.6931i −0.914511 2.81458i
\(466\) −3.64372 11.2142i −0.168792 0.519488i
\(467\) −11.0178 + 8.00489i −0.509842 + 0.370422i −0.812764 0.582593i \(-0.802038\pi\)
0.302921 + 0.953016i \(0.402038\pi\)
\(468\) −0.00354329 0.0109051i −0.000163789 0.000504090i
\(469\) −10.9824 −0.507118
\(470\) 38.9014 1.79439
\(471\) −5.12166 15.7628i −0.235993 0.726313i
\(472\) −9.56842 + 29.4486i −0.440422 + 1.35548i
\(473\) −24.6003 15.0907i −1.13112 0.693873i
\(474\) −0.909197 2.79822i −0.0417608 0.128526i
\(475\) −18.0459 −0.828003
\(476\) −11.0806 −0.507880
\(477\) −0.0213103 0.0655863i −0.000975730 0.00300299i
\(478\) −8.47947 6.16070i −0.387842 0.281784i
\(479\) −1.78665 + 5.49874i −0.0816341 + 0.251244i −0.983541 0.180688i \(-0.942168\pi\)
0.901906 + 0.431931i \(0.142168\pi\)
\(480\) 10.6446 + 32.7606i 0.485856 + 1.49531i
\(481\) 2.81348 8.65900i 0.128284 0.394816i
\(482\) −4.79536 −0.218423
\(483\) 13.9100 0.632925
\(484\) −11.1676 + 1.75820i −0.507619 + 0.0799181i
\(485\) −3.27455 + 10.0780i −0.148690 + 0.457620i
\(486\) 0.0891344 + 0.0647599i 0.00404322 + 0.00293757i
\(487\) −1.97141 1.43231i −0.0893331 0.0649043i 0.542222 0.840235i \(-0.317583\pi\)
−0.631555 + 0.775331i \(0.717583\pi\)
\(488\) 3.46461 + 10.6630i 0.156836 + 0.482691i
\(489\) −9.89356 7.18809i −0.447402 0.325057i
\(490\) 2.48817 7.65780i 0.112404 0.345944i
\(491\) −9.89838 + 30.4641i −0.446708 + 1.37482i 0.433893 + 0.900965i \(0.357140\pi\)
−0.880600 + 0.473860i \(0.842860\pi\)
\(492\) 1.63550 + 11.3009i 0.0737339 + 0.509484i
\(493\) 8.93527 6.49185i 0.402424 0.292378i
\(494\) 0.560382 + 1.72468i 0.0252128 + 0.0775969i
\(495\) 0.0324986 0.135091i 0.00146070 0.00607190i
\(496\) 6.78317 4.92826i 0.304573 0.221285i
\(497\) 7.83632 24.1177i 0.351507 1.08183i
\(498\) 14.9608 10.8697i 0.670410 0.487082i
\(499\) −10.0264 7.28462i −0.448844 0.326104i 0.340295 0.940319i \(-0.389473\pi\)
−0.789139 + 0.614214i \(0.789473\pi\)
\(500\) −6.41210 19.7344i −0.286758 0.882550i
\(501\) 27.6200 + 20.0671i 1.23397 + 0.896532i
\(502\) 0.618544 0.449398i 0.0276070 0.0200576i
\(503\) 10.6083 32.6491i 0.473002 1.45575i −0.375632 0.926769i \(-0.622574\pi\)
0.848634 0.528981i \(-0.177426\pi\)
\(504\) 0.0219667 0.0676064i 0.000978472 0.00301143i
\(505\) 6.66966 + 20.5271i 0.296796 + 0.913444i
\(506\) 4.52528 + 10.9393i 0.201173 + 0.486310i
\(507\) −16.7375 + 12.1605i −0.743338 + 0.540067i
\(508\) 2.90301 + 8.93453i 0.128800 + 0.396406i
\(509\) −5.81054 + 17.8830i −0.257548 + 0.792650i 0.735769 + 0.677232i \(0.236821\pi\)
−0.993317 + 0.115418i \(0.963179\pi\)
\(510\) 32.4552 1.43714
\(511\) 7.59799 5.52027i 0.336115 0.244202i
\(512\) −7.95217 + 5.77759i −0.351440 + 0.255336i
\(513\) 7.43729 + 5.40351i 0.328365 + 0.238571i
\(514\) 2.73452 0.120614
\(515\) 58.8907 + 42.7866i 2.59503 + 1.88540i
\(516\) −12.5540 9.12100i −0.552658 0.401529i
\(517\) −7.85473 + 32.6508i −0.345451 + 1.43598i
\(518\) 15.5003 11.2616i 0.681045 0.494808i
\(519\) −1.71343 + 1.24488i −0.0752112 + 0.0546441i
\(520\) −9.76519 + 7.09483i −0.428232 + 0.311129i
\(521\) 2.56871 + 7.90568i 0.112537 + 0.346354i 0.991425 0.130674i \(-0.0417141\pi\)
−0.878888 + 0.477028i \(0.841714\pi\)
\(522\) 0.00743216 + 0.0228738i 0.000325297 + 0.00100116i
\(523\) 0.708706 + 2.18117i 0.0309896 + 0.0953760i 0.965355 0.260940i \(-0.0840326\pi\)
−0.934365 + 0.356316i \(0.884033\pi\)
\(524\) −3.04542 + 9.37283i −0.133040 + 0.409454i
\(525\) −12.0900 + 37.2091i −0.527650 + 1.62394i
\(526\) −9.19437 28.2974i −0.400894 1.23382i
\(527\) 14.2008 + 43.7056i 0.618597 + 1.90385i
\(528\) 5.09622 0.398712i 0.221785 0.0173517i
\(529\) 8.00596 5.81667i 0.348085 0.252899i
\(530\) −19.9355 + 14.4840i −0.865944 + 0.629145i
\(531\) 0.0902179 0.0655472i 0.00391513 0.00284450i
\(532\) 1.24655 3.83648i 0.0540448 0.166333i
\(533\) −5.95981 + 2.93709i −0.258148 + 0.127220i
\(534\) 2.67907 + 1.94646i 0.115935 + 0.0842314i
\(535\) −67.3059 −2.90989
\(536\) −4.57512 14.0808i −0.197615 0.608197i
\(537\) 2.70642 8.32951i 0.116791 0.359445i
\(538\) 15.8842 11.5405i 0.684815 0.497547i
\(539\) 5.92497 + 3.63459i 0.255206 + 0.156553i
\(540\) −6.41840 + 19.7538i −0.276204 + 0.850068i
\(541\) −5.28562 −0.227247 −0.113623 0.993524i \(-0.536246\pi\)
−0.113623 + 0.993524i \(0.536246\pi\)
\(542\) 2.28644 + 7.03695i 0.0982111 + 0.302263i
\(543\) −18.1509 + 13.1874i −0.778931 + 0.565926i
\(544\) −7.66524 23.5912i −0.328644 1.01146i
\(545\) −2.07576 −0.0889157
\(546\) 3.93157 0.168256
\(547\) −0.977254 3.00768i −0.0417843 0.128599i 0.927988 0.372609i \(-0.121537\pi\)
−0.969773 + 0.244010i \(0.921537\pi\)
\(548\) −4.82269 + 14.8427i −0.206015 + 0.634050i
\(549\) 0.0124776 0.0384022i 0.000532533 0.00163897i
\(550\) −33.1958 + 2.59713i −1.41547 + 0.110742i
\(551\) 1.24250 + 3.82401i 0.0529321 + 0.162908i
\(552\) 5.79472 + 17.8343i 0.246640 + 0.759079i
\(553\) −3.80831 −0.161946
\(554\) −13.8857 10.0886i −0.589948 0.428623i
\(555\) 47.9914 34.8678i 2.03712 1.48006i
\(556\) −2.73635 + 8.42163i −0.116047 + 0.357157i
\(557\) 32.2058 23.3989i 1.36460 0.991441i 0.366465 0.930432i \(-0.380568\pi\)
0.998137 0.0610094i \(-0.0194320\pi\)
\(558\) −0.100072 −0.00423639
\(559\) 2.79021 8.58739i 0.118013 0.363208i
\(560\) −7.66452 −0.323885
\(561\) −6.55314 + 27.2403i −0.276674 + 1.15009i
\(562\) −12.7247 + 9.24501i −0.536758 + 0.389977i
\(563\) −32.8443 −1.38422 −0.692111 0.721791i \(-0.743319\pi\)
−0.692111 + 0.721791i \(0.743319\pi\)
\(564\) −5.57980 + 17.1729i −0.234952 + 0.723108i
\(565\) 1.75148 5.39051i 0.0736855 0.226781i
\(566\) −4.82802 14.8591i −0.202937 0.624576i
\(567\) 16.1820 11.7569i 0.679581 0.493745i
\(568\) 34.1865 1.43443
\(569\) 37.5873 + 27.3088i 1.57574 + 1.14484i 0.921381 + 0.388661i \(0.127062\pi\)
0.654361 + 0.756183i \(0.272938\pi\)
\(570\) −3.65114 + 11.2371i −0.152930 + 0.470669i
\(571\) 43.2585 1.81031 0.905156 0.425080i \(-0.139754\pi\)
0.905156 + 0.425080i \(0.139754\pi\)
\(572\) −1.35204 3.26838i −0.0565316 0.136658i
\(573\) −2.42860 −0.101456
\(574\) −13.7794 2.37148i −0.575139 0.0989837i
\(575\) −11.3896 35.0534i −0.474977 1.46183i
\(576\) 0.0731175 0.00304656
\(577\) 32.0833 + 23.3099i 1.33565 + 0.970404i 0.999592 + 0.0285618i \(0.00909273\pi\)
0.336055 + 0.941842i \(0.390907\pi\)
\(578\) −6.60868 −0.274885
\(579\) −4.31225 13.2718i −0.179211 0.551555i
\(580\) −7.34949 + 5.33972i −0.305171 + 0.221720i
\(581\) −7.39668 22.7646i −0.306866 0.944436i
\(582\) 3.76439 + 2.73499i 0.156039 + 0.113369i
\(583\) −8.13150 19.6569i −0.336772 0.814104i
\(584\) 10.2429 + 7.44192i 0.423855 + 0.307949i
\(585\) 0.0434711 0.00179731
\(586\) −5.26398 3.82450i −0.217453 0.157989i
\(587\) 8.39412 0.346462 0.173231 0.984881i \(-0.444579\pi\)
0.173231 + 0.984881i \(0.444579\pi\)
\(588\) 3.02361 + 2.19678i 0.124692 + 0.0905938i
\(589\) −16.7299 −0.689343
\(590\) −32.2372 23.4217i −1.32718 0.964255i
\(591\) 10.9291 33.6364i 0.449564 1.38362i
\(592\) 6.30529 + 4.58106i 0.259146 + 0.188281i
\(593\) 5.18043 15.9437i 0.212735 0.654730i −0.786572 0.617499i \(-0.788146\pi\)
0.999307 0.0372314i \(-0.0118539\pi\)
\(594\) 14.4587 + 8.86949i 0.593247 + 0.363920i
\(595\) 12.9814 39.9528i 0.532187 1.63790i
\(596\) −5.06320 15.5829i −0.207397 0.638301i
\(597\) −14.1497 + 10.2804i −0.579109 + 0.420747i
\(598\) −2.99644 + 2.17704i −0.122533 + 0.0890257i
\(599\) 9.69819 7.04614i 0.396257 0.287898i −0.371758 0.928330i \(-0.621245\pi\)
0.768015 + 0.640432i \(0.221245\pi\)
\(600\) −52.7434 −2.15324
\(601\) 3.43069 10.5586i 0.139941 0.430693i −0.856385 0.516338i \(-0.827295\pi\)
0.996326 + 0.0856444i \(0.0272949\pi\)
\(602\) 15.3721 11.1685i 0.626522 0.455195i
\(603\) −0.0164771 + 0.0507113i −0.000670999 + 0.00206512i
\(604\) −4.11057 2.98651i −0.167257 0.121519i
\(605\) 6.74391 42.3262i 0.274179 1.72080i
\(606\) 9.47739 0.384993
\(607\) −0.775967 −0.0314955 −0.0157478 0.999876i \(-0.505013\pi\)
−0.0157478 + 0.999876i \(0.505013\pi\)
\(608\) 9.03038 0.366230
\(609\) 8.71720 0.353239
\(610\) −14.4283 −0.584183
\(611\) −10.5067 −0.425057
\(612\) −0.0166245 + 0.0511650i −0.000672007 + 0.00206822i
\(613\) −8.67166 + 6.30033i −0.350245 + 0.254468i −0.748972 0.662602i \(-0.769452\pi\)
0.398727 + 0.917070i \(0.369452\pi\)
\(614\) −8.70755 + 6.32640i −0.351408 + 0.255313i
\(615\) −42.6630 7.34247i −1.72034 0.296077i
\(616\) 5.12874 21.3193i 0.206643 0.858981i
\(617\) 2.81119 + 8.65195i 0.113174 + 0.348314i 0.991562 0.129635i \(-0.0413804\pi\)
−0.878388 + 0.477949i \(0.841380\pi\)
\(618\) 25.8591 18.7878i 1.04021 0.755755i
\(619\) −6.92978 5.03478i −0.278532 0.202365i 0.439745 0.898123i \(-0.355069\pi\)
−0.718277 + 0.695758i \(0.755069\pi\)
\(620\) −11.6805 35.9490i −0.469101 1.44375i
\(621\) −5.80210 + 17.8570i −0.232830 + 0.716578i
\(622\) 3.79465 2.75698i 0.152152 0.110545i
\(623\) 3.46769 2.51942i 0.138930 0.100939i
\(624\) 0.494211 + 1.52103i 0.0197843 + 0.0608898i
\(625\) 27.7587 1.11035
\(626\) −4.91044 3.56764i −0.196261 0.142592i
\(627\) −8.69430 5.33340i −0.347217 0.212995i
\(628\) −3.03359 9.33644i −0.121054 0.372565i
\(629\) −34.5590 + 25.1086i −1.37796 + 1.00114i
\(630\) 0.0740083 + 0.0537702i 0.00294856 + 0.00214226i
\(631\) −9.74451 7.07980i −0.387923 0.281842i 0.376681 0.926343i \(-0.377065\pi\)
−0.764604 + 0.644501i \(0.777065\pi\)
\(632\) −1.58650 4.88274i −0.0631075 0.194225i
\(633\) 9.61603 29.5951i 0.382203 1.17630i
\(634\) −14.4484 10.4974i −0.573820 0.416905i
\(635\) −35.6157 −1.41337
\(636\) −3.53446 10.8780i −0.140151 0.431339i
\(637\) −0.672020 + 2.06827i −0.0266264 + 0.0819477i
\(638\) 2.83594 + 6.85552i 0.112276 + 0.271412i
\(639\) −0.0996071 0.0723688i −0.00394039 0.00286286i
\(640\) 4.19573 + 12.9131i 0.165851 + 0.510436i
\(641\) −6.40525 4.65369i −0.252992 0.183810i 0.454060 0.890971i \(-0.349975\pi\)
−0.707052 + 0.707162i \(0.749975\pi\)
\(642\) −9.13278 + 28.1078i −0.360442 + 1.10933i
\(643\) −9.31154 + 28.6580i −0.367211 + 1.13016i 0.581373 + 0.813637i \(0.302516\pi\)
−0.948585 + 0.316523i \(0.897484\pi\)
\(644\) 8.23896 0.324661
\(645\) 47.5945 34.5795i 1.87403 1.36156i
\(646\) 2.62922 8.09189i 0.103445 0.318371i
\(647\) 16.5077 11.9936i 0.648986 0.471516i −0.213940 0.976847i \(-0.568630\pi\)
0.862926 + 0.505331i \(0.168630\pi\)
\(648\) 21.8151 + 15.8496i 0.856979 + 0.622632i
\(649\) 26.1674 22.3282i 1.02716 0.876459i
\(650\) −3.21919 9.90766i −0.126267 0.388610i
\(651\) −11.2083 + 34.4956i −0.439288 + 1.35199i
\(652\) −5.86003 4.25756i −0.229496 0.166739i
\(653\) −10.3996 + 32.0065i −0.406966 + 1.25251i 0.512277 + 0.858821i \(0.328802\pi\)
−0.919242 + 0.393692i \(0.871198\pi\)
\(654\) −0.281661 + 0.866864i −0.0110138 + 0.0338970i
\(655\) −30.2272 21.9614i −1.18108 0.858101i
\(656\) −0.814644 5.62899i −0.0318065 0.219775i
\(657\) −0.0140905 0.0433661i −0.000549722 0.00169187i
\(658\) −17.8874 12.9960i −0.697324 0.506636i
\(659\) 46.7615 1.82157 0.910784 0.412883i \(-0.135478\pi\)
0.910784 + 0.412883i \(0.135478\pi\)
\(660\) 5.39013 22.4059i 0.209810 0.872148i
\(661\) 22.4240 16.2920i 0.872191 0.633684i −0.0589829 0.998259i \(-0.518786\pi\)
0.931174 + 0.364575i \(0.118786\pi\)
\(662\) 0.186363 + 0.135401i 0.00724320 + 0.00526249i
\(663\) −8.76569 −0.340431
\(664\) 26.1058 18.9670i 1.01310 0.736061i
\(665\) 12.3726 + 8.98921i 0.479789 + 0.348587i
\(666\) −0.0287454 0.0884692i −0.00111386 0.00342811i
\(667\) −6.64379 + 4.82700i −0.257249 + 0.186902i
\(668\) 16.3595 + 11.8859i 0.632969 + 0.459879i
\(669\) 36.7140 + 26.6743i 1.41945 + 1.03129i
\(670\) 19.0529 0.736079
\(671\) 2.91326 12.1100i 0.112465 0.467500i
\(672\) 6.04996 18.6199i 0.233382 0.718277i
\(673\) 8.97790 0.346073 0.173036 0.984915i \(-0.444642\pi\)
0.173036 + 0.984915i \(0.444642\pi\)
\(674\) 24.2903 17.6479i 0.935626 0.679772i
\(675\) −42.7246 31.0412i −1.64447 1.19478i
\(676\) −9.91374 + 7.20275i −0.381298 + 0.277029i
\(677\) 9.18026 6.66985i 0.352826 0.256343i −0.397228 0.917720i \(-0.630028\pi\)
0.750054 + 0.661377i \(0.230028\pi\)
\(678\) −2.01349 1.46288i −0.0773275 0.0561817i
\(679\) 4.87249 3.54007i 0.186989 0.135856i
\(680\) 56.6324 2.17175
\(681\) 12.9717 39.9228i 0.497077 1.52985i
\(682\) −30.7749 + 2.40773i −1.17843 + 0.0921968i
\(683\) −3.74435 −0.143274 −0.0716368 0.997431i \(-0.522822\pi\)
−0.0716368 + 0.997431i \(0.522822\pi\)
\(684\) −0.0158448 0.0115119i −0.000605842 0.000440170i
\(685\) −47.8675 34.7778i −1.82892 1.32879i
\(686\) −16.0684 + 11.6744i −0.613495 + 0.445730i
\(687\) 12.2223 + 37.6162i 0.466308 + 1.43515i
\(688\) 6.25315 + 4.54318i 0.238399 + 0.173207i
\(689\) 5.38431 3.91193i 0.205126 0.149033i
\(690\) −24.1319 −0.918686
\(691\) 10.0059 + 7.26971i 0.380642 + 0.276553i 0.761610 0.648036i \(-0.224409\pi\)
−0.380968 + 0.924588i \(0.624409\pi\)
\(692\) −1.01488 + 0.737350i −0.0385798 + 0.0280299i
\(693\) −0.0600738 + 0.0512599i −0.00228201 + 0.00194720i
\(694\) −11.6768 −0.443247
\(695\) −27.1596 19.7326i −1.03022 0.748501i
\(696\) 3.63148 + 11.1766i 0.137651 + 0.423646i
\(697\) 30.7220 + 5.28737i 1.16368 + 0.200273i
\(698\) −24.4694 17.7780i −0.926179 0.672908i
\(699\) −6.41198 + 19.7340i −0.242523 + 0.746410i
\(700\) −7.16098 + 22.0392i −0.270660 + 0.833005i
\(701\) −35.9418 26.1132i −1.35750 0.986283i −0.998599 0.0529087i \(-0.983151\pi\)
−0.358903 0.933375i \(-0.616849\pi\)
\(702\) −1.63993 + 5.04719i −0.0618952 + 0.190494i
\(703\) −4.80561 14.7901i −0.181247 0.557821i
\(704\) 22.4856 1.75920i 0.847459 0.0663025i
\(705\) −55.3822 40.2375i −2.08581 1.51543i
\(706\) −20.0111 + 14.5389i −0.753128 + 0.547179i
\(707\) 3.79077 11.6668i 0.142567 0.438775i
\(708\) 14.9633 10.8715i 0.562356 0.408575i
\(709\) 3.34377 0.125578 0.0627889 0.998027i \(-0.480001\pi\)
0.0627889 + 0.998027i \(0.480001\pi\)
\(710\) −13.5950 + 41.8411i −0.510211 + 1.57027i
\(711\) −0.00571369 + 0.0175849i −0.000214280 + 0.000659487i
\(712\) 4.67482 + 3.39646i 0.175196 + 0.127288i
\(713\) −10.5590 32.4971i −0.395436 1.21703i
\(714\) −14.9233 10.8424i −0.558492 0.405768i
\(715\) 13.3686 1.04591i 0.499956 0.0391150i
\(716\) 1.60303 4.93363i 0.0599082 0.184378i
\(717\) 5.69955 + 17.5414i 0.212854 + 0.655096i
\(718\) 21.9304 0.818434
\(719\) −11.7100 8.50782i −0.436710 0.317288i 0.347617 0.937637i \(-0.386991\pi\)
−0.784326 + 0.620349i \(0.786991\pi\)
\(720\) −0.0114993 + 0.0353911i −0.000428552 + 0.00131895i
\(721\) −12.7848 39.3477i −0.476132 1.46539i
\(722\) −12.6507 9.19127i −0.470810 0.342064i
\(723\) 6.82693 + 4.96006i 0.253896 + 0.184467i
\(724\) −10.7509 + 7.81100i −0.399555 + 0.290294i
\(725\) −7.13770 21.9676i −0.265087 0.815855i
\(726\) −16.7609 8.55962i −0.622055 0.317677i
\(727\) 22.0761 + 16.0392i 0.818757 + 0.594862i 0.916356 0.400364i \(-0.131116\pi\)
−0.0975994 + 0.995226i \(0.531116\pi\)
\(728\) 6.86037 0.254262
\(729\) 8.31334 + 25.5858i 0.307902 + 0.947624i
\(730\) −13.1815 + 9.57693i −0.487870 + 0.354458i
\(731\) −34.2732 + 24.9009i −1.26764 + 0.920994i
\(732\) 2.06951 6.36929i 0.0764912 0.235416i
\(733\) 16.2765 + 50.0938i 0.601185 + 1.85026i 0.521150 + 0.853465i \(0.325503\pi\)
0.0800353 + 0.996792i \(0.474497\pi\)
\(734\) 3.10842 + 2.25840i 0.114734 + 0.0833591i
\(735\) −11.4631 + 8.32843i −0.422823 + 0.307199i
\(736\) 5.69946 + 17.5411i 0.210085 + 0.646575i
\(737\) −3.84705 + 15.9916i −0.141708 + 0.589056i
\(738\) −0.0316238 + 0.0600684i −0.00116409 + 0.00221115i
\(739\) 30.0469 21.8304i 1.10529 0.803044i 0.123378 0.992360i \(-0.460627\pi\)
0.981916 + 0.189316i \(0.0606271\pi\)
\(740\) 28.4257 20.6524i 1.04495 0.759199i
\(741\) 0.986123 3.03497i 0.0362261 0.111493i
\(742\) 14.0054 0.514153
\(743\) 0.203028 0.00744837 0.00372419 0.999993i \(-0.498815\pi\)
0.00372419 + 0.999993i \(0.498815\pi\)
\(744\) −48.8970 −1.79265
\(745\) 62.1181 2.27583
\(746\) 16.8326 0.616284
\(747\) −0.116214 −0.00425203
\(748\) −3.88147 + 16.1346i −0.141921 + 0.589941i
\(749\) 30.9482 + 22.4852i 1.13082 + 0.821590i
\(750\) 10.6744 32.8525i 0.389775 1.19960i
\(751\) 17.2277 12.5167i 0.628648 0.456739i −0.227284 0.973829i \(-0.572984\pi\)
0.855931 + 0.517089i \(0.172984\pi\)
\(752\) 2.77931 8.55383i 0.101351 0.311926i
\(753\) −1.34543 −0.0490300
\(754\) −1.87783 + 1.36432i −0.0683865 + 0.0496857i
\(755\) 15.5840 11.3224i 0.567159 0.412065i
\(756\) 9.55050 6.93885i 0.347348 0.252363i
\(757\) 8.23431 + 25.3426i 0.299281 + 0.921092i 0.981750 + 0.190178i \(0.0609064\pi\)
−0.682469 + 0.730915i \(0.739094\pi\)
\(758\) −2.70463 + 8.32400i −0.0982367 + 0.302341i
\(759\) 4.87256 20.2545i 0.176863 0.735190i
\(760\) −6.37104 + 19.6080i −0.231102 + 0.711258i
\(761\) 18.3993 + 13.3679i 0.666974 + 0.484585i 0.869011 0.494793i \(-0.164756\pi\)
−0.202037 + 0.979378i \(0.564756\pi\)
\(762\) −4.83272 + 14.8736i −0.175071 + 0.538813i
\(763\) 0.954462 + 0.693457i 0.0345539 + 0.0251048i
\(764\) −1.43848 −0.0520422
\(765\) −0.165006 0.119884i −0.00596581 0.00433442i
\(766\) −14.8501 −0.536556
\(767\) 8.70681 + 6.32587i 0.314385 + 0.228414i
\(768\) 29.5614 1.06671
\(769\) −38.4970 27.9697i −1.38824 1.00861i −0.996056 0.0887239i \(-0.971721\pi\)
−0.392180 0.919889i \(-0.628279\pi\)
\(770\) 24.0533 + 14.7552i 0.866821 + 0.531740i
\(771\) −3.89301 2.82844i −0.140203 0.101864i
\(772\) −2.55418 7.86096i −0.0919269 0.282922i
\(773\) −36.8448 + 26.7693i −1.32522 + 0.962826i −0.325365 + 0.945589i \(0.605487\pi\)
−0.999851 + 0.0172371i \(0.994513\pi\)
\(774\) −0.0285077 0.0877376i −0.00102469 0.00315366i
\(775\) 96.1073 3.45227
\(776\) 6.56865 + 4.77240i 0.235801 + 0.171319i
\(777\) −33.7155 −1.20954
\(778\) −7.12373 21.9246i −0.255398 0.786035i
\(779\) −5.28682 + 10.0421i −0.189420 + 0.359797i
\(780\) 7.21001 0.258160
\(781\) −32.3731 19.8588i −1.15840 0.710605i
\(782\) 17.3776 0.621421
\(783\) −3.63611 + 11.1908i −0.129944 + 0.399926i
\(784\) −1.50607 1.09422i −0.0537881 0.0390793i
\(785\) 37.2178 1.32836
\(786\) −13.2729 + 9.64333i −0.473429 + 0.343966i
\(787\) 6.31879 + 19.4472i 0.225240 + 0.693219i 0.998267 + 0.0588453i \(0.0187419\pi\)
−0.773027 + 0.634374i \(0.781258\pi\)
\(788\) 6.47340 19.9231i 0.230605 0.709730i
\(789\) −16.1796 + 49.7958i −0.576011 + 1.77278i
\(790\) 6.60691 0.235063
\(791\) −2.60619 + 1.89351i −0.0926654 + 0.0673253i
\(792\) −0.0907477 0.0556680i −0.00322458 0.00197808i
\(793\) 3.89687 0.138382
\(794\) −3.40173 + 10.4694i −0.120723 + 0.371547i
\(795\) 43.3628 1.53792
\(796\) −8.38097 + 6.08913i −0.297056 + 0.215824i
\(797\) −4.58509 + 14.1115i −0.162412 + 0.499853i −0.998836 0.0482294i \(-0.984642\pi\)
0.836424 + 0.548083i \(0.184642\pi\)
\(798\) 5.43286 3.94720i 0.192321 0.139729i
\(799\) 39.8811 + 28.9753i 1.41089 + 1.02507i
\(800\) −51.8763 −1.83410
\(801\) −0.00643083 0.0197921i −0.000227222 0.000699319i
\(802\) −3.34368 10.2908i −0.118069 0.363380i
\(803\) −5.37660 12.9972i −0.189736 0.458663i
\(804\) −2.73285 + 8.41084i −0.0963801 + 0.296627i
\(805\) −9.65230 + 29.7067i −0.340199 + 1.04702i
\(806\) −2.98443 9.18513i −0.105122 0.323533i
\(807\) −34.5504 −1.21623
\(808\) 16.5375 0.581788
\(809\) 0.0353686 + 0.108853i 0.00124349 + 0.00382708i 0.951676 0.307103i \(-0.0993596\pi\)
−0.950433 + 0.310930i \(0.899360\pi\)
\(810\) −28.0737 + 20.3967i −0.986408 + 0.716668i
\(811\) −13.4065 41.2610i −0.470766 1.44887i −0.851583 0.524220i \(-0.824357\pi\)
0.380817 0.924651i \(-0.375643\pi\)
\(812\) 5.16326 0.181195
\(813\) 4.02353 12.3832i 0.141111 0.434296i
\(814\) −10.9686 26.5151i −0.384448 0.929354i
\(815\) 22.2165 16.1412i 0.778210 0.565402i
\(816\) 2.31875 7.13639i 0.0811726 0.249824i
\(817\) −4.76587 14.6678i −0.166737 0.513162i
\(818\) 23.5376 0.822974
\(819\) −0.0199886 0.0145226i −0.000698459 0.000507460i
\(820\) −25.2696 4.34900i −0.882453 0.151874i
\(821\) −0.135252 + 0.416264i −0.00472034 + 0.0145277i −0.953389 0.301744i \(-0.902431\pi\)
0.948669 + 0.316272i \(0.102431\pi\)
\(822\) −21.0188 + 15.2711i −0.733116 + 0.532640i
\(823\) 34.8607 25.3278i 1.21517 0.882871i 0.219478 0.975618i \(-0.429565\pi\)
0.995690 + 0.0927468i \(0.0295647\pi\)
\(824\) 45.1227 32.7836i 1.57193 1.14207i
\(825\) 49.9456 + 30.6385i 1.73888 + 1.06669i
\(826\) 6.99851 + 21.5392i 0.243509 + 0.749445i
\(827\) −14.3720 44.2323i −0.499762 1.53811i −0.809402 0.587255i \(-0.800209\pi\)
0.309640 0.950854i \(-0.399791\pi\)
\(828\) 0.0123611 0.0380436i 0.000429578 0.00132211i
\(829\) −2.22662 + 6.85282i −0.0773336 + 0.238008i −0.982249 0.187584i \(-0.939934\pi\)
0.904915 + 0.425592i \(0.139934\pi\)
\(830\) 12.8323 + 39.4936i 0.445414 + 1.37084i
\(831\) 9.33341 + 28.7253i 0.323772 + 0.996469i
\(832\) 2.18057 + 6.71110i 0.0755976 + 0.232665i
\(833\) 8.25467 5.99737i 0.286007 0.207796i
\(834\) −11.9259 + 8.66467i −0.412960 + 0.300033i
\(835\) −62.0221 + 45.0617i −2.14636 + 1.55942i
\(836\) −5.14969 3.15901i −0.178106 0.109257i
\(837\) −39.6089 28.7775i −1.36908 0.994697i
\(838\) −3.37744 2.45385i −0.116672 0.0847670i
\(839\) −52.4504 −1.81079 −0.905394 0.424571i \(-0.860425\pi\)
−0.905394 + 0.424571i \(0.860425\pi\)
\(840\) 36.1618 + 26.2731i 1.24770 + 0.906507i
\(841\) 19.2979 14.0208i 0.665445 0.483474i
\(842\) 12.0664 8.76679i 0.415837 0.302123i
\(843\) 27.6781 0.953283
\(844\) 5.69565 17.5294i 0.196052 0.603387i
\(845\) −14.3562 44.1837i −0.493867 1.51997i
\(846\) −0.0868460 + 0.0630973i −0.00298583 + 0.00216933i
\(847\) −17.2410 + 17.2092i −0.592409 + 0.591315i
\(848\) 1.76052 + 5.41833i 0.0604566 + 0.186066i
\(849\) −8.49604 + 26.1481i −0.291583 + 0.897401i
\(850\) −15.1039 + 46.4850i −0.518059 + 1.59442i
\(851\) 25.6962 18.6694i 0.880855 0.639978i
\(852\) −16.5206 12.0029i −0.565985 0.411212i
\(853\) 2.32459 + 7.15435i 0.0795924 + 0.244960i 0.982933 0.183964i \(-0.0588929\pi\)
−0.903341 + 0.428924i \(0.858893\pi\)
\(854\) 6.63431 + 4.82011i 0.227021 + 0.164941i
\(855\) 0.0600708 0.0436440i 0.00205438 0.00149259i
\(856\) −15.9362 + 49.0466i −0.544688 + 1.67638i
\(857\) −38.6656 + 28.0922i −1.32079 + 0.959611i −0.320870 + 0.947123i \(0.603975\pi\)
−0.999922 + 0.0124880i \(0.996025\pi\)
\(858\) 1.37720 5.72481i 0.0470169 0.195442i
\(859\) 5.33858 + 16.4305i 0.182150 + 0.560600i 0.999888 0.0149912i \(-0.00477204\pi\)
−0.817738 + 0.575591i \(0.804772\pi\)
\(860\) 28.1906 20.4817i 0.961291 0.698419i
\(861\) 17.1641 + 17.6288i 0.584951 + 0.600787i
\(862\) 4.98485 15.3418i 0.169785 0.522543i
\(863\) −12.1221 + 37.3079i −0.412640 + 1.26998i 0.501704 + 0.865039i \(0.332707\pi\)
−0.914345 + 0.404937i \(0.867293\pi\)
\(864\) 21.3799 + 15.5334i 0.727358 + 0.528457i
\(865\) −1.46965 4.52311i −0.0499696 0.153790i
\(866\) −21.1149 15.3408i −0.717512 0.521303i
\(867\) 9.40848 + 6.83566i 0.319529 + 0.232151i
\(868\) −6.63876 + 20.4320i −0.225334 + 0.693507i
\(869\) −1.33403 + 5.54533i −0.0452537 + 0.188112i
\(870\) −15.1232 −0.512724
\(871\) −5.14593 −0.174363
\(872\) −0.491483 + 1.51263i −0.0166437 + 0.0512241i
\(873\) −0.00903604 0.0278101i −0.000305824 0.000941229i
\(874\) −1.95494 + 6.01670i −0.0661270 + 0.203518i
\(875\) −36.1723 26.2807i −1.22285 0.888450i
\(876\) −2.33701 7.19258i −0.0789603 0.243015i
\(877\) −32.0449 −1.08208 −0.541039 0.840998i \(-0.681969\pi\)
−0.541039 + 0.840998i \(0.681969\pi\)
\(878\) 12.5439 0.423335
\(879\) 3.53823 + 10.8895i 0.119341 + 0.367295i
\(880\) −2.68483 + 11.1604i −0.0905056 + 0.376217i
\(881\) −6.47897 + 19.9402i −0.218282 + 0.671803i 0.780622 + 0.625003i \(0.214902\pi\)
−0.998904 + 0.0467998i \(0.985098\pi\)
\(882\) 0.00686605 + 0.0211315i 0.000231192 + 0.000711535i
\(883\) 6.40288 0.215474 0.107737 0.994179i \(-0.465640\pi\)
0.107737 + 0.994179i \(0.465640\pi\)
\(884\) −5.19198 −0.174625
\(885\) 21.6685 + 66.6887i 0.728378 + 2.24172i
\(886\) 3.25056 2.36167i 0.109205 0.0793419i
\(887\) 15.8234 + 48.6993i 0.531296 + 1.63516i 0.751518 + 0.659712i \(0.229322\pi\)
−0.220222 + 0.975450i \(0.570678\pi\)
\(888\) −14.0455 43.2276i −0.471336 1.45062i
\(889\) 16.3766 + 11.8983i 0.549253 + 0.399056i
\(890\) −6.01598 + 4.37087i −0.201656 + 0.146512i
\(891\) −11.4510 27.6812i −0.383622 0.927356i
\(892\) 21.7460 + 15.7994i 0.728109 + 0.529002i
\(893\) −14.5188 + 10.5485i −0.485853 + 0.352993i
\(894\) 8.42885 25.9413i 0.281903 0.867608i
\(895\) 15.9109 + 11.5599i 0.531841 + 0.386405i
\(896\) 2.38469 7.33932i 0.0796669 0.245189i
\(897\) 6.51770 0.217620
\(898\) 2.41498 + 7.43255i 0.0805890 + 0.248027i
\(899\) −6.61717 20.3656i −0.220695 0.679230i
\(900\) 0.0910228 + 0.0661319i 0.00303409 + 0.00220440i
\(901\) −31.2259 −1.04028
\(902\) −8.27996 + 19.2336i −0.275692 + 0.640408i
\(903\) −33.4367 −1.11270
\(904\) −3.51342 2.55265i −0.116855 0.0848999i
\(905\) −15.5685 47.9149i −0.517514 1.59274i
\(906\) −2.61379 8.04442i −0.0868373 0.267258i
\(907\) 23.0510 0.765396 0.382698 0.923873i \(-0.374995\pi\)
0.382698 + 0.923873i \(0.374995\pi\)
\(908\) 7.68324 23.6466i 0.254977 0.784739i
\(909\) −0.0481843 0.0350080i −0.00159817 0.00116114i
\(910\) −2.72817 + 8.39644i −0.0904379 + 0.278339i
\(911\) −13.1320 + 9.54097i −0.435083 + 0.316106i −0.783678 0.621167i \(-0.786659\pi\)
0.348595 + 0.937273i \(0.386659\pi\)
\(912\) 2.21000 + 1.60566i 0.0731805 + 0.0531687i
\(913\) −35.7389 + 2.79609i −1.18278 + 0.0925372i
\(914\) 0.0375296 0.0272668i 0.00124137 0.000901906i
\(915\) 20.5409 + 14.9238i 0.679060 + 0.493366i
\(916\) 7.23933 + 22.2804i 0.239194 + 0.736164i
\(917\) 6.56217 + 20.1963i 0.216702 + 0.666940i
\(918\) 20.1439 14.6354i 0.664847 0.483040i
\(919\) −13.0383 40.1277i −0.430093 1.32369i −0.898033 0.439929i \(-0.855004\pi\)
0.467940 0.883760i \(-0.344996\pi\)
\(920\) −42.1088 −1.38829
\(921\) 18.9402 0.624101
\(922\) −4.83714 14.8872i −0.159303 0.490283i
\(923\) 3.67182 11.3007i 0.120859 0.371967i
\(924\) −9.96368 + 8.50183i −0.327781 + 0.279690i
\(925\) 27.6065 + 84.9640i 0.907696 + 2.79360i
\(926\) 16.4321 0.539994
\(927\) −0.200870 −0.00659744
\(928\) 3.57178 + 10.9928i 0.117250 + 0.360857i
\(929\) −36.6238 26.6088i −1.20159 0.873006i −0.207149 0.978309i \(-0.566418\pi\)
−0.994440 + 0.105304i \(0.966418\pi\)
\(930\) 19.4449 59.8453i 0.637624 1.96241i
\(931\) 1.14785 + 3.53273i 0.0376194 + 0.115781i
\(932\) −3.79786 + 11.6886i −0.124403 + 0.382873i
\(933\) −8.25394 −0.270222
\(934\) −13.4285 −0.439394
\(935\) −53.6284 32.8976i −1.75384 1.07587i
\(936\) 0.0102928 0.0316779i 0.000336430 0.00103542i
\(937\) −25.1503 18.2727i −0.821624 0.596945i 0.0955533 0.995424i \(-0.469538\pi\)
−0.917177 + 0.398480i \(0.869538\pi\)
\(938\) −8.76080 6.36510i −0.286050 0.207828i
\(939\) 3.30059 + 10.1582i 0.107711 + 0.331500i
\(940\) −32.8033 23.8330i −1.06992 0.777346i
\(941\) 8.54050 26.2849i 0.278412 0.856865i −0.709884 0.704319i \(-0.751253\pi\)
0.988296 0.152546i \(-0.0487473\pi\)
\(942\) 5.05011 15.5426i 0.164542 0.506407i
\(943\) −22.8432 3.93140i −0.743877 0.128024i
\(944\) −7.45324 + 5.41510i −0.242582 + 0.176246i
\(945\) 13.8302 + 42.5648i 0.449895 + 1.38463i
\(946\) −10.8779 26.2958i −0.353670 0.854951i
\(947\) 38.1642 27.7279i 1.24017 0.901036i 0.242561 0.970136i \(-0.422013\pi\)
0.997610 + 0.0690998i \(0.0220127\pi\)
\(948\) −0.947658 + 2.91659i −0.0307785 + 0.0947265i
\(949\) 3.56014 2.58660i 0.115567 0.0839644i
\(950\) −14.3955 10.4589i −0.467052 0.339333i
\(951\) 9.71163 + 29.8893i 0.314921 + 0.969227i
\(952\) −26.0404 18.9194i −0.843973 0.613183i
\(953\) 4.29214 3.11842i 0.139036 0.101016i −0.516093 0.856532i \(-0.672614\pi\)
0.655129 + 0.755517i \(0.272614\pi\)
\(954\) 0.0210126 0.0646701i 0.000680308 0.00209377i
\(955\) 1.68524 5.18662i 0.0545330 0.167835i
\(956\) 3.37588 + 10.3899i 0.109184 + 0.336033i
\(957\) 3.05358 12.6932i 0.0987081 0.410314i
\(958\) −4.61217 + 3.35094i −0.149012 + 0.108264i
\(959\) 10.3918 + 31.9826i 0.335568 + 1.03277i
\(960\) −14.2074 + 43.7258i −0.458541 + 1.41125i
\(961\) 58.0986 1.87415
\(962\) 7.26289 5.27680i 0.234165 0.170131i
\(963\) 0.150258 0.109169i 0.00484199 0.00351791i
\(964\) 4.04364 + 2.93788i 0.130237 + 0.0946227i
\(965\) 31.3361 1.00874
\(966\) 11.0962 + 8.06185i 0.357014 + 0.259386i
\(967\) −3.45092 2.50724i −0.110974 0.0806273i 0.530914 0.847426i \(-0.321849\pi\)
−0.641888 + 0.766798i \(0.721849\pi\)
\(968\) −29.2468 14.9361i −0.940028 0.480063i
\(969\) −12.1129 + 8.80054i −0.389123 + 0.282714i
\(970\) −8.45313 + 6.14156i −0.271414 + 0.197194i
\(971\) 41.1132 29.8705i 1.31939 0.958590i 0.319446 0.947604i \(-0.396503\pi\)
0.999940 0.0109855i \(-0.00349685\pi\)
\(972\) −0.0354865 0.109216i −0.00113823 0.00350312i
\(973\) 5.89620 + 18.1467i 0.189024 + 0.581755i
\(974\) −0.742493 2.28516i −0.0237910 0.0732212i
\(975\) −5.66492 + 17.4348i −0.181423 + 0.558362i
\(976\) −1.03082 + 3.17255i −0.0329959 + 0.101551i
\(977\) 8.28348 + 25.4939i 0.265012 + 0.815624i 0.991691 + 0.128646i \(0.0410630\pi\)
−0.726678 + 0.686978i \(0.758937\pi\)
\(978\) −3.72621 11.4681i −0.119151 0.366710i
\(979\) −2.45386 5.93188i −0.0784256 0.189584i
\(980\) −6.78968 + 4.93299i −0.216888 + 0.157579i
\(981\) 0.00463405 0.00336684i 0.000147954 0.000107495i
\(982\) −25.5523 + 18.5648i −0.815406 + 0.592427i
\(983\) −12.4858 + 38.4274i −0.398235 + 1.22564i 0.528178 + 0.849134i \(0.322875\pi\)
−0.926413 + 0.376509i \(0.877125\pi\)
\(984\) −15.4520 + 29.3505i −0.492591 + 0.935660i
\(985\) 64.2516 + 46.6815i 2.04723 + 1.48740i
\(986\) 10.8903 0.346818
\(987\) 12.0232 + 37.0035i 0.382702 + 1.17784i
\(988\) 0.584088 1.79764i 0.0185823 0.0571904i
\(989\) 25.4837 18.5150i 0.810335 0.588743i
\(990\) 0.104220 0.0889291i 0.00331233 0.00282635i
\(991\) 2.92029 8.98773i 0.0927661 0.285505i −0.893899 0.448268i \(-0.852041\pi\)
0.986665 + 0.162764i \(0.0520409\pi\)
\(992\) −48.0932 −1.52696
\(993\) −0.125265 0.385527i −0.00397518 0.0122343i
\(994\) 20.2292 14.6974i 0.641631 0.466172i
\(995\) −12.1365 37.3525i −0.384754 1.18415i
\(996\) −19.2749 −0.610748
\(997\) −39.6829 −1.25677 −0.628385 0.777903i \(-0.716284\pi\)
−0.628385 + 0.777903i \(0.716284\pi\)
\(998\) −3.77625 11.6221i −0.119535 0.367892i
\(999\) 14.0634 43.2826i 0.444946 1.36940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 451.2.j.a.223.26 yes 160
11.4 even 5 451.2.h.a.59.15 160
41.16 even 5 451.2.h.a.344.15 yes 160
451.180 even 5 inner 451.2.j.a.180.26 yes 160
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
451.2.h.a.59.15 160 11.4 even 5
451.2.h.a.344.15 yes 160 41.16 even 5
451.2.j.a.180.26 yes 160 451.180 even 5 inner
451.2.j.a.223.26 yes 160 1.1 even 1 trivial