Properties

Label 459.2.a.a.1.1
Level $459$
Weight $2$
Character 459.1
Self dual yes
Analytic conductor $3.665$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(1,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.66513345278\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 459.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.00000 q^{4} -4.00000 q^{5} +1.00000 q^{7} +8.00000 q^{10} +6.00000 q^{11} +1.00000 q^{13} -2.00000 q^{14} -4.00000 q^{16} -1.00000 q^{17} -7.00000 q^{19} -8.00000 q^{20} -12.0000 q^{22} -4.00000 q^{23} +11.0000 q^{25} -2.00000 q^{26} +2.00000 q^{28} -6.00000 q^{29} -8.00000 q^{31} +8.00000 q^{32} +2.00000 q^{34} -4.00000 q^{35} +1.00000 q^{37} +14.0000 q^{38} +4.00000 q^{43} +12.0000 q^{44} +8.00000 q^{46} -6.00000 q^{47} -6.00000 q^{49} -22.0000 q^{50} +2.00000 q^{52} -24.0000 q^{55} +12.0000 q^{58} -6.00000 q^{59} -7.00000 q^{61} +16.0000 q^{62} -8.00000 q^{64} -4.00000 q^{65} +1.00000 q^{67} -2.00000 q^{68} +8.00000 q^{70} +4.00000 q^{71} +3.00000 q^{73} -2.00000 q^{74} -14.0000 q^{76} +6.00000 q^{77} -9.00000 q^{79} +16.0000 q^{80} -14.0000 q^{83} +4.00000 q^{85} -8.00000 q^{86} +14.0000 q^{89} +1.00000 q^{91} -8.00000 q^{92} +12.0000 q^{94} +28.0000 q^{95} -1.00000 q^{97} +12.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 0 0
\(4\) 2.00000 1.00000
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 8.00000 2.52982
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −8.00000 −1.78885
\(21\) 0 0
\(22\) −12.0000 −2.55841
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 8.00000 1.41421
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 1.00000 0.164399 0.0821995 0.996616i \(-0.473806\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 14.0000 2.27110
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 12.0000 1.80907
\(45\) 0 0
\(46\) 8.00000 1.17954
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) −22.0000 −3.11127
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −24.0000 −3.23616
\(56\) 0 0
\(57\) 0 0
\(58\) 12.0000 1.57568
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 16.0000 2.03200
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 1.00000 0.122169 0.0610847 0.998133i \(-0.480544\pi\)
0.0610847 + 0.998133i \(0.480544\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 8.00000 0.956183
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) 3.00000 0.351123 0.175562 0.984468i \(-0.443826\pi\)
0.175562 + 0.984468i \(0.443826\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −14.0000 −1.60591
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) −9.00000 −1.01258 −0.506290 0.862364i \(-0.668983\pi\)
−0.506290 + 0.862364i \(0.668983\pi\)
\(80\) 16.0000 1.78885
\(81\) 0 0
\(82\) 0 0
\(83\) −14.0000 −1.53670 −0.768350 0.640030i \(-0.778922\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) 28.0000 2.87274
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) 12.0000 1.21218
\(99\) 0 0
\(100\) 22.0000 2.20000
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.00000 −0.193347 −0.0966736 0.995316i \(-0.530820\pi\)
−0.0966736 + 0.995316i \(0.530820\pi\)
\(108\) 0 0
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 48.0000 4.57662
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 16.0000 1.49201
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 14.0000 1.26750
\(123\) 0 0
\(124\) −16.0000 −1.43684
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 8.00000 0.701646
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) −7.00000 −0.606977
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 1.00000 0.0848189 0.0424094 0.999100i \(-0.486497\pi\)
0.0424094 + 0.999100i \(0.486497\pi\)
\(140\) −8.00000 −0.676123
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 24.0000 1.99309
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 32.0000 2.57030
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 18.0000 1.43200
\(159\) 0 0
\(160\) −32.0000 −2.52982
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) 21.0000 1.64485 0.822423 0.568876i \(-0.192621\pi\)
0.822423 + 0.568876i \(0.192621\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 28.0000 2.17322
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −8.00000 −0.613572
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 11.0000 0.831522
\(176\) −24.0000 −1.80907
\(177\) 0 0
\(178\) −28.0000 −2.09869
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) −56.0000 −4.06267
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −19.0000 −1.36765 −0.683825 0.729646i \(-0.739685\pi\)
−0.683825 + 0.729646i \(0.739685\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −12.0000 −0.857143
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 4.00000 0.281439
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 2.00000 0.139347
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) −42.0000 −2.90520
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 36.0000 2.43823
\(219\) 0 0
\(220\) −48.0000 −3.23616
\(221\) −1.00000 −0.0672673
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 8.00000 0.534522
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 6.00000 0.398234 0.199117 0.979976i \(-0.436193\pi\)
0.199117 + 0.979976i \(0.436193\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) −32.0000 −2.11002
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 10.0000 0.646846 0.323423 0.946254i \(-0.395166\pi\)
0.323423 + 0.946254i \(0.395166\pi\)
\(240\) 0 0
\(241\) 15.0000 0.966235 0.483117 0.875556i \(-0.339504\pi\)
0.483117 + 0.875556i \(0.339504\pi\)
\(242\) −50.0000 −3.21412
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) 24.0000 1.53330
\(246\) 0 0
\(247\) −7.00000 −0.445399
\(248\) 0 0
\(249\) 0 0
\(250\) 48.0000 3.03579
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −24.0000 −1.50887
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) −8.00000 −0.496139
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 14.0000 0.858395
\(267\) 0 0
\(268\) 2.00000 0.122169
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) 24.0000 1.44989
\(275\) 66.0000 3.97995
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) −2.00000 −0.119952
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −12.0000 −0.709575
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −48.0000 −2.81866
\(291\) 0 0
\(292\) 6.00000 0.351123
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) 24.0000 1.39733
\(296\) 0 0
\(297\) 0 0
\(298\) 28.0000 1.62200
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) −34.0000 −1.95648
\(303\) 0 0
\(304\) 28.0000 1.60591
\(305\) 28.0000 1.60328
\(306\) 0 0
\(307\) 24.0000 1.36975 0.684876 0.728659i \(-0.259856\pi\)
0.684876 + 0.728659i \(0.259856\pi\)
\(308\) 12.0000 0.683763
\(309\) 0 0
\(310\) −64.0000 −3.63496
\(311\) −22.0000 −1.24751 −0.623753 0.781622i \(-0.714393\pi\)
−0.623753 + 0.781622i \(0.714393\pi\)
\(312\) 0 0
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) −20.0000 −1.12867
\(315\) 0 0
\(316\) −18.0000 −1.01258
\(317\) −8.00000 −0.449325 −0.224662 0.974437i \(-0.572128\pi\)
−0.224662 + 0.974437i \(0.572128\pi\)
\(318\) 0 0
\(319\) −36.0000 −2.01561
\(320\) 32.0000 1.78885
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) 7.00000 0.389490
\(324\) 0 0
\(325\) 11.0000 0.610170
\(326\) −42.0000 −2.32616
\(327\) 0 0
\(328\) 0 0
\(329\) −6.00000 −0.330791
\(330\) 0 0
\(331\) 7.00000 0.384755 0.192377 0.981321i \(-0.438380\pi\)
0.192377 + 0.981321i \(0.438380\pi\)
\(332\) −28.0000 −1.53670
\(333\) 0 0
\(334\) −32.0000 −1.75096
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −5.00000 −0.272367 −0.136184 0.990684i \(-0.543484\pi\)
−0.136184 + 0.990684i \(0.543484\pi\)
\(338\) 24.0000 1.30543
\(339\) 0 0
\(340\) 8.00000 0.433861
\(341\) −48.0000 −2.59935
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 44.0000 2.36545
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) 0 0
\(349\) −33.0000 −1.76645 −0.883225 0.468950i \(-0.844632\pi\)
−0.883225 + 0.468950i \(0.844632\pi\)
\(350\) −22.0000 −1.17595
\(351\) 0 0
\(352\) 48.0000 2.55841
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −16.0000 −0.849192
\(356\) 28.0000 1.48400
\(357\) 0 0
\(358\) 24.0000 1.26844
\(359\) 18.0000 0.950004 0.475002 0.879985i \(-0.342447\pi\)
0.475002 + 0.879985i \(0.342447\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) 1.00000 0.0521996 0.0260998 0.999659i \(-0.491691\pi\)
0.0260998 + 0.999659i \(0.491691\pi\)
\(368\) 16.0000 0.834058
\(369\) 0 0
\(370\) 8.00000 0.415900
\(371\) 0 0
\(372\) 0 0
\(373\) 27.0000 1.39801 0.699004 0.715118i \(-0.253627\pi\)
0.699004 + 0.715118i \(0.253627\pi\)
\(374\) 12.0000 0.620505
\(375\) 0 0
\(376\) 0 0
\(377\) −6.00000 −0.309016
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 56.0000 2.87274
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) −6.00000 −0.306586 −0.153293 0.988181i \(-0.548988\pi\)
−0.153293 + 0.988181i \(0.548988\pi\)
\(384\) 0 0
\(385\) −24.0000 −1.22315
\(386\) 38.0000 1.93415
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) 0 0
\(394\) −36.0000 −1.81365
\(395\) 36.0000 1.81136
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 22.0000 1.10276
\(399\) 0 0
\(400\) −44.0000 −2.20000
\(401\) −16.0000 −0.799002 −0.399501 0.916733i \(-0.630817\pi\)
−0.399501 + 0.916733i \(0.630817\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) −4.00000 −0.199007
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 17.0000 0.840596 0.420298 0.907386i \(-0.361926\pi\)
0.420298 + 0.907386i \(0.361926\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −2.00000 −0.0985329
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 56.0000 2.74893
\(416\) 8.00000 0.392232
\(417\) 0 0
\(418\) 84.0000 4.10857
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) −11.0000 −0.536107 −0.268054 0.963404i \(-0.586380\pi\)
−0.268054 + 0.963404i \(0.586380\pi\)
\(422\) 38.0000 1.84981
\(423\) 0 0
\(424\) 0 0
\(425\) −11.0000 −0.533578
\(426\) 0 0
\(427\) −7.00000 −0.338754
\(428\) −4.00000 −0.193347
\(429\) 0 0
\(430\) 32.0000 1.54318
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) −36.0000 −1.72409
\(437\) 28.0000 1.33942
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2.00000 0.0951303
\(443\) 26.0000 1.23530 0.617649 0.786454i \(-0.288085\pi\)
0.617649 + 0.786454i \(0.288085\pi\)
\(444\) 0 0
\(445\) −56.0000 −2.65465
\(446\) −48.0000 −2.27287
\(447\) 0 0
\(448\) −8.00000 −0.377964
\(449\) 38.0000 1.79333 0.896665 0.442709i \(-0.145982\pi\)
0.896665 + 0.442709i \(0.145982\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 4.00000 0.188144
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) −12.0000 −0.560723
\(459\) 0 0
\(460\) 32.0000 1.49201
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) 24.0000 1.11417
\(465\) 0 0
\(466\) 0 0
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) 1.00000 0.0461757
\(470\) −48.0000 −2.21407
\(471\) 0 0
\(472\) 0 0
\(473\) 24.0000 1.10352
\(474\) 0 0
\(475\) −77.0000 −3.53300
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) −20.0000 −0.914779
\(479\) 18.0000 0.822441 0.411220 0.911536i \(-0.365103\pi\)
0.411220 + 0.911536i \(0.365103\pi\)
\(480\) 0 0
\(481\) 1.00000 0.0455961
\(482\) −30.0000 −1.36646
\(483\) 0 0
\(484\) 50.0000 2.27273
\(485\) 4.00000 0.181631
\(486\) 0 0
\(487\) −19.0000 −0.860972 −0.430486 0.902597i \(-0.641658\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −48.0000 −2.16842
\(491\) 10.0000 0.451294 0.225647 0.974209i \(-0.427550\pi\)
0.225647 + 0.974209i \(0.427550\pi\)
\(492\) 0 0
\(493\) 6.00000 0.270226
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) 32.0000 1.43684
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 44.0000 1.96971 0.984855 0.173379i \(-0.0554684\pi\)
0.984855 + 0.173379i \(0.0554684\pi\)
\(500\) −48.0000 −2.14663
\(501\) 0 0
\(502\) 0 0
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 8.00000 0.355995
\(506\) 48.0000 2.13386
\(507\) 0 0
\(508\) 16.0000 0.709885
\(509\) −4.00000 −0.177297 −0.0886484 0.996063i \(-0.528255\pi\)
−0.0886484 + 0.996063i \(0.528255\pi\)
\(510\) 0 0
\(511\) 3.00000 0.132712
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) −36.0000 −1.58328
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) 0 0
\(521\) −32.0000 −1.40195 −0.700973 0.713188i \(-0.747251\pi\)
−0.700973 + 0.713188i \(0.747251\pi\)
\(522\) 0 0
\(523\) 9.00000 0.393543 0.196771 0.980449i \(-0.436954\pi\)
0.196771 + 0.980449i \(0.436954\pi\)
\(524\) −20.0000 −0.873704
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) −14.0000 −0.606977
\(533\) 0 0
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) 0 0
\(538\) 20.0000 0.862261
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) −9.00000 −0.386940 −0.193470 0.981106i \(-0.561974\pi\)
−0.193470 + 0.981106i \(0.561974\pi\)
\(542\) 14.0000 0.601351
\(543\) 0 0
\(544\) −8.00000 −0.342997
\(545\) 72.0000 3.08414
\(546\) 0 0
\(547\) −35.0000 −1.49649 −0.748246 0.663421i \(-0.769104\pi\)
−0.748246 + 0.663421i \(0.769104\pi\)
\(548\) −24.0000 −1.02523
\(549\) 0 0
\(550\) −132.000 −5.62850
\(551\) 42.0000 1.78926
\(552\) 0 0
\(553\) −9.00000 −0.382719
\(554\) 44.0000 1.86938
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 16.0000 0.676123
\(561\) 0 0
\(562\) −36.0000 −1.51857
\(563\) 16.0000 0.674320 0.337160 0.941447i \(-0.390534\pi\)
0.337160 + 0.941447i \(0.390534\pi\)
\(564\) 0 0
\(565\) −8.00000 −0.336563
\(566\) 8.00000 0.336265
\(567\) 0 0
\(568\) 0 0
\(569\) 8.00000 0.335377 0.167689 0.985840i \(-0.446370\pi\)
0.167689 + 0.985840i \(0.446370\pi\)
\(570\) 0 0
\(571\) −5.00000 −0.209243 −0.104622 0.994512i \(-0.533363\pi\)
−0.104622 + 0.994512i \(0.533363\pi\)
\(572\) 12.0000 0.501745
\(573\) 0 0
\(574\) 0 0
\(575\) −44.0000 −1.83493
\(576\) 0 0
\(577\) −5.00000 −0.208153 −0.104076 0.994569i \(-0.533189\pi\)
−0.104076 + 0.994569i \(0.533189\pi\)
\(578\) −2.00000 −0.0831890
\(579\) 0 0
\(580\) 48.0000 1.99309
\(581\) −14.0000 −0.580818
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −48.0000 −1.98286
\(587\) −10.0000 −0.412744 −0.206372 0.978474i \(-0.566166\pi\)
−0.206372 + 0.978474i \(0.566166\pi\)
\(588\) 0 0
\(589\) 56.0000 2.30744
\(590\) −48.0000 −1.97613
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) −28.0000 −1.14692
\(597\) 0 0
\(598\) 8.00000 0.327144
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −8.00000 −0.326056
\(603\) 0 0
\(604\) 34.0000 1.38344
\(605\) −100.000 −4.06558
\(606\) 0 0
\(607\) 17.0000 0.690009 0.345004 0.938601i \(-0.387877\pi\)
0.345004 + 0.938601i \(0.387877\pi\)
\(608\) −56.0000 −2.27110
\(609\) 0 0
\(610\) −56.0000 −2.26737
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) −5.00000 −0.201948 −0.100974 0.994889i \(-0.532196\pi\)
−0.100974 + 0.994889i \(0.532196\pi\)
\(614\) −48.0000 −1.93712
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −21.0000 −0.844061 −0.422031 0.906582i \(-0.638683\pi\)
−0.422031 + 0.906582i \(0.638683\pi\)
\(620\) 64.0000 2.57030
\(621\) 0 0
\(622\) 44.0000 1.76424
\(623\) 14.0000 0.560898
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) −58.0000 −2.31815
\(627\) 0 0
\(628\) 20.0000 0.798087
\(629\) −1.00000 −0.0398726
\(630\) 0 0
\(631\) 1.00000 0.0398094 0.0199047 0.999802i \(-0.493664\pi\)
0.0199047 + 0.999802i \(0.493664\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 16.0000 0.635441
\(635\) −32.0000 −1.26988
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 72.0000 2.85051
\(639\) 0 0
\(640\) 0 0
\(641\) −6.00000 −0.236986 −0.118493 0.992955i \(-0.537806\pi\)
−0.118493 + 0.992955i \(0.537806\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) −14.0000 −0.550823
\(647\) 40.0000 1.57256 0.786281 0.617869i \(-0.212004\pi\)
0.786281 + 0.617869i \(0.212004\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) −22.0000 −0.862911
\(651\) 0 0
\(652\) 42.0000 1.64485
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) 0 0
\(655\) 40.0000 1.56293
\(656\) 0 0
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) 38.0000 1.48027 0.740135 0.672458i \(-0.234762\pi\)
0.740135 + 0.672458i \(0.234762\pi\)
\(660\) 0 0
\(661\) 23.0000 0.894596 0.447298 0.894385i \(-0.352386\pi\)
0.447298 + 0.894385i \(0.352386\pi\)
\(662\) −14.0000 −0.544125
\(663\) 0 0
\(664\) 0 0
\(665\) 28.0000 1.08579
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 32.0000 1.23812
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −42.0000 −1.62139
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 10.0000 0.385186
\(675\) 0 0
\(676\) −24.0000 −0.923077
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) −1.00000 −0.0383765
\(680\) 0 0
\(681\) 0 0
\(682\) 96.0000 3.67603
\(683\) 10.0000 0.382639 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(684\) 0 0
\(685\) 48.0000 1.83399
\(686\) 26.0000 0.992685
\(687\) 0 0
\(688\) −16.0000 −0.609994
\(689\) 0 0
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) −44.0000 −1.67263
\(693\) 0 0
\(694\) 40.0000 1.51838
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) 0 0
\(698\) 66.0000 2.49814
\(699\) 0 0
\(700\) 22.0000 0.831522
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) −7.00000 −0.264010
\(704\) −48.0000 −1.80907
\(705\) 0 0
\(706\) −12.0000 −0.451626
\(707\) −2.00000 −0.0752177
\(708\) 0 0
\(709\) −13.0000 −0.488225 −0.244113 0.969747i \(-0.578497\pi\)
−0.244113 + 0.969747i \(0.578497\pi\)
\(710\) 32.0000 1.20094
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) −24.0000 −0.897549
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) −36.0000 −1.34351
\(719\) 38.0000 1.41716 0.708580 0.705630i \(-0.249336\pi\)
0.708580 + 0.705630i \(0.249336\pi\)
\(720\) 0 0
\(721\) −1.00000 −0.0372419
\(722\) −60.0000 −2.23297
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) −66.0000 −2.45118
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 24.0000 0.888280
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) −2.00000 −0.0738213
\(735\) 0 0
\(736\) −32.0000 −1.17954
\(737\) 6.00000 0.221013
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) −8.00000 −0.294086
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 56.0000 2.05168
\(746\) −54.0000 −1.97708
\(747\) 0 0
\(748\) −12.0000 −0.438763
\(749\) −2.00000 −0.0730784
\(750\) 0 0
\(751\) 11.0000 0.401396 0.200698 0.979653i \(-0.435679\pi\)
0.200698 + 0.979653i \(0.435679\pi\)
\(752\) 24.0000 0.875190
\(753\) 0 0
\(754\) 12.0000 0.437014
\(755\) −68.0000 −2.47477
\(756\) 0 0
\(757\) 37.0000 1.34479 0.672394 0.740193i \(-0.265266\pi\)
0.672394 + 0.740193i \(0.265266\pi\)
\(758\) 58.0000 2.10665
\(759\) 0 0
\(760\) 0 0
\(761\) 40.0000 1.45000 0.724999 0.688749i \(-0.241840\pi\)
0.724999 + 0.688749i \(0.241840\pi\)
\(762\) 0 0
\(763\) −18.0000 −0.651644
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 12.0000 0.433578
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) −41.0000 −1.47850 −0.739249 0.673432i \(-0.764819\pi\)
−0.739249 + 0.673432i \(0.764819\pi\)
\(770\) 48.0000 1.72980
\(771\) 0 0
\(772\) −38.0000 −1.36765
\(773\) 32.0000 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(774\) 0 0
\(775\) −88.0000 −3.16105
\(776\) 0 0
\(777\) 0 0
\(778\) 36.0000 1.29066
\(779\) 0 0
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) −8.00000 −0.286079
\(783\) 0 0
\(784\) 24.0000 0.857143
\(785\) −40.0000 −1.42766
\(786\) 0 0
\(787\) −17.0000 −0.605985 −0.302992 0.952993i \(-0.597986\pi\)
−0.302992 + 0.952993i \(0.597986\pi\)
\(788\) 36.0000 1.28245
\(789\) 0 0
\(790\) −72.0000 −2.56165
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) −7.00000 −0.248577
\(794\) 36.0000 1.27759
\(795\) 0 0
\(796\) −22.0000 −0.779769
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) 6.00000 0.212265
\(800\) 88.0000 3.11127
\(801\) 0 0
\(802\) 32.0000 1.12996
\(803\) 18.0000 0.635206
\(804\) 0 0
\(805\) 16.0000 0.563926
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) 0 0
\(809\) −20.0000 −0.703163 −0.351581 0.936157i \(-0.614356\pi\)
−0.351581 + 0.936157i \(0.614356\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) −12.0000 −0.421117
\(813\) 0 0
\(814\) −12.0000 −0.420600
\(815\) −84.0000 −2.94239
\(816\) 0 0
\(817\) −28.0000 −0.979596
\(818\) −34.0000 −1.18878
\(819\) 0 0
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) 0 0
\(823\) −37.0000 −1.28974 −0.644869 0.764293i \(-0.723088\pi\)
−0.644869 + 0.764293i \(0.723088\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) −24.0000 −0.834562 −0.417281 0.908778i \(-0.637017\pi\)
−0.417281 + 0.908778i \(0.637017\pi\)
\(828\) 0 0
\(829\) −31.0000 −1.07667 −0.538337 0.842729i \(-0.680947\pi\)
−0.538337 + 0.842729i \(0.680947\pi\)
\(830\) −112.000 −3.88758
\(831\) 0 0
\(832\) −8.00000 −0.277350
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) −64.0000 −2.21481
\(836\) −84.0000 −2.90520
\(837\) 0 0
\(838\) −56.0000 −1.93449
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 22.0000 0.758170
\(843\) 0 0
\(844\) −38.0000 −1.30801
\(845\) 48.0000 1.65125
\(846\) 0 0
\(847\) 25.0000 0.859010
\(848\) 0 0
\(849\) 0 0
\(850\) 22.0000 0.754594
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) 29.0000 0.992941 0.496471 0.868054i \(-0.334629\pi\)
0.496471 + 0.868054i \(0.334629\pi\)
\(854\) 14.0000 0.479070
\(855\) 0 0
\(856\) 0 0
\(857\) 32.0000 1.09310 0.546550 0.837427i \(-0.315941\pi\)
0.546550 + 0.837427i \(0.315941\pi\)
\(858\) 0 0
\(859\) 7.00000 0.238837 0.119418 0.992844i \(-0.461897\pi\)
0.119418 + 0.992844i \(0.461897\pi\)
\(860\) −32.0000 −1.09119
\(861\) 0 0
\(862\) −36.0000 −1.22616
\(863\) −40.0000 −1.36162 −0.680808 0.732462i \(-0.738371\pi\)
−0.680808 + 0.732462i \(0.738371\pi\)
\(864\) 0 0
\(865\) 88.0000 2.99209
\(866\) 68.0000 2.31073
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) −54.0000 −1.83182
\(870\) 0 0
\(871\) 1.00000 0.0338837
\(872\) 0 0
\(873\) 0 0
\(874\) −56.0000 −1.89423
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) −27.0000 −0.911725 −0.455863 0.890050i \(-0.650669\pi\)
−0.455863 + 0.890050i \(0.650669\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 96.0000 3.23616
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) 15.0000 0.504790 0.252395 0.967624i \(-0.418782\pi\)
0.252395 + 0.967624i \(0.418782\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) −52.0000 −1.74697
\(887\) 54.0000 1.81314 0.906571 0.422053i \(-0.138690\pi\)
0.906571 + 0.422053i \(0.138690\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 112.000 3.75425
\(891\) 0 0
\(892\) 48.0000 1.60716
\(893\) 42.0000 1.40548
\(894\) 0 0
\(895\) 48.0000 1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) −76.0000 −2.53615
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) −37.0000 −1.22856 −0.614282 0.789086i \(-0.710554\pi\)
−0.614282 + 0.789086i \(0.710554\pi\)
\(908\) 12.0000 0.398234
\(909\) 0 0
\(910\) 8.00000 0.265197
\(911\) 28.0000 0.927681 0.463841 0.885919i \(-0.346471\pi\)
0.463841 + 0.885919i \(0.346471\pi\)
\(912\) 0 0
\(913\) −84.0000 −2.77999
\(914\) −36.0000 −1.19077
\(915\) 0 0
\(916\) 12.0000 0.396491
\(917\) −10.0000 −0.330229
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.0000 0.658665
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 11.0000 0.361678
\(926\) −22.0000 −0.722965
\(927\) 0 0
\(928\) −48.0000 −1.57568
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 42.0000 1.37649
\(932\) 0 0
\(933\) 0 0
\(934\) 48.0000 1.57061
\(935\) 24.0000 0.784884
\(936\) 0 0
\(937\) −41.0000 −1.33941 −0.669706 0.742627i \(-0.733580\pi\)
−0.669706 + 0.742627i \(0.733580\pi\)
\(938\) −2.00000 −0.0653023
\(939\) 0 0
\(940\) 48.0000 1.56559
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 24.0000 0.781133
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) −8.00000 −0.259965 −0.129983 0.991516i \(-0.541492\pi\)
−0.129983 + 0.991516i \(0.541492\pi\)
\(948\) 0 0
\(949\) 3.00000 0.0973841
\(950\) 154.000 4.99642
\(951\) 0 0
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 20.0000 0.646846
\(957\) 0 0
\(958\) −36.0000 −1.16311
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) −2.00000 −0.0644826
\(963\) 0 0
\(964\) 30.0000 0.966235
\(965\) 76.0000 2.44653
\(966\) 0 0
\(967\) −51.0000 −1.64005 −0.820025 0.572328i \(-0.806040\pi\)
−0.820025 + 0.572328i \(0.806040\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −8.00000 −0.256865
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 1.00000 0.0320585
\(974\) 38.0000 1.21760
\(975\) 0 0
\(976\) 28.0000 0.896258
\(977\) −36.0000 −1.15174 −0.575871 0.817541i \(-0.695337\pi\)
−0.575871 + 0.817541i \(0.695337\pi\)
\(978\) 0 0
\(979\) 84.0000 2.68465
\(980\) 48.0000 1.53330
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) 0 0
\(985\) −72.0000 −2.29411
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) −14.0000 −0.445399
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −27.0000 −0.857683 −0.428842 0.903380i \(-0.641078\pi\)
−0.428842 + 0.903380i \(0.641078\pi\)
\(992\) −64.0000 −2.03200
\(993\) 0 0
\(994\) −8.00000 −0.253745
\(995\) 44.0000 1.39489
\(996\) 0 0
\(997\) 46.0000 1.45683 0.728417 0.685134i \(-0.240256\pi\)
0.728417 + 0.685134i \(0.240256\pi\)
\(998\) −88.0000 −2.78559
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.a.a.1.1 1
3.2 odd 2 459.2.a.h.1.1 yes 1
4.3 odd 2 7344.2.a.a.1.1 1
12.11 even 2 7344.2.a.bl.1.1 1
17.16 even 2 7803.2.a.d.1.1 1
51.50 odd 2 7803.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.a.a.1.1 1 1.1 even 1 trivial
459.2.a.h.1.1 yes 1 3.2 odd 2
7344.2.a.a.1.1 1 4.3 odd 2
7344.2.a.bl.1.1 1 12.11 even 2
7803.2.a.d.1.1 1 17.16 even 2
7803.2.a.r.1.1 1 51.50 odd 2