Properties

Label 459.2.a.b.1.1
Level $459$
Weight $2$
Character 459.1
Self dual yes
Analytic conductor $3.665$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(1,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 459.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.00000 q^{4} +2.00000 q^{5} +4.00000 q^{7} -4.00000 q^{10} -3.00000 q^{11} +7.00000 q^{13} -8.00000 q^{14} -4.00000 q^{16} -1.00000 q^{17} -4.00000 q^{19} +4.00000 q^{20} +6.00000 q^{22} -1.00000 q^{23} -1.00000 q^{25} -14.0000 q^{26} +8.00000 q^{28} +9.00000 q^{29} -2.00000 q^{31} +8.00000 q^{32} +2.00000 q^{34} +8.00000 q^{35} -8.00000 q^{37} +8.00000 q^{38} +9.00000 q^{41} +7.00000 q^{43} -6.00000 q^{44} +2.00000 q^{46} +9.00000 q^{49} +2.00000 q^{50} +14.0000 q^{52} -6.00000 q^{53} -6.00000 q^{55} -18.0000 q^{58} +2.00000 q^{61} +4.00000 q^{62} -8.00000 q^{64} +14.0000 q^{65} +7.00000 q^{67} -2.00000 q^{68} -16.0000 q^{70} +7.00000 q^{71} +6.00000 q^{73} +16.0000 q^{74} -8.00000 q^{76} -12.0000 q^{77} -12.0000 q^{79} -8.00000 q^{80} -18.0000 q^{82} -14.0000 q^{83} -2.00000 q^{85} -14.0000 q^{86} +8.00000 q^{89} +28.0000 q^{91} -2.00000 q^{92} -8.00000 q^{95} -10.0000 q^{97} -18.0000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 0 0
\(4\) 2.00000 1.00000
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) −4.00000 −1.26491
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 7.00000 1.94145 0.970725 0.240192i \(-0.0772105\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) −8.00000 −2.13809
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −14.0000 −2.74563
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 8.00000 1.41421
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 8.00000 1.29777
\(39\) 0 0
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 7.00000 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 2.00000 0.282843
\(51\) 0 0
\(52\) 14.0000 1.94145
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) 0 0
\(57\) 0 0
\(58\) −18.0000 −2.36352
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 14.0000 1.73649
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) −16.0000 −1.91237
\(71\) 7.00000 0.830747 0.415374 0.909651i \(-0.363651\pi\)
0.415374 + 0.909651i \(0.363651\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 16.0000 1.85996
\(75\) 0 0
\(76\) −8.00000 −0.917663
\(77\) −12.0000 −1.36753
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) −8.00000 −0.894427
\(81\) 0 0
\(82\) −18.0000 −1.98777
\(83\) −14.0000 −1.53670 −0.768350 0.640030i \(-0.778922\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −14.0000 −1.50966
\(87\) 0 0
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) 28.0000 2.93520
\(92\) −2.00000 −0.208514
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −18.0000 −1.81827
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) 7.00000 0.676716 0.338358 0.941018i \(-0.390129\pi\)
0.338358 + 0.941018i \(0.390129\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 12.0000 1.14416
\(111\) 0 0
\(112\) −16.0000 −1.51186
\(113\) −13.0000 −1.22294 −0.611469 0.791269i \(-0.709421\pi\)
−0.611469 + 0.791269i \(0.709421\pi\)
\(114\) 0 0
\(115\) −2.00000 −0.186501
\(116\) 18.0000 1.67126
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −4.00000 −0.362143
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −28.0000 −2.45576
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) −14.0000 −1.20942
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 16.0000 1.35225
\(141\) 0 0
\(142\) −14.0000 −1.17485
\(143\) −21.0000 −1.75611
\(144\) 0 0
\(145\) 18.0000 1.49482
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) −16.0000 −1.31519
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −13.0000 −1.05792 −0.528962 0.848645i \(-0.677419\pi\)
−0.528962 + 0.848645i \(0.677419\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 24.0000 1.93398
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 24.0000 1.90934
\(159\) 0 0
\(160\) 16.0000 1.26491
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) −6.00000 −0.469956 −0.234978 0.972001i \(-0.575502\pi\)
−0.234978 + 0.972001i \(0.575502\pi\)
\(164\) 18.0000 1.40556
\(165\) 0 0
\(166\) 28.0000 2.17322
\(167\) 1.00000 0.0773823 0.0386912 0.999251i \(-0.487681\pi\)
0.0386912 + 0.999251i \(0.487681\pi\)
\(168\) 0 0
\(169\) 36.0000 2.76923
\(170\) 4.00000 0.306786
\(171\) 0 0
\(172\) 14.0000 1.06749
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 12.0000 0.904534
\(177\) 0 0
\(178\) −16.0000 −1.19925
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 4.00000 0.297318 0.148659 0.988889i \(-0.452504\pi\)
0.148659 + 0.988889i \(0.452504\pi\)
\(182\) −56.0000 −4.15100
\(183\) 0 0
\(184\) 0 0
\(185\) −16.0000 −1.17634
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 0 0
\(190\) 16.0000 1.16076
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) 20.0000 1.43963 0.719816 0.694165i \(-0.244226\pi\)
0.719816 + 0.694165i \(0.244226\pi\)
\(194\) 20.0000 1.43592
\(195\) 0 0
\(196\) 18.0000 1.28571
\(197\) 15.0000 1.06871 0.534353 0.845262i \(-0.320555\pi\)
0.534353 + 0.845262i \(0.320555\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 16.0000 1.12576
\(203\) 36.0000 2.52670
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) −28.0000 −1.94145
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) −14.0000 −0.957020
\(215\) 14.0000 0.954792
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 0 0
\(220\) −12.0000 −0.809040
\(221\) −7.00000 −0.470871
\(222\) 0 0
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 32.0000 2.13809
\(225\) 0 0
\(226\) 26.0000 1.72949
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 21.0000 1.38772 0.693860 0.720110i \(-0.255909\pi\)
0.693860 + 0.720110i \(0.255909\pi\)
\(230\) 4.00000 0.263752
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00000 −0.196537 −0.0982683 0.995160i \(-0.531330\pi\)
−0.0982683 + 0.995160i \(0.531330\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 8.00000 0.518563
\(239\) −26.0000 −1.68180 −0.840900 0.541190i \(-0.817974\pi\)
−0.840900 + 0.541190i \(0.817974\pi\)
\(240\) 0 0
\(241\) −24.0000 −1.54598 −0.772988 0.634421i \(-0.781239\pi\)
−0.772988 + 0.634421i \(0.781239\pi\)
\(242\) 4.00000 0.257130
\(243\) 0 0
\(244\) 4.00000 0.256074
\(245\) 18.0000 1.14998
\(246\) 0 0
\(247\) −28.0000 −1.78160
\(248\) 0 0
\(249\) 0 0
\(250\) 24.0000 1.51789
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 3.00000 0.188608
\(254\) 26.0000 1.63139
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) −32.0000 −1.98838
\(260\) 28.0000 1.73649
\(261\) 0 0
\(262\) 8.00000 0.494242
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 32.0000 1.96205
\(267\) 0 0
\(268\) 14.0000 0.855186
\(269\) −7.00000 −0.426798 −0.213399 0.976965i \(-0.568453\pi\)
−0.213399 + 0.976965i \(0.568453\pi\)
\(270\) 0 0
\(271\) −1.00000 −0.0607457 −0.0303728 0.999539i \(-0.509669\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) −24.0000 −1.44989
\(275\) 3.00000 0.180907
\(276\) 0 0
\(277\) 32.0000 1.92269 0.961347 0.275340i \(-0.0887905\pi\)
0.961347 + 0.275340i \(0.0887905\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 14.0000 0.830747
\(285\) 0 0
\(286\) 42.0000 2.48351
\(287\) 36.0000 2.12501
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −36.0000 −2.11399
\(291\) 0 0
\(292\) 12.0000 0.702247
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −20.0000 −1.15857
\(299\) −7.00000 −0.404820
\(300\) 0 0
\(301\) 28.0000 1.61389
\(302\) 26.0000 1.49613
\(303\) 0 0
\(304\) 16.0000 0.917663
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −9.00000 −0.513657 −0.256829 0.966457i \(-0.582678\pi\)
−0.256829 + 0.966457i \(0.582678\pi\)
\(308\) −24.0000 −1.36753
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) −28.0000 −1.58773 −0.793867 0.608091i \(-0.791935\pi\)
−0.793867 + 0.608091i \(0.791935\pi\)
\(312\) 0 0
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −24.0000 −1.35011
\(317\) −17.0000 −0.954815 −0.477408 0.878682i \(-0.658423\pi\)
−0.477408 + 0.878682i \(0.658423\pi\)
\(318\) 0 0
\(319\) −27.0000 −1.51171
\(320\) −16.0000 −0.894427
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) −7.00000 −0.388290
\(326\) 12.0000 0.664619
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −11.0000 −0.604615 −0.302307 0.953211i \(-0.597757\pi\)
−0.302307 + 0.953211i \(0.597757\pi\)
\(332\) −28.0000 −1.53670
\(333\) 0 0
\(334\) −2.00000 −0.109435
\(335\) 14.0000 0.764902
\(336\) 0 0
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) −72.0000 −3.91628
\(339\) 0 0
\(340\) −4.00000 −0.216930
\(341\) 6.00000 0.324918
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 26.0000 1.39777
\(347\) 1.00000 0.0536828 0.0268414 0.999640i \(-0.491455\pi\)
0.0268414 + 0.999640i \(0.491455\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 8.00000 0.427618
\(351\) 0 0
\(352\) −24.0000 −1.27920
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) 14.0000 0.743043
\(356\) 16.0000 0.847998
\(357\) 0 0
\(358\) −48.0000 −2.53688
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −8.00000 −0.420471
\(363\) 0 0
\(364\) 56.0000 2.93520
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) 32.0000 1.66360
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −3.00000 −0.155334 −0.0776671 0.996979i \(-0.524747\pi\)
−0.0776671 + 0.996979i \(0.524747\pi\)
\(374\) −6.00000 −0.310253
\(375\) 0 0
\(376\) 0 0
\(377\) 63.0000 3.24467
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) −16.0000 −0.820783
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) 18.0000 0.919757 0.459879 0.887982i \(-0.347893\pi\)
0.459879 + 0.887982i \(0.347893\pi\)
\(384\) 0 0
\(385\) −24.0000 −1.22315
\(386\) −40.0000 −2.03595
\(387\) 0 0
\(388\) −20.0000 −1.01535
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 1.00000 0.0505722
\(392\) 0 0
\(393\) 0 0
\(394\) −30.0000 −1.51138
\(395\) −24.0000 −1.20757
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 4.00000 0.200502
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) −14.0000 −0.697390
\(404\) −16.0000 −0.796030
\(405\) 0 0
\(406\) −72.0000 −3.57330
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) −36.0000 −1.77791
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) −28.0000 −1.37447
\(416\) 56.0000 2.74563
\(417\) 0 0
\(418\) −24.0000 −1.17388
\(419\) 25.0000 1.22133 0.610665 0.791889i \(-0.290902\pi\)
0.610665 + 0.791889i \(0.290902\pi\)
\(420\) 0 0
\(421\) −17.0000 −0.828529 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(422\) 44.0000 2.14189
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 14.0000 0.676716
\(429\) 0 0
\(430\) −28.0000 −1.35028
\(431\) −27.0000 −1.30054 −0.650272 0.759701i \(-0.725345\pi\)
−0.650272 + 0.759701i \(0.725345\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) 0 0
\(437\) 4.00000 0.191346
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 14.0000 0.665912
\(443\) −40.0000 −1.90046 −0.950229 0.311553i \(-0.899151\pi\)
−0.950229 + 0.311553i \(0.899151\pi\)
\(444\) 0 0
\(445\) 16.0000 0.758473
\(446\) 24.0000 1.13643
\(447\) 0 0
\(448\) −32.0000 −1.51186
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −27.0000 −1.27138
\(452\) −26.0000 −1.22294
\(453\) 0 0
\(454\) 24.0000 1.12638
\(455\) 56.0000 2.62532
\(456\) 0 0
\(457\) 33.0000 1.54367 0.771837 0.635820i \(-0.219338\pi\)
0.771837 + 0.635820i \(0.219338\pi\)
\(458\) −42.0000 −1.96253
\(459\) 0 0
\(460\) −4.00000 −0.186501
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) −36.0000 −1.67126
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 28.0000 1.29292
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −21.0000 −0.965581
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) −8.00000 −0.366679
\(477\) 0 0
\(478\) 52.0000 2.37842
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −56.0000 −2.55338
\(482\) 48.0000 2.18634
\(483\) 0 0
\(484\) −4.00000 −0.181818
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −36.0000 −1.62631
\(491\) 34.0000 1.53440 0.767199 0.641409i \(-0.221650\pi\)
0.767199 + 0.641409i \(0.221650\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 56.0000 2.51956
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 28.0000 1.25597
\(498\) 0 0
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) 36.0000 1.60676
\(503\) −3.00000 −0.133763 −0.0668817 0.997761i \(-0.521305\pi\)
−0.0668817 + 0.997761i \(0.521305\pi\)
\(504\) 0 0
\(505\) −16.0000 −0.711991
\(506\) −6.00000 −0.266733
\(507\) 0 0
\(508\) −26.0000 −1.15356
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) 24.0000 1.06170
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) 60.0000 2.64649
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 0 0
\(518\) 64.0000 2.81200
\(519\) 0 0
\(520\) 0 0
\(521\) 25.0000 1.09527 0.547635 0.836717i \(-0.315528\pi\)
0.547635 + 0.836717i \(0.315528\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −8.00000 −0.349482
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) 2.00000 0.0871214
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 24.0000 1.04249
\(531\) 0 0
\(532\) −32.0000 −1.38738
\(533\) 63.0000 2.72883
\(534\) 0 0
\(535\) 14.0000 0.605273
\(536\) 0 0
\(537\) 0 0
\(538\) 14.0000 0.603583
\(539\) −27.0000 −1.16297
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 2.00000 0.0859074
\(543\) 0 0
\(544\) −8.00000 −0.342997
\(545\) 0 0
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 24.0000 1.02523
\(549\) 0 0
\(550\) −6.00000 −0.255841
\(551\) −36.0000 −1.53365
\(552\) 0 0
\(553\) −48.0000 −2.04117
\(554\) −64.0000 −2.71910
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) 49.0000 2.07248
\(560\) −32.0000 −1.35225
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) 22.0000 0.927189 0.463595 0.886047i \(-0.346559\pi\)
0.463595 + 0.886047i \(0.346559\pi\)
\(564\) 0 0
\(565\) −26.0000 −1.09383
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) 0 0
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) 46.0000 1.92504 0.962520 0.271211i \(-0.0874240\pi\)
0.962520 + 0.271211i \(0.0874240\pi\)
\(572\) −42.0000 −1.75611
\(573\) 0 0
\(574\) −72.0000 −3.00522
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) −2.00000 −0.0831890
\(579\) 0 0
\(580\) 36.0000 1.49482
\(581\) −56.0000 −2.32327
\(582\) 0 0
\(583\) 18.0000 0.745484
\(584\) 0 0
\(585\) 0 0
\(586\) 36.0000 1.48715
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 32.0000 1.31519
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) −8.00000 −0.327968
\(596\) 20.0000 0.819232
\(597\) 0 0
\(598\) 14.0000 0.572503
\(599\) 18.0000 0.735460 0.367730 0.929933i \(-0.380135\pi\)
0.367730 + 0.929933i \(0.380135\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −56.0000 −2.28239
\(603\) 0 0
\(604\) −26.0000 −1.05792
\(605\) −4.00000 −0.162623
\(606\) 0 0
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) −32.0000 −1.29777
\(609\) 0 0
\(610\) −8.00000 −0.323911
\(611\) 0 0
\(612\) 0 0
\(613\) −29.0000 −1.17130 −0.585649 0.810564i \(-0.699160\pi\)
−0.585649 + 0.810564i \(0.699160\pi\)
\(614\) 18.0000 0.726421
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 −0.120775 −0.0603877 0.998175i \(-0.519234\pi\)
−0.0603877 + 0.998175i \(0.519234\pi\)
\(618\) 0 0
\(619\) −24.0000 −0.964641 −0.482321 0.875995i \(-0.660206\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(620\) −8.00000 −0.321288
\(621\) 0 0
\(622\) 56.0000 2.24540
\(623\) 32.0000 1.28205
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 32.0000 1.27898
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 13.0000 0.517522 0.258761 0.965941i \(-0.416686\pi\)
0.258761 + 0.965941i \(0.416686\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 34.0000 1.35031
\(635\) −26.0000 −1.03178
\(636\) 0 0
\(637\) 63.0000 2.49615
\(638\) 54.0000 2.13788
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) −10.0000 −0.394362 −0.197181 0.980367i \(-0.563179\pi\)
−0.197181 + 0.980367i \(0.563179\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) −38.0000 −1.49393 −0.746967 0.664861i \(-0.768491\pi\)
−0.746967 + 0.664861i \(0.768491\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 14.0000 0.549125
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) 27.0000 1.05659 0.528296 0.849060i \(-0.322831\pi\)
0.528296 + 0.849060i \(0.322831\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) −36.0000 −1.40556
\(657\) 0 0
\(658\) 0 0
\(659\) 26.0000 1.01282 0.506408 0.862294i \(-0.330973\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 22.0000 0.855054
\(663\) 0 0
\(664\) 0 0
\(665\) −32.0000 −1.24091
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 2.00000 0.0773823
\(669\) 0 0
\(670\) −28.0000 −1.08173
\(671\) −6.00000 −0.231627
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) −8.00000 −0.308148
\(675\) 0 0
\(676\) 72.0000 2.76923
\(677\) −3.00000 −0.115299 −0.0576497 0.998337i \(-0.518361\pi\)
−0.0576497 + 0.998337i \(0.518361\pi\)
\(678\) 0 0
\(679\) −40.0000 −1.53506
\(680\) 0 0
\(681\) 0 0
\(682\) −12.0000 −0.459504
\(683\) 31.0000 1.18618 0.593091 0.805135i \(-0.297907\pi\)
0.593091 + 0.805135i \(0.297907\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) −16.0000 −0.610883
\(687\) 0 0
\(688\) −28.0000 −1.06749
\(689\) −42.0000 −1.60007
\(690\) 0 0
\(691\) 22.0000 0.836919 0.418460 0.908235i \(-0.362570\pi\)
0.418460 + 0.908235i \(0.362570\pi\)
\(692\) −26.0000 −0.988372
\(693\) 0 0
\(694\) −2.00000 −0.0759190
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −9.00000 −0.340899
\(698\) −60.0000 −2.27103
\(699\) 0 0
\(700\) −8.00000 −0.302372
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 32.0000 1.20690
\(704\) 24.0000 0.904534
\(705\) 0 0
\(706\) 48.0000 1.80650
\(707\) −32.0000 −1.20348
\(708\) 0 0
\(709\) 44.0000 1.65245 0.826227 0.563337i \(-0.190483\pi\)
0.826227 + 0.563337i \(0.190483\pi\)
\(710\) −28.0000 −1.05082
\(711\) 0 0
\(712\) 0 0
\(713\) 2.00000 0.0749006
\(714\) 0 0
\(715\) −42.0000 −1.57071
\(716\) 48.0000 1.79384
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) 44.0000 1.64092 0.820462 0.571702i \(-0.193717\pi\)
0.820462 + 0.571702i \(0.193717\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 6.00000 0.223297
\(723\) 0 0
\(724\) 8.00000 0.297318
\(725\) −9.00000 −0.334252
\(726\) 0 0
\(727\) −23.0000 −0.853023 −0.426511 0.904482i \(-0.640258\pi\)
−0.426511 + 0.904482i \(0.640258\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −24.0000 −0.888280
\(731\) −7.00000 −0.258904
\(732\) 0 0
\(733\) 7.00000 0.258551 0.129275 0.991609i \(-0.458735\pi\)
0.129275 + 0.991609i \(0.458735\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −21.0000 −0.773545
\(738\) 0 0
\(739\) 25.0000 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(740\) −32.0000 −1.17634
\(741\) 0 0
\(742\) 48.0000 1.76214
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 20.0000 0.732743
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) 28.0000 1.02310
\(750\) 0 0
\(751\) −10.0000 −0.364905 −0.182453 0.983215i \(-0.558404\pi\)
−0.182453 + 0.983215i \(0.558404\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −126.000 −4.58865
\(755\) −26.0000 −0.946237
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) −36.0000 −1.30073
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 48.0000 1.72980
\(771\) 0 0
\(772\) 40.0000 1.43963
\(773\) −52.0000 −1.87031 −0.935155 0.354239i \(-0.884740\pi\)
−0.935155 + 0.354239i \(0.884740\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) 0 0
\(778\) 12.0000 0.430221
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) −21.0000 −0.751439
\(782\) −2.00000 −0.0715199
\(783\) 0 0
\(784\) −36.0000 −1.28571
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) 46.0000 1.63972 0.819861 0.572562i \(-0.194050\pi\)
0.819861 + 0.572562i \(0.194050\pi\)
\(788\) 30.0000 1.06871
\(789\) 0 0
\(790\) 48.0000 1.70776
\(791\) −52.0000 −1.84891
\(792\) 0 0
\(793\) 14.0000 0.497155
\(794\) −12.0000 −0.425864
\(795\) 0 0
\(796\) −4.00000 −0.141776
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −8.00000 −0.282843
\(801\) 0 0
\(802\) −4.00000 −0.141245
\(803\) −18.0000 −0.635206
\(804\) 0 0
\(805\) −8.00000 −0.281963
\(806\) 28.0000 0.986258
\(807\) 0 0
\(808\) 0 0
\(809\) 10.0000 0.351581 0.175791 0.984428i \(-0.443752\pi\)
0.175791 + 0.984428i \(0.443752\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 72.0000 2.52670
\(813\) 0 0
\(814\) −48.0000 −1.68240
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) −28.0000 −0.979596
\(818\) 14.0000 0.489499
\(819\) 0 0
\(820\) 36.0000 1.25717
\(821\) −21.0000 −0.732905 −0.366453 0.930437i \(-0.619428\pi\)
−0.366453 + 0.930437i \(0.619428\pi\)
\(822\) 0 0
\(823\) 14.0000 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.0000 −0.834562 −0.417281 0.908778i \(-0.637017\pi\)
−0.417281 + 0.908778i \(0.637017\pi\)
\(828\) 0 0
\(829\) 53.0000 1.84077 0.920383 0.391018i \(-0.127877\pi\)
0.920383 + 0.391018i \(0.127877\pi\)
\(830\) 56.0000 1.94379
\(831\) 0 0
\(832\) −56.0000 −1.94145
\(833\) −9.00000 −0.311832
\(834\) 0 0
\(835\) 2.00000 0.0692129
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) −50.0000 −1.72722
\(839\) −32.0000 −1.10476 −0.552381 0.833592i \(-0.686281\pi\)
−0.552381 + 0.833592i \(0.686281\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 34.0000 1.17172
\(843\) 0 0
\(844\) −44.0000 −1.51454
\(845\) 72.0000 2.47688
\(846\) 0 0
\(847\) −8.00000 −0.274883
\(848\) 24.0000 0.824163
\(849\) 0 0
\(850\) −2.00000 −0.0685994
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) −16.0000 −0.547509
\(855\) 0 0
\(856\) 0 0
\(857\) 14.0000 0.478231 0.239115 0.970991i \(-0.423143\pi\)
0.239115 + 0.970991i \(0.423143\pi\)
\(858\) 0 0
\(859\) 52.0000 1.77422 0.887109 0.461561i \(-0.152710\pi\)
0.887109 + 0.461561i \(0.152710\pi\)
\(860\) 28.0000 0.954792
\(861\) 0 0
\(862\) 54.0000 1.83925
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 0 0
\(865\) −26.0000 −0.884027
\(866\) 68.0000 2.31073
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) 36.0000 1.22122
\(870\) 0 0
\(871\) 49.0000 1.66030
\(872\) 0 0
\(873\) 0 0
\(874\) −8.00000 −0.270604
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) −6.00000 −0.202606 −0.101303 0.994856i \(-0.532301\pi\)
−0.101303 + 0.994856i \(0.532301\pi\)
\(878\) −32.0000 −1.07995
\(879\) 0 0
\(880\) 24.0000 0.809040
\(881\) 1.00000 0.0336909 0.0168454 0.999858i \(-0.494638\pi\)
0.0168454 + 0.999858i \(0.494638\pi\)
\(882\) 0 0
\(883\) −39.0000 −1.31245 −0.656227 0.754563i \(-0.727849\pi\)
−0.656227 + 0.754563i \(0.727849\pi\)
\(884\) −14.0000 −0.470871
\(885\) 0 0
\(886\) 80.0000 2.68765
\(887\) −45.0000 −1.51095 −0.755476 0.655176i \(-0.772594\pi\)
−0.755476 + 0.655176i \(0.772594\pi\)
\(888\) 0 0
\(889\) −52.0000 −1.74402
\(890\) −32.0000 −1.07264
\(891\) 0 0
\(892\) −24.0000 −0.803579
\(893\) 0 0
\(894\) 0 0
\(895\) 48.0000 1.60446
\(896\) 0 0
\(897\) 0 0
\(898\) −52.0000 −1.73526
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 54.0000 1.79800
\(903\) 0 0
\(904\) 0 0
\(905\) 8.00000 0.265929
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) −112.000 −3.71276
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 42.0000 1.39000
\(914\) −66.0000 −2.18309
\(915\) 0 0
\(916\) 42.0000 1.38772
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 20.0000 0.658665
\(923\) 49.0000 1.61285
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 32.0000 1.05159
\(927\) 0 0
\(928\) 72.0000 2.36352
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) −24.0000 −0.785304
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) 25.0000 0.816714 0.408357 0.912822i \(-0.366102\pi\)
0.408357 + 0.912822i \(0.366102\pi\)
\(938\) −56.0000 −1.82846
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) −9.00000 −0.293080
\(944\) 0 0
\(945\) 0 0
\(946\) 42.0000 1.36554
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 0 0
\(949\) 42.0000 1.36338
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) −52.0000 −1.68180
\(957\) 0 0
\(958\) −48.0000 −1.55081
\(959\) 48.0000 1.55000
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 112.000 3.61102
\(963\) 0 0
\(964\) −48.0000 −1.54598
\(965\) 40.0000 1.28765
\(966\) 0 0
\(967\) −36.0000 −1.15768 −0.578841 0.815440i \(-0.696495\pi\)
−0.578841 + 0.815440i \(0.696495\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 40.0000 1.28432
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) −4.00000 −0.128168
\(975\) 0 0
\(976\) −8.00000 −0.256074
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 36.0000 1.14998
\(981\) 0 0
\(982\) −68.0000 −2.16997
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 30.0000 0.955879
\(986\) 18.0000 0.573237
\(987\) 0 0
\(988\) −56.0000 −1.78160
\(989\) −7.00000 −0.222587
\(990\) 0 0
\(991\) 30.0000 0.952981 0.476491 0.879180i \(-0.341909\pi\)
0.476491 + 0.879180i \(0.341909\pi\)
\(992\) −16.0000 −0.508001
\(993\) 0 0
\(994\) −56.0000 −1.77621
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) 4.00000 0.126681 0.0633406 0.997992i \(-0.479825\pi\)
0.0633406 + 0.997992i \(0.479825\pi\)
\(998\) 44.0000 1.39280
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.a.b.1.1 1
3.2 odd 2 459.2.a.g.1.1 yes 1
4.3 odd 2 7344.2.a.bc.1.1 1
12.11 even 2 7344.2.a.h.1.1 1
17.16 even 2 7803.2.a.a.1.1 1
51.50 odd 2 7803.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.a.b.1.1 1 1.1 even 1 trivial
459.2.a.g.1.1 yes 1 3.2 odd 2
7344.2.a.h.1.1 1 12.11 even 2
7344.2.a.bc.1.1 1 4.3 odd 2
7803.2.a.a.1.1 1 17.16 even 2
7803.2.a.t.1.1 1 51.50 odd 2