Properties

Label 459.2.a.f.1.1
Level $459$
Weight $2$
Character 459.1
Self dual yes
Analytic conductor $3.665$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(1,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.66513345278\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 459.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} -3.00000 q^{8} -1.00000 q^{10} -5.00000 q^{13} -2.00000 q^{14} -1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{19} +1.00000 q^{20} -1.00000 q^{23} -4.00000 q^{25} -5.00000 q^{26} +2.00000 q^{28} +9.00000 q^{29} -8.00000 q^{31} +5.00000 q^{32} -1.00000 q^{34} +2.00000 q^{35} -2.00000 q^{37} -1.00000 q^{38} +3.00000 q^{40} -3.00000 q^{41} +7.00000 q^{43} -1.00000 q^{46} +6.00000 q^{47} -3.00000 q^{49} -4.00000 q^{50} +5.00000 q^{52} +6.00000 q^{53} +6.00000 q^{56} +9.00000 q^{58} -10.0000 q^{61} -8.00000 q^{62} +7.00000 q^{64} +5.00000 q^{65} +1.00000 q^{67} +1.00000 q^{68} +2.00000 q^{70} -11.0000 q^{71} +6.00000 q^{73} -2.00000 q^{74} +1.00000 q^{76} +1.00000 q^{80} -3.00000 q^{82} +4.00000 q^{83} +1.00000 q^{85} +7.00000 q^{86} +2.00000 q^{89} +10.0000 q^{91} +1.00000 q^{92} +6.00000 q^{94} +1.00000 q^{95} +2.00000 q^{97} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −5.00000 −0.980581
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 7.00000 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.00000 −0.147442
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) 5.00000 0.693375
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) 9.00000 1.18176
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 5.00000 0.620174
\(66\) 0 0
\(67\) 1.00000 0.122169 0.0610847 0.998133i \(-0.480544\pi\)
0.0610847 + 0.998133i \(0.480544\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) −11.0000 −1.30546 −0.652730 0.757591i \(-0.726376\pi\)
−0.652730 + 0.757591i \(0.726376\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −3.00000 −0.331295
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 7.00000 0.754829
\(87\) 0 0
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 10.0000 1.04828
\(92\) 1.00000 0.104257
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) −14.0000 −1.39305 −0.696526 0.717532i \(-0.745272\pi\)
−0.696526 + 0.717532i \(0.745272\pi\)
\(102\) 0 0
\(103\) 17.0000 1.67506 0.837530 0.546392i \(-0.183999\pi\)
0.837530 + 0.546392i \(0.183999\pi\)
\(104\) 15.0000 1.47087
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −17.0000 −1.64345 −0.821726 0.569883i \(-0.806989\pi\)
−0.821726 + 0.569883i \(0.806989\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 5.00000 0.438529
\(131\) −1.00000 −0.0873704 −0.0436852 0.999045i \(-0.513910\pi\)
−0.0436852 + 0.999045i \(0.513910\pi\)
\(132\) 0 0
\(133\) 2.00000 0.173422
\(134\) 1.00000 0.0863868
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) −2.00000 −0.169031
\(141\) 0 0
\(142\) −11.0000 −0.923099
\(143\) 0 0
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) 3.00000 0.243332
\(153\) 0 0
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −5.00000 −0.395285
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) 3.00000 0.234261
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) −7.00000 −0.533745
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 0 0
\(178\) 2.00000 0.149906
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 10.0000 0.741249
\(183\) 0 0
\(184\) 3.00000 0.221163
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) 1.00000 0.0725476
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 15.0000 1.06871 0.534353 0.845262i \(-0.320555\pi\)
0.534353 + 0.845262i \(0.320555\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 12.0000 0.848528
\(201\) 0 0
\(202\) −14.0000 −0.985037
\(203\) −18.0000 −1.26335
\(204\) 0 0
\(205\) 3.00000 0.209529
\(206\) 17.0000 1.18445
\(207\) 0 0
\(208\) 5.00000 0.346688
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −17.0000 −1.16210
\(215\) −7.00000 −0.477396
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) −12.0000 −0.812743
\(219\) 0 0
\(220\) 0 0
\(221\) 5.00000 0.336336
\(222\) 0 0
\(223\) −21.0000 −1.40626 −0.703132 0.711059i \(-0.748216\pi\)
−0.703132 + 0.711059i \(0.748216\pi\)
\(224\) −10.0000 −0.668153
\(225\) 0 0
\(226\) −10.0000 −0.665190
\(227\) −21.0000 −1.39382 −0.696909 0.717159i \(-0.745442\pi\)
−0.696909 + 0.717159i \(0.745442\pi\)
\(228\) 0 0
\(229\) −15.0000 −0.991228 −0.495614 0.868543i \(-0.665057\pi\)
−0.495614 + 0.868543i \(0.665057\pi\)
\(230\) 1.00000 0.0659380
\(231\) 0 0
\(232\) −27.0000 −1.77264
\(233\) 21.0000 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) 5.00000 0.318142
\(248\) 24.0000 1.52400
\(249\) 0 0
\(250\) 9.00000 0.569210
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) −5.00000 −0.310087
\(261\) 0 0
\(262\) −1.00000 −0.0617802
\(263\) −14.0000 −0.863277 −0.431638 0.902047i \(-0.642064\pi\)
−0.431638 + 0.902047i \(0.642064\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 2.00000 0.122628
\(267\) 0 0
\(268\) −1.00000 −0.0610847
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 0 0
\(276\) 0 0
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) −2.00000 −0.119952
\(279\) 0 0
\(280\) −6.00000 −0.358569
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 11.0000 0.652730
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −9.00000 −0.528498
\(291\) 0 0
\(292\) −6.00000 −0.351123
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −20.0000 −1.15857
\(299\) 5.00000 0.289157
\(300\) 0 0
\(301\) −14.0000 −0.806947
\(302\) 17.0000 0.978240
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) 10.0000 0.572598
\(306\) 0 0
\(307\) 9.00000 0.513657 0.256829 0.966457i \(-0.417322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 0 0
\(317\) −17.0000 −0.954815 −0.477408 0.878682i \(-0.658423\pi\)
−0.477408 + 0.878682i \(0.658423\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −7.00000 −0.391312
\(321\) 0 0
\(322\) 2.00000 0.111456
\(323\) 1.00000 0.0556415
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) 6.00000 0.332309
\(327\) 0 0
\(328\) 9.00000 0.496942
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 13.0000 0.714545 0.357272 0.934000i \(-0.383707\pi\)
0.357272 + 0.934000i \(0.383707\pi\)
\(332\) −4.00000 −0.219529
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) −1.00000 −0.0546358
\(336\) 0 0
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) 12.0000 0.652714
\(339\) 0 0
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) −21.0000 −1.13224
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) −29.0000 −1.55680 −0.778401 0.627768i \(-0.783969\pi\)
−0.778401 + 0.627768i \(0.783969\pi\)
\(348\) 0 0
\(349\) 9.00000 0.481759 0.240879 0.970555i \(-0.422564\pi\)
0.240879 + 0.970555i \(0.422564\pi\)
\(350\) 8.00000 0.427618
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 11.0000 0.583819
\(356\) −2.00000 −0.106000
\(357\) 0 0
\(358\) 24.0000 1.26844
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) −20.0000 −1.05118
\(363\) 0 0
\(364\) −10.0000 −0.524142
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 1.00000 0.0521286
\(369\) 0 0
\(370\) 2.00000 0.103975
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) 21.0000 1.08734 0.543669 0.839299i \(-0.317035\pi\)
0.543669 + 0.839299i \(0.317035\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −18.0000 −0.928279
\(377\) −45.0000 −2.31762
\(378\) 0 0
\(379\) 22.0000 1.13006 0.565032 0.825069i \(-0.308864\pi\)
0.565032 + 0.825069i \(0.308864\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 0 0
\(382\) −20.0000 −1.02329
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 1.00000 0.0505722
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 15.0000 0.755689
\(395\) 0 0
\(396\) 0 0
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 5.00000 0.249688 0.124844 0.992176i \(-0.460157\pi\)
0.124844 + 0.992176i \(0.460157\pi\)
\(402\) 0 0
\(403\) 40.0000 1.99254
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) −18.0000 −0.893325
\(407\) 0 0
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 3.00000 0.148159
\(411\) 0 0
\(412\) −17.0000 −0.837530
\(413\) 0 0
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) −25.0000 −1.22573
\(417\) 0 0
\(418\) 0 0
\(419\) 7.00000 0.341972 0.170986 0.985273i \(-0.445305\pi\)
0.170986 + 0.985273i \(0.445305\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) −18.0000 −0.874157
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 20.0000 0.967868
\(428\) 17.0000 0.821726
\(429\) 0 0
\(430\) −7.00000 −0.337570
\(431\) 15.0000 0.722525 0.361262 0.932464i \(-0.382346\pi\)
0.361262 + 0.932464i \(0.382346\pi\)
\(432\) 0 0
\(433\) 11.0000 0.528626 0.264313 0.964437i \(-0.414855\pi\)
0.264313 + 0.964437i \(0.414855\pi\)
\(434\) 16.0000 0.768025
\(435\) 0 0
\(436\) 12.0000 0.574696
\(437\) 1.00000 0.0478365
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.00000 0.237826
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) −2.00000 −0.0948091
\(446\) −21.0000 −0.994379
\(447\) 0 0
\(448\) −14.0000 −0.661438
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 10.0000 0.470360
\(453\) 0 0
\(454\) −21.0000 −0.985579
\(455\) −10.0000 −0.468807
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) −15.0000 −0.700904
\(459\) 0 0
\(460\) −1.00000 −0.0466252
\(461\) 38.0000 1.76984 0.884918 0.465746i \(-0.154214\pi\)
0.884918 + 0.465746i \(0.154214\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −9.00000 −0.417815
\(465\) 0 0
\(466\) 21.0000 0.972806
\(467\) 42.0000 1.94353 0.971764 0.235954i \(-0.0758216\pi\)
0.971764 + 0.235954i \(0.0758216\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.0923514
\(470\) −6.00000 −0.276759
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) 16.0000 0.731823
\(479\) −3.00000 −0.137073 −0.0685367 0.997649i \(-0.521833\pi\)
−0.0685367 + 0.997649i \(0.521833\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) −12.0000 −0.546585
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 30.0000 1.35804
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) 22.0000 0.992846 0.496423 0.868081i \(-0.334646\pi\)
0.496423 + 0.868081i \(0.334646\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 5.00000 0.224961
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 22.0000 0.986835
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) −9.00000 −0.402492
\(501\) 0 0
\(502\) 24.0000 1.07117
\(503\) −39.0000 −1.73892 −0.869462 0.494000i \(-0.835534\pi\)
−0.869462 + 0.494000i \(0.835534\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 0 0
\(507\) 0 0
\(508\) 4.00000 0.177471
\(509\) −40.0000 −1.77297 −0.886484 0.462758i \(-0.846860\pi\)
−0.886484 + 0.462758i \(0.846860\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −17.0000 −0.749110
\(516\) 0 0
\(517\) 0 0
\(518\) 4.00000 0.175750
\(519\) 0 0
\(520\) −15.0000 −0.657794
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 1.00000 0.0436852
\(525\) 0 0
\(526\) −14.0000 −0.610429
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) 15.0000 0.649722
\(534\) 0 0
\(535\) 17.0000 0.734974
\(536\) −3.00000 −0.129580
\(537\) 0 0
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) −5.00000 −0.214373
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) −26.0000 −1.11168 −0.555840 0.831289i \(-0.687603\pi\)
−0.555840 + 0.831289i \(0.687603\pi\)
\(548\) −12.0000 −0.512615
\(549\) 0 0
\(550\) 0 0
\(551\) −9.00000 −0.383413
\(552\) 0 0
\(553\) 0 0
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) −35.0000 −1.48034
\(560\) −2.00000 −0.0845154
\(561\) 0 0
\(562\) 0 0
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) 10.0000 0.420703
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 33.0000 1.38465
\(569\) 44.0000 1.84458 0.922288 0.386503i \(-0.126317\pi\)
0.922288 + 0.386503i \(0.126317\pi\)
\(570\) 0 0
\(571\) 10.0000 0.418487 0.209243 0.977864i \(-0.432900\pi\)
0.209243 + 0.977864i \(0.432900\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 6.00000 0.250435
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 9.00000 0.373705
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) 0 0
\(584\) −18.0000 −0.744845
\(585\) 0 0
\(586\) −12.0000 −0.495715
\(587\) 8.00000 0.330195 0.165098 0.986277i \(-0.447206\pi\)
0.165098 + 0.986277i \(0.447206\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) −12.0000 −0.492781 −0.246390 0.969171i \(-0.579245\pi\)
−0.246390 + 0.969171i \(0.579245\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) 20.0000 0.819232
\(597\) 0 0
\(598\) 5.00000 0.204465
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −44.0000 −1.79480 −0.897399 0.441221i \(-0.854546\pi\)
−0.897399 + 0.441221i \(0.854546\pi\)
\(602\) −14.0000 −0.570597
\(603\) 0 0
\(604\) −17.0000 −0.691720
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) 20.0000 0.811775 0.405887 0.913923i \(-0.366962\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) −5.00000 −0.202777
\(609\) 0 0
\(610\) 10.0000 0.404888
\(611\) −30.0000 −1.21367
\(612\) 0 0
\(613\) −41.0000 −1.65597 −0.827987 0.560747i \(-0.810514\pi\)
−0.827987 + 0.560747i \(0.810514\pi\)
\(614\) 9.00000 0.363210
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 0.362326 0.181163 0.983453i \(-0.442014\pi\)
0.181163 + 0.983453i \(0.442014\pi\)
\(618\) 0 0
\(619\) −6.00000 −0.241160 −0.120580 0.992704i \(-0.538475\pi\)
−0.120580 + 0.992704i \(0.538475\pi\)
\(620\) −8.00000 −0.321288
\(621\) 0 0
\(622\) −16.0000 −0.641542
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 14.0000 0.559553
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 37.0000 1.47295 0.736473 0.676467i \(-0.236490\pi\)
0.736473 + 0.676467i \(0.236490\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −17.0000 −0.675156
\(635\) 4.00000 0.158735
\(636\) 0 0
\(637\) 15.0000 0.594322
\(638\) 0 0
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) −45.0000 −1.77739 −0.888697 0.458496i \(-0.848388\pi\)
−0.888697 + 0.458496i \(0.848388\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) −2.00000 −0.0788110
\(645\) 0 0
\(646\) 1.00000 0.0393445
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 20.0000 0.784465
\(651\) 0 0
\(652\) −6.00000 −0.234978
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 1.00000 0.0390732
\(656\) 3.00000 0.117130
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) −16.0000 −0.623272 −0.311636 0.950202i \(-0.600877\pi\)
−0.311636 + 0.950202i \(0.600877\pi\)
\(660\) 0 0
\(661\) −31.0000 −1.20576 −0.602880 0.797832i \(-0.705980\pi\)
−0.602880 + 0.797832i \(0.705980\pi\)
\(662\) 13.0000 0.505259
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) −1.00000 −0.0386334
\(671\) 0 0
\(672\) 0 0
\(673\) 20.0000 0.770943 0.385472 0.922720i \(-0.374039\pi\)
0.385472 + 0.922720i \(0.374039\pi\)
\(674\) 4.00000 0.154074
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) 9.00000 0.345898 0.172949 0.984931i \(-0.444670\pi\)
0.172949 + 0.984931i \(0.444670\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) −3.00000 −0.115045
\(681\) 0 0
\(682\) 0 0
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) −7.00000 −0.266872
\(689\) −30.0000 −1.14291
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 22.0000 0.836315
\(693\) 0 0
\(694\) −29.0000 −1.10082
\(695\) 2.00000 0.0758643
\(696\) 0 0
\(697\) 3.00000 0.113633
\(698\) 9.00000 0.340655
\(699\) 0 0
\(700\) −8.00000 −0.302372
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 28.0000 1.05305
\(708\) 0 0
\(709\) −4.00000 −0.150223 −0.0751116 0.997175i \(-0.523931\pi\)
−0.0751116 + 0.997175i \(0.523931\pi\)
\(710\) 11.0000 0.412823
\(711\) 0 0
\(712\) −6.00000 −0.224860
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) 30.0000 1.11959
\(719\) −25.0000 −0.932343 −0.466171 0.884694i \(-0.654367\pi\)
−0.466171 + 0.884694i \(0.654367\pi\)
\(720\) 0 0
\(721\) −34.0000 −1.26623
\(722\) −18.0000 −0.669891
\(723\) 0 0
\(724\) 20.0000 0.743294
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) −41.0000 −1.52061 −0.760303 0.649569i \(-0.774949\pi\)
−0.760303 + 0.649569i \(0.774949\pi\)
\(728\) −30.0000 −1.11187
\(729\) 0 0
\(730\) −6.00000 −0.222070
\(731\) −7.00000 −0.258904
\(732\) 0 0
\(733\) −29.0000 −1.07114 −0.535570 0.844491i \(-0.679903\pi\)
−0.535570 + 0.844491i \(0.679903\pi\)
\(734\) 4.00000 0.147643
\(735\) 0 0
\(736\) −5.00000 −0.184302
\(737\) 0 0
\(738\) 0 0
\(739\) −23.0000 −0.846069 −0.423034 0.906114i \(-0.639035\pi\)
−0.423034 + 0.906114i \(0.639035\pi\)
\(740\) −2.00000 −0.0735215
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 20.0000 0.732743
\(746\) 21.0000 0.768865
\(747\) 0 0
\(748\) 0 0
\(749\) 34.0000 1.24233
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) −6.00000 −0.218797
\(753\) 0 0
\(754\) −45.0000 −1.63880
\(755\) −17.0000 −0.618693
\(756\) 0 0
\(757\) −23.0000 −0.835949 −0.417975 0.908459i \(-0.637260\pi\)
−0.417975 + 0.908459i \(0.637260\pi\)
\(758\) 22.0000 0.799076
\(759\) 0 0
\(760\) −3.00000 −0.108821
\(761\) −26.0000 −0.942499 −0.471250 0.882000i \(-0.656197\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(762\) 0 0
\(763\) 24.0000 0.868858
\(764\) 20.0000 0.723575
\(765\) 0 0
\(766\) 30.0000 1.08394
\(767\) 0 0
\(768\) 0 0
\(769\) 13.0000 0.468792 0.234396 0.972141i \(-0.424689\pi\)
0.234396 + 0.972141i \(0.424689\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14.0000 −0.503871
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 0 0
\(775\) 32.0000 1.14947
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 24.0000 0.860442
\(779\) 3.00000 0.107486
\(780\) 0 0
\(781\) 0 0
\(782\) 1.00000 0.0357599
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) −15.0000 −0.534353
\(789\) 0 0
\(790\) 0 0
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) 50.0000 1.77555
\(794\) 30.0000 1.06466
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) −6.00000 −0.212265
\(800\) −20.0000 −0.707107
\(801\) 0 0
\(802\) 5.00000 0.176556
\(803\) 0 0
\(804\) 0 0
\(805\) −2.00000 −0.0704907
\(806\) 40.0000 1.40894
\(807\) 0 0
\(808\) 42.0000 1.47755
\(809\) −23.0000 −0.808637 −0.404318 0.914618i \(-0.632491\pi\)
−0.404318 + 0.914618i \(0.632491\pi\)
\(810\) 0 0
\(811\) −56.0000 −1.96643 −0.983213 0.182462i \(-0.941593\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) 18.0000 0.631676
\(813\) 0 0
\(814\) 0 0
\(815\) −6.00000 −0.210171
\(816\) 0 0
\(817\) −7.00000 −0.244899
\(818\) −7.00000 −0.244749
\(819\) 0 0
\(820\) −3.00000 −0.104765
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) −10.0000 −0.348578 −0.174289 0.984695i \(-0.555763\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(824\) −51.0000 −1.77667
\(825\) 0 0
\(826\) 0 0
\(827\) 3.00000 0.104320 0.0521601 0.998639i \(-0.483389\pi\)
0.0521601 + 0.998639i \(0.483389\pi\)
\(828\) 0 0
\(829\) 5.00000 0.173657 0.0868286 0.996223i \(-0.472327\pi\)
0.0868286 + 0.996223i \(0.472327\pi\)
\(830\) −4.00000 −0.138842
\(831\) 0 0
\(832\) −35.0000 −1.21341
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) 0 0
\(838\) 7.00000 0.241811
\(839\) 19.0000 0.655953 0.327976 0.944686i \(-0.393633\pi\)
0.327976 + 0.944686i \(0.393633\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) −38.0000 −1.30957
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) −12.0000 −0.412813
\(846\) 0 0
\(847\) 22.0000 0.755929
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 4.00000 0.137199
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) 51.0000 1.74314
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) −56.0000 −1.91070 −0.955348 0.295484i \(-0.904519\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) 7.00000 0.238698
\(861\) 0 0
\(862\) 15.0000 0.510902
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 11.0000 0.373795
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) 0 0
\(870\) 0 0
\(871\) −5.00000 −0.169419
\(872\) 36.0000 1.21911
\(873\) 0 0
\(874\) 1.00000 0.0338255
\(875\) −18.0000 −0.608511
\(876\) 0 0
\(877\) 54.0000 1.82345 0.911725 0.410801i \(-0.134751\pi\)
0.911725 + 0.410801i \(0.134751\pi\)
\(878\) 28.0000 0.944954
\(879\) 0 0
\(880\) 0 0
\(881\) 1.00000 0.0336909 0.0168454 0.999858i \(-0.494638\pi\)
0.0168454 + 0.999858i \(0.494638\pi\)
\(882\) 0 0
\(883\) −3.00000 −0.100958 −0.0504790 0.998725i \(-0.516075\pi\)
−0.0504790 + 0.998725i \(0.516075\pi\)
\(884\) −5.00000 −0.168168
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) −2.00000 −0.0670402
\(891\) 0 0
\(892\) 21.0000 0.703132
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 6.00000 0.200446
\(897\) 0 0
\(898\) 26.0000 0.867631
\(899\) −72.0000 −2.40133
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 30.0000 0.997785
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) −58.0000 −1.92586 −0.962929 0.269754i \(-0.913058\pi\)
−0.962929 + 0.269754i \(0.913058\pi\)
\(908\) 21.0000 0.696909
\(909\) 0 0
\(910\) −10.0000 −0.331497
\(911\) −11.0000 −0.364446 −0.182223 0.983257i \(-0.558329\pi\)
−0.182223 + 0.983257i \(0.558329\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) 15.0000 0.495614
\(917\) 2.00000 0.0660458
\(918\) 0 0
\(919\) −45.0000 −1.48441 −0.742207 0.670171i \(-0.766221\pi\)
−0.742207 + 0.670171i \(0.766221\pi\)
\(920\) −3.00000 −0.0989071
\(921\) 0 0
\(922\) 38.0000 1.25146
\(923\) 55.0000 1.81035
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) −4.00000 −0.131448
\(927\) 0 0
\(928\) 45.0000 1.47720
\(929\) 39.0000 1.27955 0.639774 0.768563i \(-0.279028\pi\)
0.639774 + 0.768563i \(0.279028\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) −21.0000 −0.687878
\(933\) 0 0
\(934\) 42.0000 1.37428
\(935\) 0 0
\(936\) 0 0
\(937\) 49.0000 1.60076 0.800380 0.599493i \(-0.204631\pi\)
0.800380 + 0.599493i \(0.204631\pi\)
\(938\) −2.00000 −0.0653023
\(939\) 0 0
\(940\) 6.00000 0.195698
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 3.00000 0.0976934
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.0000 −1.03986 −0.519930 0.854209i \(-0.674042\pi\)
−0.519930 + 0.854209i \(0.674042\pi\)
\(948\) 0 0
\(949\) −30.0000 −0.973841
\(950\) 4.00000 0.129777
\(951\) 0 0
\(952\) −6.00000 −0.194461
\(953\) 4.00000 0.129573 0.0647864 0.997899i \(-0.479363\pi\)
0.0647864 + 0.997899i \(0.479363\pi\)
\(954\) 0 0
\(955\) 20.0000 0.647185
\(956\) −16.0000 −0.517477
\(957\) 0 0
\(958\) −3.00000 −0.0969256
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 10.0000 0.322413
\(963\) 0 0
\(964\) 12.0000 0.386494
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) 33.0000 1.06121 0.530604 0.847620i \(-0.321965\pi\)
0.530604 + 0.847620i \(0.321965\pi\)
\(968\) 33.0000 1.06066
\(969\) 0 0
\(970\) −2.00000 −0.0642161
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 32.0000 1.02535
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) 22.0000 0.702048
\(983\) 39.0000 1.24391 0.621953 0.783054i \(-0.286339\pi\)
0.621953 + 0.783054i \(0.286339\pi\)
\(984\) 0 0
\(985\) −15.0000 −0.477940
\(986\) −9.00000 −0.286618
\(987\) 0 0
\(988\) −5.00000 −0.159071
\(989\) −7.00000 −0.222587
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) −40.0000 −1.27000
\(993\) 0 0
\(994\) 22.0000 0.697798
\(995\) 20.0000 0.634043
\(996\) 0 0
\(997\) −32.0000 −1.01345 −0.506725 0.862108i \(-0.669144\pi\)
−0.506725 + 0.862108i \(0.669144\pi\)
\(998\) 20.0000 0.633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.a.f.1.1 yes 1
3.2 odd 2 459.2.a.c.1.1 1
4.3 odd 2 7344.2.a.n.1.1 1
12.11 even 2 7344.2.a.y.1.1 1
17.16 even 2 7803.2.a.p.1.1 1
51.50 odd 2 7803.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.a.c.1.1 1 3.2 odd 2
459.2.a.f.1.1 yes 1 1.1 even 1 trivial
7344.2.a.n.1.1 1 4.3 odd 2
7344.2.a.y.1.1 1 12.11 even 2
7803.2.a.f.1.1 1 51.50 odd 2
7803.2.a.p.1.1 1 17.16 even 2