Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [459,2,Mod(25,459)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(459, base_ring=CyclotomicField(72))
chi = DirichletCharacter(H, H._module([40, 45]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("459.25");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 459 = 3^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 459.ba (of order \(72\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.66513345278\) |
Analytic rank: | \(0\) |
Dimension: | \(1248\) |
Relative dimension: | \(52\) over \(\Q(\zeta_{72})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{72}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −1.55139 | − | 2.21561i | 0.627483 | + | 1.61439i | −1.81809 | + | 4.99517i | 0.510558 | − | 0.160978i | 2.60340 | − | 3.89481i | −2.15228 | + | 1.97220i | 8.66274 | − | 2.32117i | −2.21253 | + | 2.02601i | −1.14874 | − | 0.881459i |
25.2 | −1.49539 | − | 2.13565i | 0.344398 | − | 1.69747i | −1.64073 | + | 4.50788i | −0.145048 | + | 0.0457334i | −4.14020 | + | 1.80287i | 2.84495 | − | 2.60692i | 7.04417 | − | 1.88748i | −2.76278 | − | 1.16921i | 0.314574 | + | 0.241381i |
25.3 | −1.45902 | − | 2.08370i | 1.71956 | + | 0.207643i | −1.52902 | + | 4.20095i | −2.60696 | + | 0.821971i | −2.07621 | − | 3.88600i | 1.97919 | − | 1.81359i | 6.07029 | − | 1.62653i | 2.91377 | + | 0.714110i | 5.51636 | + | 4.23285i |
25.4 | −1.45590 | − | 2.07925i | −1.49626 | − | 0.872473i | −1.51957 | + | 4.17497i | −1.87764 | + | 0.592016i | 0.364323 | + | 4.38133i | −1.18104 | + | 1.08223i | 5.98953 | − | 1.60489i | 1.47758 | + | 2.61089i | 3.96460 | + | 3.04215i |
25.5 | −1.41239 | − | 2.01710i | 1.57022 | − | 0.731031i | −1.38982 | + | 3.81850i | 2.94630 | − | 0.928964i | −3.69233 | − | 2.13480i | −0.765334 | + | 0.701300i | 4.90823 | − | 1.31516i | 1.93119 | − | 2.29576i | −6.03514 | − | 4.63093i |
25.6 | −1.26968 | − | 1.81329i | −1.66712 | + | 0.469789i | −0.991890 | + | 2.72520i | −0.420160 | + | 0.132476i | 2.96857 | + | 2.42649i | 0.435898 | − | 0.399427i | 1.92457 | − | 0.515686i | 2.55860 | − | 1.56639i | 0.773684 | + | 0.593668i |
25.7 | −1.24030 | − | 1.77133i | −1.29422 | + | 1.15109i | −0.915221 | + | 2.51455i | 1.64865 | − | 0.519817i | 3.64416 | + | 0.864790i | −1.17396 | + | 1.07573i | 1.41181 | − | 0.378295i | 0.349993 | − | 2.97951i | −2.96558 | − | 2.27557i |
25.8 | −1.22861 | − | 1.75463i | 0.00134192 | + | 1.73205i | −0.885220 | + | 2.43212i | 2.58809 | − | 0.816022i | 3.03746 | − | 2.13036i | 2.95845 | − | 2.71092i | 1.21702 | − | 0.326100i | −3.00000 | + | 0.00464853i | −4.61156 | − | 3.53858i |
25.9 | −1.11038 | − | 1.58579i | 0.501377 | − | 1.65790i | −0.597734 | + | 1.64226i | −2.74308 | + | 0.864889i | −3.18579 | + | 1.04582i | −0.585095 | + | 0.536141i | −0.471861 | + | 0.126435i | −2.49724 | − | 1.66246i | 4.41738 | + | 3.38958i |
25.10 | −1.11023 | − | 1.58557i | 0.664068 | + | 1.59969i | −0.597391 | + | 1.64132i | −3.50205 | + | 1.10419i | 1.79916 | − | 2.82895i | 1.47118 | − | 1.34809i | −0.473675 | + | 0.126921i | −2.11803 | + | 2.12461i | 5.63886 | + | 4.32685i |
25.11 | −1.08122 | − | 1.54414i | 1.44943 | − | 0.948231i | −0.531296 | + | 1.45972i | −2.16213 | + | 0.681718i | −3.03136 | − | 1.21288i | −2.45463 | + | 2.24926i | −0.813166 | + | 0.217887i | 1.20171 | − | 2.74880i | 3.39041 | + | 2.60155i |
25.12 | −0.903333 | − | 1.29009i | 1.44992 | + | 0.947483i | −0.164290 | + | 0.451383i | 0.429370 | − | 0.135380i | −0.0874213 | − | 2.72643i | −3.73552 | + | 3.42297i | −2.31176 | + | 0.619435i | 1.20455 | + | 2.74755i | −0.562517 | − | 0.431634i |
25.13 | −0.890643 | − | 1.27197i | −1.43866 | − | 0.964506i | −0.140623 | + | 0.386357i | 3.34930 | − | 1.05603i | 0.0545055 | + | 2.68896i | 0.933498 | − | 0.855393i | −2.38308 | + | 0.638544i | 1.13946 | + | 2.77518i | −4.32627 | − | 3.31967i |
25.14 | −0.870717 | − | 1.24351i | 1.65409 | + | 0.513794i | −0.104136 | + | 0.286110i | 2.29872 | − | 0.724783i | −0.801335 | − | 2.50425i | 1.56020 | − | 1.42966i | −2.48619 | + | 0.666173i | 2.47203 | + | 1.69973i | −2.90281 | − | 2.22740i |
25.15 | −0.808637 | − | 1.15485i | 0.0715990 | − | 1.73057i | 0.00424807 | − | 0.0116715i | 1.94527 | − | 0.613343i | −2.05645 | + | 1.31672i | −0.521489 | + | 0.477857i | −2.74047 | + | 0.734306i | −2.98975 | − | 0.247814i | −2.28134 | − | 1.75053i |
25.16 | −0.751830 | − | 1.07372i | −1.65924 | + | 0.496913i | 0.0964040 | − | 0.264868i | −2.69307 | + | 0.849122i | 1.78101 | + | 1.40797i | 3.54742 | − | 3.25061i | −2.88910 | + | 0.774132i | 2.50616 | − | 1.64899i | 2.93645 | + | 2.25322i |
25.17 | −0.623790 | − | 0.890865i | −1.22090 | − | 1.22857i | 0.279514 | − | 0.767960i | −2.12009 | + | 0.668461i | −0.332906 | + | 1.85403i | −0.361337 | + | 0.331104i | −2.95948 | + | 0.792991i | −0.0187911 | + | 2.99994i | 1.91800 | + | 1.47173i |
25.18 | −0.589138 | − | 0.841376i | −1.73101 | − | 0.0600983i | 0.323210 | − | 0.888013i | 2.49663 | − | 0.787185i | 0.969237 | + | 1.49183i | −2.99699 | + | 2.74624i | −2.92183 | + | 0.782902i | 2.99278 | + | 0.208061i | −2.13318 | − | 1.63685i |
25.19 | −0.541406 | − | 0.773208i | −0.275133 | + | 1.71006i | 0.379310 | − | 1.04215i | −0.876235 | + | 0.276276i | 1.47119 | − | 0.713101i | 0.372163 | − | 0.341024i | −2.83466 | + | 0.759544i | −2.84860 | − | 0.940989i | 0.688018 | + | 0.527935i |
25.20 | −0.442402 | − | 0.631815i | 1.70567 | − | 0.301145i | 0.480569 | − | 1.32035i | −2.01144 | + | 0.634203i | −0.944859 | − | 0.944442i | 1.40032 | − | 1.28316i | −2.53687 | + | 0.679752i | 2.81862 | − | 1.02731i | 1.29056 | + | 0.990283i |
See next 80 embeddings (of 1248 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
27.e | even | 9 | 1 | inner |
459.ba | even | 72 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 459.2.ba.a | ✓ | 1248 |
17.d | even | 8 | 1 | inner | 459.2.ba.a | ✓ | 1248 |
27.e | even | 9 | 1 | inner | 459.2.ba.a | ✓ | 1248 |
459.ba | even | 72 | 1 | inner | 459.2.ba.a | ✓ | 1248 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
459.2.ba.a | ✓ | 1248 | 1.a | even | 1 | 1 | trivial |
459.2.ba.a | ✓ | 1248 | 17.d | even | 8 | 1 | inner |
459.2.ba.a | ✓ | 1248 | 27.e | even | 9 | 1 | inner |
459.2.ba.a | ✓ | 1248 | 459.ba | even | 72 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(459, [\chi])\).