Properties

Label 459.2.y.a.260.4
Level $459$
Weight $2$
Character 459.260
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(44,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([40, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.44");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 260.4
Character \(\chi\) \(=\) 459.260
Dual form 459.2.y.a.143.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40306 - 1.07661i) q^{2} +(0.291859 + 1.08923i) q^{4} +(-0.349197 + 0.398183i) q^{5} +(0.487217 - 0.427278i) q^{7} +(-0.590386 + 1.42532i) q^{8} +(0.918630 - 0.182727i) q^{10} +(0.244047 + 0.0159957i) q^{11} +(-5.52628 + 1.48076i) q^{13} +(-1.14360 + 0.0749557i) q^{14} +(4.31601 - 2.49185i) q^{16} +(-1.99496 + 3.60834i) q^{17} +(-0.687279 - 1.65924i) q^{19} +(-0.535630 - 0.264144i) q^{20} +(-0.325191 - 0.285185i) q^{22} +(-4.02242 + 1.98364i) q^{23} +(0.616020 + 4.67914i) q^{25} +(9.34790 + 3.87203i) q^{26} +(0.607604 + 0.405988i) q^{28} +(-0.725663 + 0.246329i) q^{29} +(0.156475 + 2.38734i) q^{31} +(-5.67926 - 0.747688i) q^{32} +(6.68381 - 2.91493i) q^{34} +0.343205i q^{35} +(3.47283 + 5.19746i) q^{37} +(-0.822052 + 3.06794i) q^{38} +(-0.361376 - 0.732799i) q^{40} +(-0.0906083 + 0.266923i) q^{41} +(-7.58989 + 0.999228i) q^{43} +(0.0538043 + 0.270493i) q^{44} +(7.77930 + 1.54740i) q^{46} +(7.65665 + 2.05159i) q^{47} +(-0.858869 + 6.52376i) q^{49} +(4.17327 - 7.22832i) q^{50} +(-3.22579 - 5.58724i) q^{52} +(6.47242 - 2.68096i) q^{53} +(-0.0915896 + 0.0915896i) q^{55} +(0.321361 + 0.946698i) q^{56} +(1.28335 + 0.435638i) q^{58} +(4.10474 + 5.34940i) q^{59} +(-5.55704 - 6.33659i) q^{61} +(2.35068 - 3.51804i) q^{62} +(0.115352 + 0.115352i) q^{64} +(1.34015 - 2.71755i) q^{65} +(2.60816 + 1.50582i) q^{67} +(-4.51257 - 1.11985i) q^{68} +(0.369497 - 0.481538i) q^{70} +(-7.48130 + 4.99884i) q^{71} +(-1.88124 + 9.45764i) q^{73} +(0.723024 - 11.0312i) q^{74} +(1.60671 - 1.23287i) q^{76} +(0.125738 - 0.0964824i) q^{77} +(0.344325 - 5.25338i) q^{79} +(-0.514926 + 2.58871i) q^{80} +(0.414500 - 0.276960i) q^{82} +(0.612737 - 0.798534i) q^{83} +(-0.740144 - 2.05438i) q^{85} +(11.7248 + 6.76934i) q^{86} +(-0.166881 + 0.338401i) q^{88} +(-10.5558 - 10.5558i) q^{89} +(-2.05980 + 3.08271i) q^{91} +(-3.33463 - 3.80241i) q^{92} +(-8.53398 - 11.1217i) q^{94} +(0.900676 + 0.305738i) q^{95} +(1.32665 + 3.90819i) q^{97} +(8.22856 - 8.22856i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40306 1.07661i −0.992113 0.761275i −0.0209719 0.999780i \(-0.506676\pi\)
−0.971141 + 0.238505i \(0.923343\pi\)
\(3\) 0 0
\(4\) 0.291859 + 1.08923i 0.145930 + 0.544617i
\(5\) −0.349197 + 0.398183i −0.156166 + 0.178073i −0.824632 0.565670i \(-0.808618\pi\)
0.668466 + 0.743742i \(0.266951\pi\)
\(6\) 0 0
\(7\) 0.487217 0.427278i 0.184151 0.161496i −0.562307 0.826928i \(-0.690086\pi\)
0.746458 + 0.665433i \(0.231753\pi\)
\(8\) −0.590386 + 1.42532i −0.208733 + 0.503926i
\(9\) 0 0
\(10\) 0.918630 0.182727i 0.290496 0.0577833i
\(11\) 0.244047 + 0.0159957i 0.0735829 + 0.00482288i 0.102150 0.994769i \(-0.467428\pi\)
−0.0285672 + 0.999592i \(0.509094\pi\)
\(12\) 0 0
\(13\) −5.52628 + 1.48076i −1.53271 + 0.410690i −0.923903 0.382626i \(-0.875020\pi\)
−0.608811 + 0.793315i \(0.708353\pi\)
\(14\) −1.14360 + 0.0749557i −0.305641 + 0.0200328i
\(15\) 0 0
\(16\) 4.31601 2.49185i 1.07900 0.622963i
\(17\) −1.99496 + 3.60834i −0.483849 + 0.875151i
\(18\) 0 0
\(19\) −0.687279 1.65924i −0.157673 0.380656i 0.825226 0.564803i \(-0.191048\pi\)
−0.982899 + 0.184147i \(0.941048\pi\)
\(20\) −0.535630 0.264144i −0.119771 0.0590643i
\(21\) 0 0
\(22\) −0.325191 0.285185i −0.0693310 0.0608017i
\(23\) −4.02242 + 1.98364i −0.838733 + 0.413617i −0.810326 0.585979i \(-0.800710\pi\)
−0.0284068 + 0.999596i \(0.509043\pi\)
\(24\) 0 0
\(25\) 0.616020 + 4.67914i 0.123204 + 0.935827i
\(26\) 9.34790 + 3.87203i 1.83327 + 0.759367i
\(27\) 0 0
\(28\) 0.607604 + 0.405988i 0.114826 + 0.0767245i
\(29\) −0.725663 + 0.246329i −0.134752 + 0.0457422i −0.388001 0.921659i \(-0.626834\pi\)
0.253249 + 0.967401i \(0.418501\pi\)
\(30\) 0 0
\(31\) 0.156475 + 2.38734i 0.0281037 + 0.428779i 0.988608 + 0.150514i \(0.0480928\pi\)
−0.960504 + 0.278265i \(0.910241\pi\)
\(32\) −5.67926 0.747688i −1.00396 0.132174i
\(33\) 0 0
\(34\) 6.68381 2.91493i 1.14626 0.499906i
\(35\) 0.343205i 0.0580123i
\(36\) 0 0
\(37\) 3.47283 + 5.19746i 0.570930 + 0.854457i 0.998779 0.0493930i \(-0.0157287\pi\)
−0.427849 + 0.903850i \(0.640729\pi\)
\(38\) −0.822052 + 3.06794i −0.133354 + 0.497686i
\(39\) 0 0
\(40\) −0.361376 0.732799i −0.0571386 0.115866i
\(41\) −0.0906083 + 0.266923i −0.0141506 + 0.0416864i −0.953776 0.300518i \(-0.902840\pi\)
0.939625 + 0.342205i \(0.111174\pi\)
\(42\) 0 0
\(43\) −7.58989 + 0.999228i −1.15745 + 0.152381i −0.684705 0.728820i \(-0.740069\pi\)
−0.472742 + 0.881201i \(0.656736\pi\)
\(44\) 0.0538043 + 0.270493i 0.00811130 + 0.0407783i
\(45\) 0 0
\(46\) 7.77930 + 1.54740i 1.14699 + 0.228151i
\(47\) 7.65665 + 2.05159i 1.11684 + 0.299256i 0.769603 0.638523i \(-0.220454\pi\)
0.347234 + 0.937778i \(0.387121\pi\)
\(48\) 0 0
\(49\) −0.858869 + 6.52376i −0.122696 + 0.931966i
\(50\) 4.17327 7.22832i 0.590190 1.02224i
\(51\) 0 0
\(52\) −3.22579 5.58724i −0.447337 0.774810i
\(53\) 6.47242 2.68096i 0.889055 0.368259i 0.109053 0.994036i \(-0.465218\pi\)
0.780002 + 0.625777i \(0.215218\pi\)
\(54\) 0 0
\(55\) −0.0915896 + 0.0915896i −0.0123499 + 0.0123499i
\(56\) 0.321361 + 0.946698i 0.0429436 + 0.126508i
\(57\) 0 0
\(58\) 1.28335 + 0.435638i 0.168512 + 0.0572021i
\(59\) 4.10474 + 5.34940i 0.534392 + 0.696433i 0.980046 0.198772i \(-0.0636954\pi\)
−0.445654 + 0.895205i \(0.647029\pi\)
\(60\) 0 0
\(61\) −5.55704 6.33659i −0.711506 0.811317i 0.277259 0.960795i \(-0.410574\pi\)
−0.988765 + 0.149478i \(0.952241\pi\)
\(62\) 2.35068 3.51804i 0.298537 0.446792i
\(63\) 0 0
\(64\) 0.115352 + 0.115352i 0.0144191 + 0.0144191i
\(65\) 1.34015 2.71755i 0.166225 0.337070i
\(66\) 0 0
\(67\) 2.60816 + 1.50582i 0.318637 + 0.183965i 0.650785 0.759262i \(-0.274440\pi\)
−0.332148 + 0.943227i \(0.607773\pi\)
\(68\) −4.51257 1.11985i −0.547230 0.135802i
\(69\) 0 0
\(70\) 0.369497 0.481538i 0.0441633 0.0575547i
\(71\) −7.48130 + 4.99884i −0.887867 + 0.593254i −0.913690 0.406413i \(-0.866779\pi\)
0.0258226 + 0.999667i \(0.491779\pi\)
\(72\) 0 0
\(73\) −1.88124 + 9.45764i −0.220183 + 1.10693i 0.699609 + 0.714526i \(0.253358\pi\)
−0.919792 + 0.392407i \(0.871642\pi\)
\(74\) 0.723024 11.0312i 0.0840499 1.28235i
\(75\) 0 0
\(76\) 1.60671 1.23287i 0.184302 0.141420i
\(77\) 0.125738 0.0964824i 0.0143292 0.0109952i
\(78\) 0 0
\(79\) 0.344325 5.25338i 0.0387396 0.591052i −0.933723 0.357995i \(-0.883460\pi\)
0.972463 0.233057i \(-0.0748729\pi\)
\(80\) −0.514926 + 2.58871i −0.0575705 + 0.289427i
\(81\) 0 0
\(82\) 0.414500 0.276960i 0.0457739 0.0305851i
\(83\) 0.612737 0.798534i 0.0672566 0.0876505i −0.758514 0.651657i \(-0.774074\pi\)
0.825770 + 0.564007i \(0.190741\pi\)
\(84\) 0 0
\(85\) −0.740144 2.05438i −0.0802799 0.222829i
\(86\) 11.7248 + 6.76934i 1.26432 + 0.729957i
\(87\) 0 0
\(88\) −0.166881 + 0.338401i −0.0177896 + 0.0360737i
\(89\) −10.5558 10.5558i −1.11891 1.11891i −0.991901 0.127011i \(-0.959462\pi\)
−0.127011 0.991901i \(-0.540538\pi\)
\(90\) 0 0
\(91\) −2.05980 + 3.08271i −0.215926 + 0.323156i
\(92\) −3.33463 3.80241i −0.347659 0.396429i
\(93\) 0 0
\(94\) −8.53398 11.1217i −0.880213 1.14712i
\(95\) 0.900676 + 0.305738i 0.0924074 + 0.0313681i
\(96\) 0 0
\(97\) 1.32665 + 3.90819i 0.134701 + 0.396817i 0.993261 0.115896i \(-0.0369739\pi\)
−0.858560 + 0.512713i \(0.828641\pi\)
\(98\) 8.22856 8.22856i 0.831210 0.831210i
\(99\) 0 0
\(100\) −4.91688 + 2.03664i −0.491688 + 0.203664i
\(101\) −2.89538 5.01494i −0.288101 0.499006i 0.685255 0.728303i \(-0.259691\pi\)
−0.973356 + 0.229297i \(0.926357\pi\)
\(102\) 0 0
\(103\) −1.57613 + 2.72994i −0.155301 + 0.268989i −0.933169 0.359439i \(-0.882968\pi\)
0.777868 + 0.628428i \(0.216301\pi\)
\(104\) 1.15208 8.75093i 0.112971 0.858100i
\(105\) 0 0
\(106\) −11.9675 3.20669i −1.16239 0.311461i
\(107\) −18.5391 3.68766i −1.79225 0.356500i −0.816831 0.576877i \(-0.804271\pi\)
−0.975415 + 0.220378i \(0.929271\pi\)
\(108\) 0 0
\(109\) −3.09723 15.5708i −0.296661 1.49141i −0.785402 0.618986i \(-0.787544\pi\)
0.488741 0.872429i \(-0.337456\pi\)
\(110\) 0.227112 0.0298998i 0.0216542 0.00285084i
\(111\) 0 0
\(112\) 1.03812 3.05821i 0.0980933 0.288973i
\(113\) −7.96981 16.1612i −0.749736 1.52031i −0.850832 0.525438i \(-0.823901\pi\)
0.101095 0.994877i \(-0.467765\pi\)
\(114\) 0 0
\(115\) 0.614767 2.29434i 0.0573273 0.213948i
\(116\) −0.480102 0.718523i −0.0445763 0.0667132i
\(117\) 0 0
\(118\) 11.9247i 1.09776i
\(119\) 0.569784 + 2.61045i 0.0522320 + 0.239299i
\(120\) 0 0
\(121\) −10.8466 1.42798i −0.986054 0.129816i
\(122\) 0.974851 + 14.8734i 0.0882589 + 1.34657i
\(123\) 0 0
\(124\) −2.55470 + 0.867205i −0.229419 + 0.0778773i
\(125\) −4.28004 2.85983i −0.382819 0.255791i
\(126\) 0 0
\(127\) 16.7213 + 6.92619i 1.48377 + 0.614600i 0.969952 0.243297i \(-0.0782289\pi\)
0.513823 + 0.857896i \(0.328229\pi\)
\(128\) 1.45772 + 11.0725i 0.128845 + 0.978678i
\(129\) 0 0
\(130\) −4.80603 + 2.37007i −0.421517 + 0.207869i
\(131\) 10.0771 + 8.83742i 0.880444 + 0.772129i 0.974723 0.223417i \(-0.0717211\pi\)
−0.0942786 + 0.995546i \(0.530054\pi\)
\(132\) 0 0
\(133\) −1.04381 0.514750i −0.0905098 0.0446345i
\(134\) −2.03823 4.92071i −0.176076 0.425085i
\(135\) 0 0
\(136\) −3.96524 4.97377i −0.340016 0.426497i
\(137\) −17.9198 + 10.3460i −1.53099 + 0.883918i −0.531675 + 0.846948i \(0.678437\pi\)
−0.999316 + 0.0369701i \(0.988229\pi\)
\(138\) 0 0
\(139\) 13.2779 0.870277i 1.12621 0.0738159i 0.509113 0.860700i \(-0.329974\pi\)
0.617101 + 0.786884i \(0.288307\pi\)
\(140\) −0.373831 + 0.100168i −0.0315945 + 0.00846571i
\(141\) 0 0
\(142\) 15.8785 + 1.04073i 1.33249 + 0.0873363i
\(143\) −1.37236 + 0.272979i −0.114762 + 0.0228276i
\(144\) 0 0
\(145\) 0.155315 0.374964i 0.0128982 0.0311391i
\(146\) 12.8216 11.2443i 1.06113 0.930583i
\(147\) 0 0
\(148\) −4.64767 + 5.29965i −0.382036 + 0.435629i
\(149\) −0.525508 1.96122i −0.0430513 0.160670i 0.941054 0.338257i \(-0.109837\pi\)
−0.984105 + 0.177588i \(0.943171\pi\)
\(150\) 0 0
\(151\) −19.0924 14.6501i −1.55371 1.19221i −0.900353 0.435160i \(-0.856692\pi\)
−0.653361 0.757047i \(-0.726641\pi\)
\(152\) 2.77071 0.224734
\(153\) 0 0
\(154\) −0.280292 −0.0225866
\(155\) −1.00524 0.771346i −0.0807427 0.0619560i
\(156\) 0 0
\(157\) −3.21662 12.0046i −0.256714 0.958070i −0.967129 0.254287i \(-0.918159\pi\)
0.710415 0.703783i \(-0.248507\pi\)
\(158\) −6.13893 + 7.00011i −0.488387 + 0.556899i
\(159\) 0 0
\(160\) 2.28090 2.00029i 0.180321 0.158137i
\(161\) −1.11223 + 2.68515i −0.0876557 + 0.211620i
\(162\) 0 0
\(163\) −9.85980 + 1.96124i −0.772279 + 0.153616i −0.565474 0.824766i \(-0.691307\pi\)
−0.206805 + 0.978382i \(0.566307\pi\)
\(164\) −0.317187 0.0207895i −0.0247681 0.00162339i
\(165\) 0 0
\(166\) −1.71941 + 0.460715i −0.133452 + 0.0357584i
\(167\) 13.0470 0.855149i 1.00961 0.0661734i 0.448389 0.893839i \(-0.351998\pi\)
0.561222 + 0.827665i \(0.310331\pi\)
\(168\) 0 0
\(169\) 17.0888 9.86622i 1.31452 0.758940i
\(170\) −1.17329 + 3.67926i −0.0899874 + 0.282187i
\(171\) 0 0
\(172\) −3.30357 7.97553i −0.251895 0.608128i
\(173\) 12.8042 + 6.31436i 0.973489 + 0.480072i 0.858231 0.513264i \(-0.171564\pi\)
0.115258 + 0.993336i \(0.463230\pi\)
\(174\) 0 0
\(175\) 2.29942 + 2.01654i 0.173820 + 0.152436i
\(176\) 1.09317 0.539091i 0.0824007 0.0406355i
\(177\) 0 0
\(178\) 3.44599 + 26.1749i 0.258288 + 1.96189i
\(179\) 13.5833 + 5.62640i 1.01527 + 0.420537i 0.827373 0.561653i \(-0.189834\pi\)
0.187893 + 0.982190i \(0.439834\pi\)
\(180\) 0 0
\(181\) 10.2817 + 6.86999i 0.764231 + 0.510643i 0.875541 0.483143i \(-0.160505\pi\)
−0.111311 + 0.993786i \(0.535505\pi\)
\(182\) 6.20888 2.10763i 0.460233 0.156228i
\(183\) 0 0
\(184\) −0.452535 6.90435i −0.0333613 0.508995i
\(185\) −3.28224 0.432115i −0.241315 0.0317697i
\(186\) 0 0
\(187\) −0.544582 + 0.848694i −0.0398238 + 0.0620626i
\(188\) 8.93865i 0.651918i
\(189\) 0 0
\(190\) −0.934543 1.39864i −0.0677989 0.101468i
\(191\) −4.57355 + 17.0687i −0.330930 + 1.23505i 0.577284 + 0.816543i \(0.304112\pi\)
−0.908215 + 0.418505i \(0.862554\pi\)
\(192\) 0 0
\(193\) 3.05315 + 6.19118i 0.219771 + 0.445651i 0.978637 0.205595i \(-0.0659131\pi\)
−0.758866 + 0.651247i \(0.774246\pi\)
\(194\) 2.34621 6.91171i 0.168448 0.496232i
\(195\) 0 0
\(196\) −7.35657 + 0.968510i −0.525469 + 0.0691793i
\(197\) −2.57804 12.9607i −0.183678 0.923410i −0.957153 0.289583i \(-0.906483\pi\)
0.773475 0.633827i \(-0.218517\pi\)
\(198\) 0 0
\(199\) 13.8219 + 2.74935i 0.979809 + 0.194896i 0.658914 0.752219i \(-0.271016\pi\)
0.320895 + 0.947115i \(0.396016\pi\)
\(200\) −7.03295 1.88447i −0.497305 0.133252i
\(201\) 0 0
\(202\) −1.33673 + 10.1535i −0.0940518 + 0.714394i
\(203\) −0.248304 + 0.430075i −0.0174275 + 0.0301854i
\(204\) 0 0
\(205\) −0.0746442 0.129287i −0.00521337 0.00902983i
\(206\) 5.15047 2.13340i 0.358850 0.148641i
\(207\) 0 0
\(208\) −20.1617 + 20.1617i −1.39796 + 1.39796i
\(209\) −0.141188 0.415926i −0.00976616 0.0287702i
\(210\) 0 0
\(211\) 26.9539 + 9.14962i 1.85558 + 0.629886i 0.992091 + 0.125524i \(0.0400611\pi\)
0.863492 + 0.504362i \(0.168272\pi\)
\(212\) 4.80923 + 6.26751i 0.330299 + 0.430454i
\(213\) 0 0
\(214\) 22.0414 + 25.1333i 1.50672 + 1.71808i
\(215\) 2.25249 3.37109i 0.153619 0.229906i
\(216\) 0 0
\(217\) 1.09629 + 1.09629i 0.0744213 + 0.0744213i
\(218\) −12.4180 + 25.1813i −0.841056 + 1.70549i
\(219\) 0 0
\(220\) −0.126494 0.0730312i −0.00852821 0.00492376i
\(221\) 5.68163 22.8948i 0.382188 1.54007i
\(222\) 0 0
\(223\) 5.34259 6.96260i 0.357766 0.466250i −0.579445 0.815011i \(-0.696731\pi\)
0.937212 + 0.348761i \(0.113397\pi\)
\(224\) −3.08650 + 2.06233i −0.206225 + 0.137795i
\(225\) 0 0
\(226\) −6.21709 + 31.2554i −0.413555 + 2.07908i
\(227\) −0.397273 + 6.06121i −0.0263679 + 0.402297i 0.964191 + 0.265209i \(0.0854409\pi\)
−0.990559 + 0.137088i \(0.956226\pi\)
\(228\) 0 0
\(229\) −4.61365 + 3.54018i −0.304879 + 0.233942i −0.749857 0.661599i \(-0.769878\pi\)
0.444979 + 0.895541i \(0.353211\pi\)
\(230\) −3.33265 + 2.55724i −0.219749 + 0.168619i
\(231\) 0 0
\(232\) 0.0773236 1.17973i 0.00507654 0.0774531i
\(233\) −1.43162 + 7.19722i −0.0937883 + 0.471506i 0.905135 + 0.425123i \(0.139769\pi\)
−0.998924 + 0.0463824i \(0.985231\pi\)
\(234\) 0 0
\(235\) −3.49059 + 2.33234i −0.227701 + 0.152145i
\(236\) −4.62874 + 6.03229i −0.301305 + 0.392669i
\(237\) 0 0
\(238\) 2.01098 4.27605i 0.130352 0.277175i
\(239\) −8.24749 4.76169i −0.533486 0.308008i 0.208949 0.977927i \(-0.432996\pi\)
−0.742435 + 0.669918i \(0.766329\pi\)
\(240\) 0 0
\(241\) −11.8861 + 24.1026i −0.765651 + 1.55259i 0.0663392 + 0.997797i \(0.478868\pi\)
−0.831990 + 0.554790i \(0.812799\pi\)
\(242\) 13.6810 + 13.6810i 0.879451 + 0.879451i
\(243\) 0 0
\(244\) 5.28015 7.90231i 0.338027 0.505893i
\(245\) −2.29773 2.62006i −0.146797 0.167390i
\(246\) 0 0
\(247\) 6.25504 + 8.15172i 0.397999 + 0.518682i
\(248\) −3.49510 1.18643i −0.221939 0.0753382i
\(249\) 0 0
\(250\) 2.92624 + 8.62043i 0.185072 + 0.545204i
\(251\) 11.7486 11.7486i 0.741566 0.741566i −0.231313 0.972879i \(-0.574302\pi\)
0.972879 + 0.231313i \(0.0743023\pi\)
\(252\) 0 0
\(253\) −1.01339 + 0.419760i −0.0637112 + 0.0263901i
\(254\) −16.0042 27.7201i −1.00419 1.73931i
\(255\) 0 0
\(256\) 10.0386 17.3873i 0.627410 1.08671i
\(257\) 0.957479 7.27278i 0.0597259 0.453663i −0.935285 0.353896i \(-0.884857\pi\)
0.995011 0.0997676i \(-0.0318099\pi\)
\(258\) 0 0
\(259\) 3.91278 + 1.04843i 0.243128 + 0.0651460i
\(260\) 3.35118 + 0.666591i 0.207831 + 0.0413402i
\(261\) 0 0
\(262\) −4.62442 23.2485i −0.285698 1.43630i
\(263\) 1.34211 0.176692i 0.0827582 0.0108953i −0.0890334 0.996029i \(-0.528378\pi\)
0.171792 + 0.985133i \(0.445044\pi\)
\(264\) 0 0
\(265\) −1.19264 + 3.51339i −0.0732630 + 0.215826i
\(266\) 0.910345 + 1.84600i 0.0558168 + 0.113185i
\(267\) 0 0
\(268\) −0.878975 + 3.28038i −0.0536919 + 0.200381i
\(269\) 13.6075 + 20.3650i 0.829663 + 1.24168i 0.967914 + 0.251281i \(0.0808519\pi\)
−0.138251 + 0.990397i \(0.544148\pi\)
\(270\) 0 0
\(271\) 25.1760i 1.52933i −0.644428 0.764665i \(-0.722904\pi\)
0.644428 0.764665i \(-0.277096\pi\)
\(272\) 0.381165 + 20.5448i 0.0231115 + 1.24571i
\(273\) 0 0
\(274\) 36.2811 + 4.77650i 2.19182 + 0.288559i
\(275\) 0.0754918 + 1.15178i 0.00455233 + 0.0694551i
\(276\) 0 0
\(277\) 7.77465 2.63914i 0.467134 0.158571i −0.0779410 0.996958i \(-0.524835\pi\)
0.545075 + 0.838387i \(0.316501\pi\)
\(278\) −19.5666 13.0740i −1.17353 0.784125i
\(279\) 0 0
\(280\) −0.489177 0.202624i −0.0292339 0.0121091i
\(281\) −1.08881 8.27035i −0.0649531 0.493368i −0.992742 0.120262i \(-0.961626\pi\)
0.927789 0.373105i \(-0.121707\pi\)
\(282\) 0 0
\(283\) −20.0534 + 9.88927i −1.19205 + 0.587856i −0.926520 0.376246i \(-0.877215\pi\)
−0.265534 + 0.964102i \(0.585548\pi\)
\(284\) −7.62839 6.68992i −0.452662 0.396974i
\(285\) 0 0
\(286\) 2.21939 + 1.09448i 0.131235 + 0.0647181i
\(287\) 0.0699045 + 0.168764i 0.00412633 + 0.00996185i
\(288\) 0 0
\(289\) −9.04025 14.3970i −0.531779 0.846883i
\(290\) −0.621605 + 0.358884i −0.0365019 + 0.0210744i
\(291\) 0 0
\(292\) −10.8506 + 0.711188i −0.634985 + 0.0416191i
\(293\) −3.37684 + 0.904821i −0.197277 + 0.0528602i −0.356105 0.934446i \(-0.615895\pi\)
0.158827 + 0.987306i \(0.449229\pi\)
\(294\) 0 0
\(295\) −3.56340 0.233558i −0.207469 0.0135983i
\(296\) −9.45835 + 1.88138i −0.549755 + 0.109353i
\(297\) 0 0
\(298\) −1.37414 + 3.31748i −0.0796020 + 0.192176i
\(299\) 19.2917 16.9184i 1.11567 0.978416i
\(300\) 0 0
\(301\) −3.27097 + 3.72983i −0.188536 + 0.214984i
\(302\) 11.0154 + 41.1099i 0.633863 + 2.36561i
\(303\) 0 0
\(304\) −7.10089 5.44870i −0.407264 0.312504i
\(305\) 4.46362 0.255586
\(306\) 0 0
\(307\) 1.87250 0.106869 0.0534347 0.998571i \(-0.482983\pi\)
0.0534347 + 0.998571i \(0.482983\pi\)
\(308\) 0.141790 + 0.108799i 0.00807922 + 0.00619940i
\(309\) 0 0
\(310\) 0.579973 + 2.16449i 0.0329403 + 0.122935i
\(311\) −17.1493 + 19.5550i −0.972448 + 1.10886i 0.0215832 + 0.999767i \(0.493129\pi\)
−0.994031 + 0.109097i \(0.965204\pi\)
\(312\) 0 0
\(313\) −8.46470 + 7.42334i −0.478453 + 0.419592i −0.864305 0.502969i \(-0.832241\pi\)
0.385851 + 0.922561i \(0.373908\pi\)
\(314\) −8.41110 + 20.3062i −0.474666 + 1.14594i
\(315\) 0 0
\(316\) 5.82266 1.15820i 0.327550 0.0651538i
\(317\) 8.00334 + 0.524567i 0.449512 + 0.0294626i 0.288479 0.957486i \(-0.406851\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(318\) 0 0
\(319\) −0.181036 + 0.0485084i −0.0101361 + 0.00271595i
\(320\) −0.0862120 + 0.00565064i −0.00481940 + 0.000315880i
\(321\) 0 0
\(322\) 4.45137 2.57000i 0.248065 0.143221i
\(323\) 7.35820 + 0.830182i 0.409421 + 0.0461925i
\(324\) 0 0
\(325\) −10.3330 24.9460i −0.573171 1.38376i
\(326\) 15.9454 + 7.86339i 0.883132 + 0.435513i
\(327\) 0 0
\(328\) −0.326957 0.286734i −0.0180532 0.0158322i
\(329\) 4.60705 2.27194i 0.253995 0.125256i
\(330\) 0 0
\(331\) 1.00765 + 7.65388i 0.0553856 + 0.420695i 0.996567 + 0.0827930i \(0.0263840\pi\)
−0.941181 + 0.337902i \(0.890283\pi\)
\(332\) 1.04862 + 0.434354i 0.0575507 + 0.0238383i
\(333\) 0 0
\(334\) −19.2265 12.8467i −1.05202 0.702940i
\(335\) −1.51035 + 0.512695i −0.0825193 + 0.0280115i
\(336\) 0 0
\(337\) −1.78687 27.2624i −0.0973370 1.48508i −0.715272 0.698846i \(-0.753697\pi\)
0.617935 0.786229i \(-0.287970\pi\)
\(338\) −34.5986 4.55500i −1.88192 0.247759i
\(339\) 0 0
\(340\) 2.02168 1.40578i 0.109641 0.0762391i
\(341\) 0.585126i 0.0316863i
\(342\) 0 0
\(343\) 4.88919 + 7.31720i 0.263992 + 0.395091i
\(344\) 3.05675 11.4079i 0.164809 0.615075i
\(345\) 0 0
\(346\) −11.1671 22.6446i −0.600345 1.21738i
\(347\) 2.97495 8.76392i 0.159704 0.470472i −0.837394 0.546599i \(-0.815922\pi\)
0.997098 + 0.0761272i \(0.0242555\pi\)
\(348\) 0 0
\(349\) 3.03163 0.399122i 0.162280 0.0213645i −0.0489486 0.998801i \(-0.515587\pi\)
0.211228 + 0.977437i \(0.432254\pi\)
\(350\) −1.05521 5.30490i −0.0564034 0.283559i
\(351\) 0 0
\(352\) −1.37405 0.273315i −0.0732369 0.0145677i
\(353\) −9.66444 2.58958i −0.514386 0.137829i −0.00771755 0.999970i \(-0.502457\pi\)
−0.506669 + 0.862141i \(0.669123\pi\)
\(354\) 0 0
\(355\) 0.621993 4.72451i 0.0330120 0.250751i
\(356\) 8.41692 14.5785i 0.446096 0.772661i
\(357\) 0 0
\(358\) −13.0008 22.5181i −0.687115 1.19012i
\(359\) −14.8144 + 6.13631i −0.781873 + 0.323862i −0.737671 0.675160i \(-0.764074\pi\)
−0.0442016 + 0.999023i \(0.514074\pi\)
\(360\) 0 0
\(361\) 11.1543 11.1543i 0.587069 0.587069i
\(362\) −7.02953 20.7083i −0.369464 1.08841i
\(363\) 0 0
\(364\) −3.95896 1.34389i −0.207506 0.0704388i
\(365\) −3.10895 4.05166i −0.162730 0.212073i
\(366\) 0 0
\(367\) 12.8186 + 14.6169i 0.669128 + 0.762994i 0.982424 0.186661i \(-0.0597667\pi\)
−0.313297 + 0.949655i \(0.601433\pi\)
\(368\) −12.4179 + 18.5847i −0.647328 + 0.968794i
\(369\) 0 0
\(370\) 4.13996 + 4.13996i 0.215226 + 0.215226i
\(371\) 2.00795 4.07173i 0.104248 0.211394i
\(372\) 0 0
\(373\) −4.29974 2.48246i −0.222632 0.128537i 0.384536 0.923110i \(-0.374361\pi\)
−0.607169 + 0.794573i \(0.707695\pi\)
\(374\) 1.67779 0.604468i 0.0867565 0.0312563i
\(375\) 0 0
\(376\) −7.44455 + 9.70193i −0.383924 + 0.500339i
\(377\) 3.64546 2.43582i 0.187751 0.125451i
\(378\) 0 0
\(379\) 1.68309 8.46144i 0.0864543 0.434635i −0.913179 0.407559i \(-0.866380\pi\)
0.999633 0.0270765i \(-0.00861977\pi\)
\(380\) −0.0701498 + 1.07028i −0.00359861 + 0.0549042i
\(381\) 0 0
\(382\) 24.7932 19.0245i 1.26853 0.973379i
\(383\) −21.2761 + 16.3257i −1.08716 + 0.834204i −0.986992 0.160767i \(-0.948603\pi\)
−0.100164 + 0.994971i \(0.531937\pi\)
\(384\) 0 0
\(385\) −0.00548980 + 0.0837582i −0.000279786 + 0.00426871i
\(386\) 2.38171 11.9736i 0.121226 0.609443i
\(387\) 0 0
\(388\) −3.86974 + 2.58568i −0.196456 + 0.131268i
\(389\) 13.9649 18.1995i 0.708051 0.922749i −0.291376 0.956609i \(-0.594113\pi\)
0.999427 + 0.0338592i \(0.0107798\pi\)
\(390\) 0 0
\(391\) 0.866935 18.4716i 0.0438428 0.934147i
\(392\) −8.79137 5.07570i −0.444031 0.256362i
\(393\) 0 0
\(394\) −10.3364 + 20.9601i −0.520740 + 1.05596i
\(395\) 1.97157 + 1.97157i 0.0992005 + 0.0992005i
\(396\) 0 0
\(397\) −9.09048 + 13.6049i −0.456238 + 0.682809i −0.986265 0.165172i \(-0.947182\pi\)
0.530026 + 0.847981i \(0.322182\pi\)
\(398\) −16.4330 18.7382i −0.823712 0.939263i
\(399\) 0 0
\(400\) 14.3185 + 18.6602i 0.715923 + 0.933009i
\(401\) 23.4876 + 7.97296i 1.17291 + 0.398150i 0.838830 0.544393i \(-0.183240\pi\)
0.334083 + 0.942544i \(0.391573\pi\)
\(402\) 0 0
\(403\) −4.39981 12.9614i −0.219170 0.645654i
\(404\) 4.61740 4.61740i 0.229724 0.229724i
\(405\) 0 0
\(406\) 0.811407 0.336096i 0.0402694 0.0166802i
\(407\) 0.764397 + 1.32397i 0.0378897 + 0.0656270i
\(408\) 0 0
\(409\) −11.5900 + 20.0744i −0.573088 + 0.992618i 0.423158 + 0.906056i \(0.360921\pi\)
−0.996246 + 0.0865619i \(0.972412\pi\)
\(410\) −0.0344614 + 0.261760i −0.00170193 + 0.0129274i
\(411\) 0 0
\(412\) −3.43355 0.920016i −0.169159 0.0453260i
\(413\) 4.28558 + 0.852454i 0.210880 + 0.0419465i
\(414\) 0 0
\(415\) 0.103997 + 0.522827i 0.00510500 + 0.0256646i
\(416\) 32.4923 4.27770i 1.59307 0.209731i
\(417\) 0 0
\(418\) −0.249693 + 0.735572i −0.0122129 + 0.0359780i
\(419\) 1.10663 + 2.24403i 0.0540626 + 0.109628i 0.922227 0.386648i \(-0.126367\pi\)
−0.868165 + 0.496276i \(0.834700\pi\)
\(420\) 0 0
\(421\) 1.78389 6.65758i 0.0869417 0.324471i −0.908733 0.417378i \(-0.862949\pi\)
0.995675 + 0.0929069i \(0.0296159\pi\)
\(422\) −27.9674 41.8562i −1.36143 2.03753i
\(423\) 0 0
\(424\) 10.8081i 0.524886i
\(425\) −18.1129 7.11189i −0.878602 0.344977i
\(426\) 0 0
\(427\) −5.41497 0.712894i −0.262049 0.0344993i
\(428\) −1.39409 21.2697i −0.0673859 1.02811i
\(429\) 0 0
\(430\) −6.78972 + 2.30480i −0.327429 + 0.111147i
\(431\) 27.2261 + 18.1919i 1.31144 + 0.876273i 0.997324 0.0731128i \(-0.0232933\pi\)
0.314112 + 0.949386i \(0.398293\pi\)
\(432\) 0 0
\(433\) −15.1633 6.28082i −0.728699 0.301837i −0.0126820 0.999920i \(-0.504037\pi\)
−0.716017 + 0.698082i \(0.754037\pi\)
\(434\) −0.357890 2.71844i −0.0171793 0.130489i
\(435\) 0 0
\(436\) 16.0563 7.91810i 0.768958 0.379208i
\(437\) 6.05586 + 5.31085i 0.289691 + 0.254052i
\(438\) 0 0
\(439\) −2.52344 1.24442i −0.120437 0.0593931i 0.381072 0.924545i \(-0.375555\pi\)
−0.501509 + 0.865152i \(0.667222\pi\)
\(440\) −0.0764711 0.184618i −0.00364562 0.00880130i
\(441\) 0 0
\(442\) −32.6203 + 26.0059i −1.55159 + 1.23697i
\(443\) −8.64073 + 4.98873i −0.410533 + 0.237021i −0.691019 0.722837i \(-0.742838\pi\)
0.280486 + 0.959858i \(0.409505\pi\)
\(444\) 0 0
\(445\) 7.88919 0.517085i 0.373984 0.0245122i
\(446\) −14.9920 + 4.01708i −0.709890 + 0.190214i
\(447\) 0 0
\(448\) 0.105489 + 0.00691412i 0.00498389 + 0.000326661i
\(449\) 15.7406 3.13100i 0.742846 0.147761i 0.190863 0.981617i \(-0.438871\pi\)
0.551983 + 0.833855i \(0.313871\pi\)
\(450\) 0 0
\(451\) −0.0263823 + 0.0636925i −0.00124229 + 0.00299916i
\(452\) 15.2772 13.3978i 0.718580 0.630178i
\(453\) 0 0
\(454\) 7.08293 8.07654i 0.332419 0.379051i
\(455\) −0.508206 1.89665i −0.0238250 0.0889163i
\(456\) 0 0
\(457\) −21.8169 16.7407i −1.02055 0.783096i −0.0441412 0.999025i \(-0.514055\pi\)
−0.976409 + 0.215930i \(0.930722\pi\)
\(458\) 10.2846 0.480569
\(459\) 0 0
\(460\) 2.67850 0.124886
\(461\) −7.81145 5.99393i −0.363815 0.279165i 0.410635 0.911800i \(-0.365307\pi\)
−0.774451 + 0.632634i \(0.781974\pi\)
\(462\) 0 0
\(463\) 2.92124 + 10.9022i 0.135762 + 0.506669i 0.999994 + 0.00357567i \(0.00113817\pi\)
−0.864232 + 0.503093i \(0.832195\pi\)
\(464\) −2.51815 + 2.87141i −0.116902 + 0.133302i
\(465\) 0 0
\(466\) 9.75722 8.55685i 0.451994 0.396388i
\(467\) 2.85969 6.90389i 0.132330 0.319474i −0.843800 0.536657i \(-0.819687\pi\)
0.976131 + 0.217183i \(0.0696869\pi\)
\(468\) 0 0
\(469\) 1.91414 0.380746i 0.0883868 0.0175812i
\(470\) 7.40851 + 0.485579i 0.341729 + 0.0223981i
\(471\) 0 0
\(472\) −10.0480 + 2.69235i −0.462496 + 0.123925i
\(473\) −1.86827 + 0.122453i −0.0859032 + 0.00563040i
\(474\) 0 0
\(475\) 7.34043 4.23800i 0.336802 0.194453i
\(476\) −2.67709 + 1.38251i −0.122704 + 0.0633673i
\(477\) 0 0
\(478\) 6.44526 + 15.5602i 0.294799 + 0.711709i
\(479\) 19.1553 + 9.44633i 0.875226 + 0.431614i 0.823679 0.567057i \(-0.191918\pi\)
0.0515474 + 0.998671i \(0.483585\pi\)
\(480\) 0 0
\(481\) −26.8880 23.5802i −1.22599 1.07516i
\(482\) 42.6260 21.0208i 1.94156 0.957471i
\(483\) 0 0
\(484\) −1.61027 12.2312i −0.0731942 0.555965i
\(485\) −2.01944 0.836479i −0.0916980 0.0379826i
\(486\) 0 0
\(487\) 12.8519 + 8.58738i 0.582376 + 0.389131i 0.811575 0.584248i \(-0.198611\pi\)
−0.229199 + 0.973380i \(0.573611\pi\)
\(488\) 12.3125 4.17952i 0.557359 0.189198i
\(489\) 0 0
\(490\) 0.403083 + 6.14986i 0.0182094 + 0.277822i
\(491\) 16.4877 + 2.17064i 0.744077 + 0.0979597i 0.493027 0.870014i \(-0.335891\pi\)
0.251051 + 0.967974i \(0.419224\pi\)
\(492\) 0 0
\(493\) 0.558830 3.10986i 0.0251684 0.140061i
\(494\) 18.1716i 0.817578i
\(495\) 0 0
\(496\) 6.62424 + 9.91388i 0.297437 + 0.445146i
\(497\) −1.50912 + 5.63211i −0.0676933 + 0.252635i
\(498\) 0 0
\(499\) 11.2063 + 22.7241i 0.501663 + 1.01727i 0.989526 + 0.144352i \(0.0461097\pi\)
−0.487863 + 0.872920i \(0.662224\pi\)
\(500\) 1.86586 5.49663i 0.0834436 0.245817i
\(501\) 0 0
\(502\) −29.1326 + 3.83538i −1.30025 + 0.171182i
\(503\) 2.13202 + 10.7184i 0.0950619 + 0.477908i 0.998762 + 0.0497426i \(0.0158401\pi\)
−0.903700 + 0.428166i \(0.859160\pi\)
\(504\) 0 0
\(505\) 3.00792 + 0.598313i 0.133851 + 0.0266246i
\(506\) 1.87376 + 0.502073i 0.0832989 + 0.0223199i
\(507\) 0 0
\(508\) −2.66397 + 20.2349i −0.118195 + 0.897777i
\(509\) −4.23473 + 7.33477i −0.187701 + 0.325108i −0.944483 0.328559i \(-0.893437\pi\)
0.756782 + 0.653667i \(0.226770\pi\)
\(510\) 0 0
\(511\) 3.12446 + 5.41173i 0.138218 + 0.239401i
\(512\) −12.1682 + 5.04021i −0.537761 + 0.222748i
\(513\) 0 0
\(514\) −9.17332 + 9.17332i −0.404618 + 0.404618i
\(515\) −0.536634 1.58087i −0.0236469 0.0696616i
\(516\) 0 0
\(517\) 1.83576 + 0.623158i 0.0807368 + 0.0274065i
\(518\) −4.36112 5.68352i −0.191617 0.249720i
\(519\) 0 0
\(520\) 3.08217 + 3.51454i 0.135162 + 0.154123i
\(521\) −11.6214 + 17.3927i −0.509143 + 0.761987i −0.993615 0.112820i \(-0.964012\pi\)
0.484472 + 0.874807i \(0.339012\pi\)
\(522\) 0 0
\(523\) 30.2405 + 30.2405i 1.32232 + 1.32232i 0.911890 + 0.410434i \(0.134623\pi\)
0.410434 + 0.911890i \(0.365377\pi\)
\(524\) −6.68491 + 13.5556i −0.292031 + 0.592181i
\(525\) 0 0
\(526\) −2.07329 1.19702i −0.0903998 0.0521924i
\(527\) −8.92650 4.19804i −0.388844 0.182870i
\(528\) 0 0
\(529\) −1.75646 + 2.28906i −0.0763677 + 0.0995243i
\(530\) 5.45588 3.64550i 0.236988 0.158350i
\(531\) 0 0
\(532\) 0.256037 1.28719i 0.0111006 0.0558066i
\(533\) 0.105477 1.60926i 0.00456870 0.0697049i
\(534\) 0 0
\(535\) 7.94217 6.09424i 0.343370 0.263477i
\(536\) −3.68609 + 2.82844i −0.159215 + 0.122170i
\(537\) 0 0
\(538\) 2.83300 43.2233i 0.122139 1.86349i
\(539\) −0.313956 + 1.57837i −0.0135231 + 0.0679850i
\(540\) 0 0
\(541\) −12.9382 + 8.64503i −0.556256 + 0.371679i −0.801695 0.597734i \(-0.796068\pi\)
0.245438 + 0.969412i \(0.421068\pi\)
\(542\) −27.1046 + 35.3234i −1.16424 + 1.51727i
\(543\) 0 0
\(544\) 14.0278 19.0011i 0.601438 0.814665i
\(545\) 7.28158 + 4.20402i 0.311909 + 0.180081i
\(546\) 0 0
\(547\) −2.79457 + 5.66682i −0.119487 + 0.242296i −0.948396 0.317087i \(-0.897295\pi\)
0.828909 + 0.559383i \(0.188962\pi\)
\(548\) −16.4993 16.4993i −0.704814 0.704814i
\(549\) 0 0
\(550\) 1.13410 1.69729i 0.0483580 0.0723729i
\(551\) 0.907452 + 1.03475i 0.0386588 + 0.0440819i
\(552\) 0 0
\(553\) −2.07689 2.70666i −0.0883184 0.115099i
\(554\) −13.7496 4.66737i −0.584165 0.198297i
\(555\) 0 0
\(556\) 4.82320 + 14.2087i 0.204549 + 0.602583i
\(557\) 26.0867 26.0867i 1.10533 1.10533i 0.111574 0.993756i \(-0.464411\pi\)
0.993756 0.111574i \(-0.0355892\pi\)
\(558\) 0 0
\(559\) 40.4642 16.7608i 1.71146 0.708908i
\(560\) 0.855217 + 1.48128i 0.0361395 + 0.0625955i
\(561\) 0 0
\(562\) −7.37624 + 12.7760i −0.311148 + 0.538924i
\(563\) −3.31115 + 25.1507i −0.139548 + 1.05998i 0.768126 + 0.640299i \(0.221190\pi\)
−0.907674 + 0.419676i \(0.862144\pi\)
\(564\) 0 0
\(565\) 9.21813 + 2.46999i 0.387810 + 0.103913i
\(566\) 38.7830 + 7.71442i 1.63017 + 0.324261i
\(567\) 0 0
\(568\) −2.70809 13.6145i −0.113629 0.571251i
\(569\) −0.251252 + 0.0330779i −0.0105330 + 0.00138670i −0.135791 0.990738i \(-0.543358\pi\)
0.125258 + 0.992124i \(0.460024\pi\)
\(570\) 0 0
\(571\) 0.822225 2.42220i 0.0344090 0.101366i −0.928368 0.371662i \(-0.878788\pi\)
0.962777 + 0.270296i \(0.0871215\pi\)
\(572\) −0.697873 1.41515i −0.0291795 0.0591702i
\(573\) 0 0
\(574\) 0.0836125 0.312046i 0.00348992 0.0130246i
\(575\) −11.7596 17.5995i −0.490410 0.733950i
\(576\) 0 0
\(577\) 5.40760i 0.225121i 0.993645 + 0.112561i \(0.0359053\pi\)
−0.993645 + 0.112561i \(0.964095\pi\)
\(578\) −2.81589 + 29.9327i −0.117126 + 1.24503i
\(579\) 0 0
\(580\) 0.453753 + 0.0597378i 0.0188411 + 0.00248048i
\(581\) −0.0426601 0.650868i −0.00176984 0.0270025i
\(582\) 0 0
\(583\) 1.62246 0.550750i 0.0671953 0.0228097i
\(584\) −12.3695 8.26503i −0.511853 0.342009i
\(585\) 0 0
\(586\) 5.71204 + 2.36601i 0.235962 + 0.0977388i
\(587\) 1.32165 + 10.0389i 0.0545503 + 0.414351i 0.996832 + 0.0795309i \(0.0253422\pi\)
−0.942282 + 0.334820i \(0.891324\pi\)
\(588\) 0 0
\(589\) 3.85363 1.90040i 0.158786 0.0783045i
\(590\) 4.74822 + 4.16408i 0.195481 + 0.171432i
\(591\) 0 0
\(592\) 27.9401 + 13.7785i 1.14833 + 0.566294i
\(593\) 14.8623 + 35.8809i 0.610323 + 1.47345i 0.862646 + 0.505807i \(0.168805\pi\)
−0.252323 + 0.967643i \(0.581195\pi\)
\(594\) 0 0
\(595\) −1.23840 0.684682i −0.0507695 0.0280692i
\(596\) 1.98285 1.14480i 0.0812209 0.0468929i
\(597\) 0 0
\(598\) −45.2819 + 2.96793i −1.85172 + 0.121368i
\(599\) 27.9063 7.47748i 1.14022 0.305521i 0.361181 0.932496i \(-0.382374\pi\)
0.779040 + 0.626974i \(0.215707\pi\)
\(600\) 0 0
\(601\) 32.3833 + 2.12252i 1.32094 + 0.0865792i 0.709498 0.704707i \(-0.248922\pi\)
0.611446 + 0.791286i \(0.290588\pi\)
\(602\) 8.60493 1.71163i 0.350711 0.0697607i
\(603\) 0 0
\(604\) 10.3851 25.0718i 0.422563 1.02016i
\(605\) 4.35619 3.82028i 0.177104 0.155316i
\(606\) 0 0
\(607\) −7.29010 + 8.31276i −0.295896 + 0.337405i −0.880616 0.473830i \(-0.842871\pi\)
0.584720 + 0.811235i \(0.301204\pi\)
\(608\) 2.66264 + 9.93712i 0.107984 + 0.403003i
\(609\) 0 0
\(610\) −6.26273 4.80556i −0.253571 0.194572i
\(611\) −45.3507 −1.83469
\(612\) 0 0
\(613\) −26.2555 −1.06045 −0.530224 0.847857i \(-0.677892\pi\)
−0.530224 + 0.847857i \(0.677892\pi\)
\(614\) −2.62724 2.01595i −0.106027 0.0813571i
\(615\) 0 0
\(616\) 0.0632840 + 0.236179i 0.00254978 + 0.00951592i
\(617\) 12.0867 13.7822i 0.486592 0.554852i −0.455487 0.890242i \(-0.650535\pi\)
0.942079 + 0.335391i \(0.108868\pi\)
\(618\) 0 0
\(619\) −18.8012 + 16.4882i −0.755683 + 0.662716i −0.947875 0.318641i \(-0.896774\pi\)
0.192193 + 0.981357i \(0.438440\pi\)
\(620\) 0.546788 1.32006i 0.0219595 0.0530150i
\(621\) 0 0
\(622\) 45.1146 8.97385i 1.80893 0.359818i
\(623\) −9.65322 0.632705i −0.386748 0.0253488i
\(624\) 0 0
\(625\) −20.1602 + 5.40190i −0.806407 + 0.216076i
\(626\) 19.8685 1.30225i 0.794105 0.0520484i
\(627\) 0 0
\(628\) 12.1370 7.00730i 0.484319 0.279622i
\(629\) −25.6824 + 2.16242i −1.02402 + 0.0862214i
\(630\) 0 0
\(631\) −13.6701 33.0026i −0.544198 1.31381i −0.921736 0.387817i \(-0.873229\pi\)
0.377538 0.925994i \(-0.376771\pi\)
\(632\) 7.28446 + 3.59230i 0.289760 + 0.142894i
\(633\) 0 0
\(634\) −10.6644 9.35244i −0.423538 0.371433i
\(635\) −8.59691 + 4.23953i −0.341158 + 0.168241i
\(636\) 0 0
\(637\) −4.91379 37.3239i −0.194691 1.47883i
\(638\) 0.306229 + 0.126844i 0.0121237 + 0.00502181i
\(639\) 0 0
\(640\) −4.91790 3.28604i −0.194397 0.129892i
\(641\) −16.3246 + 5.54145i −0.644782 + 0.218874i −0.624628 0.780923i \(-0.714749\pi\)
−0.0201547 + 0.999797i \(0.506416\pi\)
\(642\) 0 0
\(643\) 1.78121 + 27.1760i 0.0702440 + 1.07172i 0.876893 + 0.480686i \(0.159612\pi\)
−0.806649 + 0.591031i \(0.798721\pi\)
\(644\) −3.24937 0.427788i −0.128043 0.0168572i
\(645\) 0 0
\(646\) −9.43021 9.08667i −0.371027 0.357510i
\(647\) 25.4973i 1.00240i −0.865330 0.501202i \(-0.832891\pi\)
0.865330 0.501202i \(-0.167109\pi\)
\(648\) 0 0
\(649\) 0.916182 + 1.37116i 0.0359633 + 0.0538229i
\(650\) −12.3592 + 46.1253i −0.484770 + 1.80918i
\(651\) 0 0
\(652\) −5.01392 10.1672i −0.196360 0.398179i
\(653\) −1.88115 + 5.54168i −0.0736150 + 0.216863i −0.977509 0.210894i \(-0.932363\pi\)
0.903894 + 0.427757i \(0.140696\pi\)
\(654\) 0 0
\(655\) −7.03782 + 0.926546i −0.274990 + 0.0362032i
\(656\) 0.274067 + 1.37783i 0.0107005 + 0.0537951i
\(657\) 0 0
\(658\) −8.90995 1.77230i −0.347346 0.0690914i
\(659\) −7.51008 2.01232i −0.292551 0.0783889i 0.109558 0.993980i \(-0.465056\pi\)
−0.402110 + 0.915591i \(0.631723\pi\)
\(660\) 0 0
\(661\) −1.69114 + 12.8455i −0.0657776 + 0.499631i 0.926567 + 0.376130i \(0.122745\pi\)
−0.992344 + 0.123501i \(0.960588\pi\)
\(662\) 6.82642 11.8237i 0.265316 0.459541i
\(663\) 0 0
\(664\) 0.776414 + 1.34479i 0.0301307 + 0.0521879i
\(665\) 0.569460 0.235878i 0.0220827 0.00914695i
\(666\) 0 0
\(667\) 2.43029 2.43029i 0.0941014 0.0941014i
\(668\) 4.73936 + 13.9617i 0.183371 + 0.540194i
\(669\) 0 0
\(670\) 2.67108 + 0.906711i 0.103193 + 0.0350293i
\(671\) −1.25482 1.63531i −0.0484418 0.0631306i
\(672\) 0 0
\(673\) 31.7325 + 36.1839i 1.22320 + 1.39479i 0.892498 + 0.451052i \(0.148951\pi\)
0.330699 + 0.943736i \(0.392716\pi\)
\(674\) −26.8437 + 40.1745i −1.03398 + 1.54746i
\(675\) 0 0
\(676\) 15.7341 + 15.7341i 0.605159 + 0.605159i
\(677\) −3.86886 + 7.84527i −0.148692 + 0.301518i −0.958457 0.285236i \(-0.907928\pi\)
0.809765 + 0.586754i \(0.199595\pi\)
\(678\) 0 0
\(679\) 2.31625 + 1.33729i 0.0888896 + 0.0513204i
\(680\) 3.36512 + 0.157937i 0.129046 + 0.00605660i
\(681\) 0 0
\(682\) 0.629950 0.820967i 0.0241220 0.0314364i
\(683\) −14.5914 + 9.74966i −0.558324 + 0.373060i −0.802483 0.596675i \(-0.796488\pi\)
0.244159 + 0.969735i \(0.421488\pi\)
\(684\) 0 0
\(685\) 2.13794 10.7481i 0.0816865 0.410666i
\(686\) 1.01790 15.5302i 0.0388637 0.592946i
\(687\) 0 0
\(688\) −30.2681 + 23.2256i −1.15396 + 0.885466i
\(689\) −31.7985 + 24.3999i −1.21143 + 0.929561i
\(690\) 0 0
\(691\) 1.93866 29.5782i 0.0737500 1.12521i −0.787260 0.616621i \(-0.788501\pi\)
0.861010 0.508587i \(-0.169832\pi\)
\(692\) −3.14077 + 15.7897i −0.119394 + 0.600235i
\(693\) 0 0
\(694\) −13.6093 + 9.09346i −0.516603 + 0.345183i
\(695\) −4.29006 + 5.59091i −0.162731 + 0.212075i
\(696\) 0 0
\(697\) −0.782390 0.859448i −0.0296352 0.0325539i
\(698\) −4.68326 2.70388i −0.177264 0.102343i
\(699\) 0 0
\(700\) −1.52538 + 3.09316i −0.0576538 + 0.116910i
\(701\) −20.0615 20.0615i −0.757711 0.757711i 0.218195 0.975905i \(-0.429983\pi\)
−0.975905 + 0.218195i \(0.929983\pi\)
\(702\) 0 0
\(703\) 6.23702 9.33436i 0.235234 0.352052i
\(704\) 0.0263063 + 0.0299965i 0.000991454 + 0.00113054i
\(705\) 0 0
\(706\) 10.7718 + 14.0381i 0.405403 + 0.528332i
\(707\) −3.55345 1.20623i −0.133641 0.0453651i
\(708\) 0 0
\(709\) −7.23970 21.3275i −0.271892 0.800969i −0.994019 0.109208i \(-0.965168\pi\)
0.722126 0.691761i \(-0.243165\pi\)
\(710\) −5.95912 + 5.95912i −0.223642 + 0.223642i
\(711\) 0 0
\(712\) 21.2774 8.81338i 0.797404 0.330295i
\(713\) −5.36503 9.29250i −0.200922 0.348007i
\(714\) 0 0
\(715\) 0.370528 0.641773i 0.0138569 0.0240009i
\(716\) −2.16404 + 16.4375i −0.0808741 + 0.614300i
\(717\) 0 0
\(718\) 27.3918 + 7.33962i 1.02225 + 0.273912i
\(719\) 45.9582 + 9.14165i 1.71395 + 0.340926i 0.951857 0.306541i \(-0.0991716\pi\)
0.762094 + 0.647467i \(0.224172\pi\)
\(720\) 0 0
\(721\) 0.398524 + 2.00352i 0.0148418 + 0.0746148i
\(722\) −27.6590 + 3.64137i −1.02936 + 0.135518i
\(723\) 0 0
\(724\) −4.48223 + 13.2042i −0.166581 + 0.490731i
\(725\) −1.59963 3.24373i −0.0594088 0.120469i
\(726\) 0 0
\(727\) −3.93738 + 14.6945i −0.146029 + 0.544989i 0.853678 + 0.520801i \(0.174367\pi\)
−0.999707 + 0.0241878i \(0.992300\pi\)
\(728\) −3.17776 4.75586i −0.117776 0.176264i
\(729\) 0 0
\(730\) 9.03183i 0.334283i
\(731\) 11.5360 29.3803i 0.426674 1.08667i
\(732\) 0 0
\(733\) 0.187203 + 0.0246457i 0.00691449 + 0.000910310i 0.133983 0.990984i \(-0.457223\pi\)
−0.127068 + 0.991894i \(0.540557\pi\)
\(734\) −2.24873 34.3090i −0.0830021 1.26637i
\(735\) 0 0
\(736\) 24.3275 8.25808i 0.896724 0.304397i
\(737\) 0.612426 + 0.409210i 0.0225590 + 0.0150734i
\(738\) 0 0
\(739\) −29.8113 12.3483i −1.09663 0.454238i −0.240315 0.970695i \(-0.577251\pi\)
−0.856313 + 0.516457i \(0.827251\pi\)
\(740\) −0.487278 3.70124i −0.0179127 0.136060i
\(741\) 0 0
\(742\) −7.20093 + 3.55111i −0.264354 + 0.130365i
\(743\) −27.4652 24.0864i −1.00760 0.883643i −0.0143821 0.999897i \(-0.504578\pi\)
−0.993220 + 0.116254i \(0.962911\pi\)
\(744\) 0 0
\(745\) 0.964431 + 0.475605i 0.0353340 + 0.0174248i
\(746\) 3.36017 + 8.11217i 0.123025 + 0.297007i
\(747\) 0 0
\(748\) −1.08337 0.345478i −0.0396118 0.0126319i
\(749\) −10.6082 + 6.12466i −0.387616 + 0.223790i
\(750\) 0 0
\(751\) 37.3677 2.44921i 1.36357 0.0893730i 0.634028 0.773310i \(-0.281401\pi\)
0.729541 + 0.683937i \(0.239734\pi\)
\(752\) 38.1585 10.2245i 1.39150 0.372850i
\(753\) 0 0
\(754\) −7.73722 0.507124i −0.281773 0.0184684i
\(755\) 12.5004 2.48648i 0.454936 0.0904924i
\(756\) 0 0
\(757\) −14.6941 + 35.4746i −0.534065 + 1.28935i 0.394746 + 0.918790i \(0.370833\pi\)
−0.928810 + 0.370556i \(0.879167\pi\)
\(758\) −11.4711 + 10.0599i −0.416649 + 0.365392i
\(759\) 0 0
\(760\) −0.967522 + 1.10325i −0.0350957 + 0.0400190i
\(761\) 4.74914 + 17.7240i 0.172156 + 0.642496i 0.997019 + 0.0771621i \(0.0245859\pi\)
−0.824862 + 0.565334i \(0.808747\pi\)
\(762\) 0 0
\(763\) −8.16209 6.26299i −0.295487 0.226735i
\(764\) −19.9266 −0.720920
\(765\) 0 0
\(766\) 47.4279 1.71364
\(767\) −30.6052 23.4842i −1.10509 0.847964i
\(768\) 0 0
\(769\) −5.31142 19.8225i −0.191535 0.714817i −0.993137 0.116959i \(-0.962685\pi\)
0.801602 0.597858i \(-0.203981\pi\)
\(770\) 0.0978771 0.111607i 0.00352724 0.00402205i
\(771\) 0 0
\(772\) −5.85255 + 5.13255i −0.210638 + 0.184725i
\(773\) 12.5389 30.2715i 0.450992 1.08879i −0.520954 0.853585i \(-0.674424\pi\)
0.971946 0.235206i \(-0.0755764\pi\)
\(774\) 0 0
\(775\) −11.0743 + 2.20281i −0.397800 + 0.0791274i
\(776\) −6.35366 0.416441i −0.228083 0.0149494i
\(777\) 0 0
\(778\) −39.1873 + 10.5002i −1.40493 + 0.376451i
\(779\) 0.505163 0.0331101i 0.0180993 0.00118629i
\(780\) 0 0
\(781\) −1.90575 + 1.10028i −0.0681930 + 0.0393713i
\(782\) −21.1029 + 24.9834i −0.754640 + 0.893403i
\(783\) 0 0
\(784\) 12.5494 + 30.2968i 0.448191 + 1.08203i
\(785\) 5.90325 + 2.91116i 0.210696 + 0.103904i
\(786\) 0 0
\(787\) −7.67569 6.73140i −0.273609 0.239948i 0.511534 0.859263i \(-0.329077\pi\)
−0.785143 + 0.619314i \(0.787411\pi\)
\(788\) 13.3648 6.59078i 0.476101 0.234787i
\(789\) 0 0
\(790\) −0.643627 4.88884i −0.0228992 0.173937i
\(791\) −10.7883 4.46867i −0.383589 0.158888i
\(792\) 0 0
\(793\) 40.0928 + 26.7891i 1.42374 + 0.951310i
\(794\) 27.4016 9.30158i 0.972445 0.330101i
\(795\) 0 0
\(796\) 1.03937 + 15.8577i 0.0368394 + 0.562061i
\(797\) 47.2869 + 6.22544i 1.67499 + 0.220516i 0.907352 0.420371i \(-0.138100\pi\)
0.767635 + 0.640887i \(0.221433\pi\)
\(798\) 0 0
\(799\) −22.6776 + 23.5349i −0.802275 + 0.832607i
\(800\) 27.0346i 0.955818i
\(801\) 0 0
\(802\) −24.3707 36.4734i −0.860561 1.28792i
\(803\) −0.610392 + 2.27802i −0.0215403 + 0.0803894i
\(804\) 0 0
\(805\) −0.680795 1.38052i −0.0239949 0.0486568i
\(806\) −7.78114 + 22.9225i −0.274079 + 0.807410i
\(807\) 0 0
\(808\) 8.85729 1.16608i 0.311598 0.0410227i
\(809\) 6.61554 + 33.2586i 0.232590 + 1.16931i 0.903771 + 0.428016i \(0.140787\pi\)
−0.671181 + 0.741294i \(0.734213\pi\)
\(810\) 0 0
\(811\) 9.51440 + 1.89253i 0.334096 + 0.0664558i 0.359288 0.933227i \(-0.383020\pi\)
−0.0251920 + 0.999683i \(0.508020\pi\)
\(812\) −0.540922 0.144940i −0.0189826 0.00508638i
\(813\) 0 0
\(814\) 0.352904 2.68057i 0.0123693 0.0939539i
\(815\) 2.66208 4.61086i 0.0932487 0.161511i
\(816\) 0 0
\(817\) 6.87433 + 11.9067i 0.240502 + 0.416562i
\(818\) 37.8737 15.6878i 1.32422 0.548511i
\(819\) 0 0
\(820\) 0.119039 0.119039i 0.00415701 0.00415701i
\(821\) 3.15917 + 9.30661i 0.110256 + 0.324803i 0.988028 0.154276i \(-0.0493043\pi\)
−0.877772 + 0.479078i \(0.840971\pi\)
\(822\) 0 0
\(823\) 34.4564 + 11.6964i 1.20108 + 0.407710i 0.849066 0.528286i \(-0.177165\pi\)
0.352009 + 0.935997i \(0.385499\pi\)
\(824\) −2.96051 3.85821i −0.103134 0.134407i
\(825\) 0 0
\(826\) −5.09517 5.80992i −0.177283 0.202153i
\(827\) 19.7223 29.5165i 0.685810 1.02639i −0.311292 0.950314i \(-0.600762\pi\)
0.997102 0.0760735i \(-0.0242384\pi\)
\(828\) 0 0
\(829\) 20.4905 + 20.4905i 0.711666 + 0.711666i 0.966884 0.255218i \(-0.0821471\pi\)
−0.255218 + 0.966884i \(0.582147\pi\)
\(830\) 0.416965 0.845521i 0.0144731 0.0293485i
\(831\) 0 0
\(832\) −0.808279 0.466660i −0.0280220 0.0161785i
\(833\) −21.8265 16.1138i −0.756245 0.558308i
\(834\) 0 0
\(835\) −4.21548 + 5.49373i −0.145883 + 0.190118i
\(836\) 0.411833 0.275178i 0.0142435 0.00951723i
\(837\) 0 0
\(838\) 0.863263 4.33992i 0.0298209 0.149920i
\(839\) −2.82718 + 43.1344i −0.0976049 + 1.48916i 0.615517 + 0.788123i \(0.288947\pi\)
−0.713122 + 0.701040i \(0.752719\pi\)
\(840\) 0 0
\(841\) −22.5413 + 17.2966i −0.777288 + 0.596434i
\(842\) −9.67050 + 7.42044i −0.333268 + 0.255725i
\(843\) 0 0
\(844\) −2.09932 + 32.0295i −0.0722617 + 1.10250i
\(845\) −2.03880 + 10.2497i −0.0701367 + 0.352601i
\(846\) 0 0
\(847\) −5.89478 + 3.93877i −0.202547 + 0.135338i
\(848\) 21.2545 27.6994i 0.729882 0.951201i
\(849\) 0 0
\(850\) 17.7567 + 29.4788i 0.609050 + 1.01111i
\(851\) −24.2791 14.0175i −0.832276 0.480515i
\(852\) 0 0
\(853\) 20.0459 40.6490i 0.686358 1.39180i −0.222600 0.974910i \(-0.571455\pi\)
0.908958 0.416887i \(-0.136879\pi\)
\(854\) 6.83002 + 6.83002i 0.233718 + 0.233718i
\(855\) 0 0
\(856\) 16.2013 24.2470i 0.553751 0.828746i
\(857\) 0.680782 + 0.776283i 0.0232551 + 0.0265173i 0.763350 0.645985i \(-0.223553\pi\)
−0.740095 + 0.672502i \(0.765220\pi\)
\(858\) 0 0
\(859\) −2.96156 3.85958i −0.101047 0.131687i 0.740093 0.672505i \(-0.234782\pi\)
−0.841140 + 0.540818i \(0.818115\pi\)
\(860\) 4.32931 + 1.46960i 0.147628 + 0.0501131i
\(861\) 0 0
\(862\) −18.6144 54.8361i −0.634007 1.86773i
\(863\) −4.14890 + 4.14890i −0.141230 + 0.141230i −0.774187 0.632957i \(-0.781841\pi\)
0.632957 + 0.774187i \(0.281841\pi\)
\(864\) 0 0
\(865\) −6.98547 + 2.89348i −0.237513 + 0.0983812i
\(866\) 14.5130 + 25.1372i 0.493171 + 0.854198i
\(867\) 0 0
\(868\) −0.874156 + 1.51408i −0.0296708 + 0.0513913i
\(869\) 0.168063 1.27656i 0.00570114 0.0433045i
\(870\) 0 0
\(871\) −16.6432 4.45952i −0.563932 0.151105i
\(872\) 24.0220 + 4.77826i 0.813486 + 0.161812i
\(873\) 0 0
\(874\) −2.77905 13.9712i −0.0940026 0.472583i
\(875\) −3.30725 + 0.435408i −0.111805 + 0.0147195i
\(876\) 0 0
\(877\) 18.1442 53.4512i 0.612687 1.80492i 0.0195610 0.999809i \(-0.493773\pi\)
0.593126 0.805110i \(-0.297894\pi\)
\(878\) 2.20079 + 4.46275i 0.0742729 + 0.150611i
\(879\) 0 0
\(880\) −0.167074 + 0.623530i −0.00563207 + 0.0210192i
\(881\) −3.00833 4.50228i −0.101353 0.151686i 0.777327 0.629097i \(-0.216575\pi\)
−0.878680 + 0.477411i \(0.841575\pi\)
\(882\) 0 0
\(883\) 23.2342i 0.781895i 0.920413 + 0.390947i \(0.127853\pi\)
−0.920413 + 0.390947i \(0.872147\pi\)
\(884\) 26.5960 0.493432i 0.894520 0.0165959i
\(885\) 0 0
\(886\) 17.4943 + 2.30317i 0.587734 + 0.0773767i
\(887\) 1.71620 + 26.1841i 0.0576243 + 0.879177i 0.924627 + 0.380873i \(0.124377\pi\)
−0.867003 + 0.498303i \(0.833957\pi\)
\(888\) 0 0
\(889\) 11.1063 3.77008i 0.372493 0.126444i
\(890\) −11.6257 7.76805i −0.389695 0.260386i
\(891\) 0 0
\(892\) 9.14318 + 3.78723i 0.306136 + 0.126806i
\(893\) −1.85817 14.1142i −0.0621814 0.472315i
\(894\) 0 0
\(895\) −6.98360 + 3.44393i −0.233436 + 0.115118i
\(896\) 5.44125 + 4.77185i 0.181779 + 0.159416i
\(897\) 0 0
\(898\) −25.4559 12.5535i −0.849474 0.418914i
\(899\) −0.701620 1.69386i −0.0234003 0.0564934i
\(900\) 0 0
\(901\) −3.23840 + 28.7031i −0.107887 + 0.956240i
\(902\) 0.105588 0.0609610i 0.00351568 0.00202978i
\(903\) 0 0
\(904\) 27.7401 1.81818i 0.922621 0.0604718i
\(905\) −6.32584 + 1.69500i −0.210278 + 0.0563438i
\(906\) 0 0
\(907\) −9.64874 0.632412i −0.320381 0.0209989i −0.0956357 0.995416i \(-0.530488\pi\)
−0.224745 + 0.974418i \(0.572155\pi\)
\(908\) −6.71802 + 1.33630i −0.222945 + 0.0443466i
\(909\) 0 0
\(910\) −1.32890 + 3.20825i −0.0440526 + 0.106352i
\(911\) 18.6461 16.3522i 0.617774 0.541773i −0.292243 0.956344i \(-0.594402\pi\)
0.910017 + 0.414571i \(0.136068\pi\)
\(912\) 0 0
\(913\) 0.162310 0.185079i 0.00537166 0.00612521i
\(914\) 12.5873 + 46.9763i 0.416350 + 1.55384i
\(915\) 0 0
\(916\) −5.20262 3.99211i −0.171899 0.131903i
\(917\) 8.68578 0.286830
\(918\) 0 0
\(919\) −54.6299 −1.80207 −0.901037 0.433743i \(-0.857193\pi\)
−0.901037 + 0.433743i \(0.857193\pi\)
\(920\) 2.90722 + 2.23079i 0.0958481 + 0.0735468i
\(921\) 0 0
\(922\) 4.50682 + 16.8197i 0.148424 + 0.553927i
\(923\) 33.9417 38.7030i 1.11720 1.27393i
\(924\) 0 0
\(925\) −22.1803 + 19.4516i −0.729283 + 0.639564i
\(926\) 7.63872 18.4415i 0.251024 0.606025i
\(927\) 0 0
\(928\) 4.30540 0.856398i 0.141332 0.0281126i
\(929\) 12.6499 + 0.829120i 0.415030 + 0.0272025i 0.271488 0.962442i \(-0.412484\pi\)
0.143542 + 0.989644i \(0.454151\pi\)
\(930\) 0 0
\(931\) 11.4148 3.05858i 0.374104 0.100241i
\(932\) −8.25729 + 0.541211i −0.270476 + 0.0177280i
\(933\) 0 0
\(934\) −11.4451 + 6.60782i −0.374494 + 0.216214i
\(935\) −0.147769 0.513204i −0.00483255 0.0167836i
\(936\) 0 0
\(937\) 7.40961 + 17.8884i 0.242061 + 0.584388i 0.997487 0.0708461i \(-0.0225699\pi\)
−0.755426 + 0.655234i \(0.772570\pi\)
\(938\) −3.09557 1.52656i −0.101074 0.0498441i
\(939\) 0 0
\(940\) −3.55922 3.12135i −0.116089 0.101807i
\(941\) −41.8877 + 20.6567i −1.36550 + 0.673390i −0.969553 0.244883i \(-0.921251\pi\)
−0.395948 + 0.918273i \(0.629584\pi\)
\(942\) 0 0
\(943\) −0.165015 1.25341i −0.00537362 0.0408167i
\(944\) 31.0460 + 12.8597i 1.01046 + 0.418547i
\(945\) 0 0
\(946\) 2.75313 + 1.83958i 0.0895120 + 0.0598100i
\(947\) 29.4772 10.0062i 0.957881 0.325157i 0.201647 0.979458i \(-0.435371\pi\)
0.756234 + 0.654301i \(0.227037\pi\)
\(948\) 0 0
\(949\) −3.60825 55.0512i −0.117129 1.78704i
\(950\) −14.8617 1.95658i −0.482178 0.0634799i
\(951\) 0 0
\(952\) −4.05711 0.729048i −0.131492 0.0236286i
\(953\) 3.63734i 0.117825i −0.998263 0.0589124i \(-0.981237\pi\)
0.998263 0.0589124i \(-0.0187633\pi\)
\(954\) 0 0
\(955\) −5.19940 7.78145i −0.168248 0.251802i
\(956\) 2.77949 10.3732i 0.0898950 0.335493i
\(957\) 0 0
\(958\) −16.7060 33.8764i −0.539746 1.09450i
\(959\) −4.31021 + 12.6975i −0.139184 + 0.410023i
\(960\) 0 0
\(961\) 25.0599 3.29920i 0.808383 0.106426i
\(962\) 12.3390 + 62.0322i 0.397825 + 2.00000i
\(963\) 0 0
\(964\) −29.7225 5.91217i −0.957296 0.190418i
\(965\) −3.53138 0.946229i −0.113679 0.0304602i
\(966\) 0 0
\(967\) −0.590458 + 4.48498i −0.0189879 + 0.144227i −0.998313 0.0580669i \(-0.981506\pi\)
0.979325 + 0.202294i \(0.0648397\pi\)
\(968\) 8.43901 14.6168i 0.271240 0.469801i
\(969\) 0 0
\(970\) 1.93284 + 3.34777i 0.0620596 + 0.107490i
\(971\) −8.08819 + 3.35024i −0.259562 + 0.107514i −0.508670 0.860962i \(-0.669863\pi\)
0.249108 + 0.968476i \(0.419863\pi\)
\(972\) 0 0
\(973\) 6.09734 6.09734i 0.195472 0.195472i
\(974\) −8.78679 25.8851i −0.281547 0.829411i
\(975\) 0 0
\(976\) −39.7741 13.5015i −1.27314 0.432172i
\(977\) −12.2359 15.9462i −0.391462 0.510164i 0.555496 0.831519i \(-0.312528\pi\)
−0.946959 + 0.321355i \(0.895862\pi\)
\(978\) 0 0
\(979\) −2.40726 2.74496i −0.0769365 0.0877292i
\(980\) 2.18325 3.26746i 0.0697413 0.104375i
\(981\) 0 0
\(982\) −20.7962 20.7962i −0.663635 0.663635i
\(983\) 8.53183 17.3008i 0.272123 0.551811i −0.717318 0.696746i \(-0.754631\pi\)
0.989441 + 0.144935i \(0.0462973\pi\)
\(984\) 0 0
\(985\) 6.06096 + 3.49930i 0.193118 + 0.111497i
\(986\) −4.13216 + 3.76168i −0.131595 + 0.119796i
\(987\) 0 0
\(988\) −7.05354 + 9.19235i −0.224403 + 0.292448i
\(989\) 28.5476 19.0749i 0.907762 0.606547i
\(990\) 0 0
\(991\) 7.79334 39.1798i 0.247564 1.24459i −0.634302 0.773085i \(-0.718712\pi\)
0.881866 0.471501i \(-0.156288\pi\)
\(992\) 0.896327 13.6753i 0.0284584 0.434192i
\(993\) 0 0
\(994\) 8.18095 6.27746i 0.259484 0.199109i
\(995\) −5.92131 + 4.54358i −0.187718 + 0.144041i
\(996\) 0 0
\(997\) 1.81560 27.7008i 0.0575008 0.877292i −0.867526 0.497391i \(-0.834291\pi\)
0.925027 0.379901i \(-0.124042\pi\)
\(998\) 8.74182 43.9481i 0.276717 1.39115i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.260.4 256
3.2 odd 2 153.2.s.a.5.13 256
9.2 odd 6 inner 459.2.y.a.413.13 256
9.7 even 3 153.2.s.a.56.4 yes 256
17.7 odd 16 inner 459.2.y.a.449.13 256
51.41 even 16 153.2.s.a.41.4 yes 256
153.7 odd 48 153.2.s.a.92.13 yes 256
153.92 even 48 inner 459.2.y.a.143.4 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.5.13 256 3.2 odd 2
153.2.s.a.41.4 yes 256 51.41 even 16
153.2.s.a.56.4 yes 256 9.7 even 3
153.2.s.a.92.13 yes 256 153.7 odd 48
459.2.y.a.143.4 256 153.92 even 48 inner
459.2.y.a.260.4 256 1.1 even 1 trivial
459.2.y.a.413.13 256 9.2 odd 6 inner
459.2.y.a.449.13 256 17.7 odd 16 inner