Properties

Label 459.2.y.a.368.9
Level $459$
Weight $2$
Character 459.368
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(44,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([40, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.44");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 368.9
Character \(\chi\) \(=\) 459.368
Dual form 459.2.y.a.116.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.801255 - 0.105487i) q^{2} +(-1.30097 + 0.348594i) q^{4} +(1.37710 + 2.79247i) q^{5} +(-4.52563 - 2.23179i) q^{7} +(-2.49894 + 1.03509i) q^{8} +(1.39797 + 2.09222i) q^{10} +(-0.780943 + 0.265095i) q^{11} +(1.16796 + 4.35888i) q^{13} +(-3.86161 - 1.31084i) q^{14} +(0.439739 - 0.253884i) q^{16} +(-3.78892 + 1.62606i) q^{17} +(-1.95880 - 0.811360i) q^{19} +(-2.76500 - 3.15288i) q^{20} +(-0.597770 + 0.294788i) q^{22} +(-2.61464 + 2.98142i) q^{23} +(-2.85771 + 3.72424i) q^{25} +(1.39564 + 3.36937i) q^{26} +(6.66570 + 1.32589i) q^{28} +(0.0274451 - 0.418731i) q^{29} +(0.426633 - 1.25682i) q^{31} +(4.61733 - 3.54301i) q^{32} +(-2.86436 + 1.70257i) q^{34} -15.7111i q^{35} +(0.0132231 + 0.0664768i) q^{37} +(-1.65508 - 0.443478i) q^{38} +(-6.33175 - 5.55279i) q^{40} +(3.37615 - 0.221284i) q^{41} +(5.74422 + 4.40769i) q^{43} +(0.923573 - 0.617112i) q^{44} +(-1.78049 + 2.66469i) q^{46} +(-1.39277 + 5.19789i) q^{47} +(11.2391 + 14.6471i) q^{49} +(-1.89689 + 3.28551i) q^{50} +(-3.03896 - 5.26363i) q^{52} +(-2.70319 + 6.52608i) q^{53} +(-1.81570 - 1.81570i) q^{55} +(13.6194 + 0.892662i) q^{56} +(-0.0221803 - 0.338405i) q^{58} +(0.445276 - 3.38221i) q^{59} +(0.762232 - 1.54565i) q^{61} +(0.209263 - 1.05204i) q^{62} +(2.60783 - 2.60783i) q^{64} +(-10.5637 + 9.26409i) q^{65} +(-1.90636 - 1.10063i) q^{67} +(4.36244 - 3.43625i) q^{68} +(-1.65732 - 12.5886i) q^{70} +(2.14171 - 0.426013i) q^{71} +(4.79086 + 3.20115i) q^{73} +(0.0176075 + 0.0518700i) q^{74} +(2.83117 + 0.372731i) q^{76} +(4.12590 + 0.543185i) q^{77} +(-4.25979 - 12.5489i) q^{79} +(1.31453 + 0.878338i) q^{80} +(2.68181 - 0.533446i) q^{82} +(0.479996 + 3.64594i) q^{83} +(-9.75844 - 8.34121i) q^{85} +(5.06754 + 2.92574i) q^{86} +(1.67713 - 1.47080i) q^{88} +(3.26760 - 3.26760i) q^{89} +(4.44238 - 22.3333i) q^{91} +(2.36226 - 4.79019i) q^{92} +(-0.567653 + 4.31175i) q^{94} +(-0.431749 - 6.58721i) q^{95} +(17.3795 + 1.13911i) q^{97} +(10.5505 + 10.5505i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.801255 0.105487i 0.566573 0.0745907i 0.158202 0.987407i \(-0.449430\pi\)
0.408371 + 0.912816i \(0.366097\pi\)
\(3\) 0 0
\(4\) −1.30097 + 0.348594i −0.650485 + 0.174297i
\(5\) 1.37710 + 2.79247i 0.615856 + 1.24883i 0.951733 + 0.306926i \(0.0993005\pi\)
−0.335878 + 0.941906i \(0.609033\pi\)
\(6\) 0 0
\(7\) −4.52563 2.23179i −1.71053 0.843539i −0.988417 0.151762i \(-0.951505\pi\)
−0.722111 0.691777i \(-0.756828\pi\)
\(8\) −2.49894 + 1.03509i −0.883508 + 0.365961i
\(9\) 0 0
\(10\) 1.39797 + 2.09222i 0.442078 + 0.661617i
\(11\) −0.780943 + 0.265095i −0.235463 + 0.0799290i −0.436677 0.899618i \(-0.643845\pi\)
0.201214 + 0.979547i \(0.435511\pi\)
\(12\) 0 0
\(13\) 1.16796 + 4.35888i 0.323934 + 1.20894i 0.915379 + 0.402592i \(0.131891\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(14\) −3.86161 1.31084i −1.03206 0.350337i
\(15\) 0 0
\(16\) 0.439739 0.253884i 0.109935 0.0634709i
\(17\) −3.78892 + 1.62606i −0.918948 + 0.394378i
\(18\) 0 0
\(19\) −1.95880 0.811360i −0.449379 0.186139i 0.146504 0.989210i \(-0.453198\pi\)
−0.595883 + 0.803071i \(0.703198\pi\)
\(20\) −2.76500 3.15288i −0.618272 0.705005i
\(21\) 0 0
\(22\) −0.597770 + 0.294788i −0.127445 + 0.0628490i
\(23\) −2.61464 + 2.98142i −0.545189 + 0.621669i −0.957171 0.289523i \(-0.906503\pi\)
0.411982 + 0.911192i \(0.364837\pi\)
\(24\) 0 0
\(25\) −2.85771 + 3.72424i −0.571541 + 0.744847i
\(26\) 1.39564 + 3.36937i 0.273707 + 0.660788i
\(27\) 0 0
\(28\) 6.66570 + 1.32589i 1.25970 + 0.250570i
\(29\) 0.0274451 0.418731i 0.00509643 0.0777564i −0.994553 0.104232i \(-0.966762\pi\)
0.999649 + 0.0264753i \(0.00842832\pi\)
\(30\) 0 0
\(31\) 0.426633 1.25682i 0.0766256 0.225732i −0.901867 0.432014i \(-0.857803\pi\)
0.978493 + 0.206282i \(0.0661365\pi\)
\(32\) 4.61733 3.54301i 0.816237 0.626321i
\(33\) 0 0
\(34\) −2.86436 + 1.70257i −0.491234 + 0.291989i
\(35\) 15.7111i 2.65566i
\(36\) 0 0
\(37\) 0.0132231 + 0.0664768i 0.00217386 + 0.0109287i 0.981857 0.189623i \(-0.0607266\pi\)
−0.979683 + 0.200552i \(0.935727\pi\)
\(38\) −1.65508 0.443478i −0.268490 0.0719417i
\(39\) 0 0
\(40\) −6.33175 5.55279i −1.00114 0.877974i
\(41\) 3.37615 0.221284i 0.527266 0.0345588i 0.200554 0.979683i \(-0.435726\pi\)
0.326712 + 0.945124i \(0.394059\pi\)
\(42\) 0 0
\(43\) 5.74422 + 4.40769i 0.875985 + 0.672167i 0.945573 0.325409i \(-0.105502\pi\)
−0.0695883 + 0.997576i \(0.522169\pi\)
\(44\) 0.923573 0.617112i 0.139234 0.0930331i
\(45\) 0 0
\(46\) −1.78049 + 2.66469i −0.262519 + 0.392887i
\(47\) −1.39277 + 5.19789i −0.203156 + 0.758190i 0.786847 + 0.617148i \(0.211712\pi\)
−0.990004 + 0.141042i \(0.954955\pi\)
\(48\) 0 0
\(49\) 11.2391 + 14.6471i 1.60559 + 2.09244i
\(50\) −1.89689 + 3.28551i −0.268261 + 0.464642i
\(51\) 0 0
\(52\) −3.03896 5.26363i −0.421428 0.729935i
\(53\) −2.70319 + 6.52608i −0.371312 + 0.896426i 0.622217 + 0.782845i \(0.286232\pi\)
−0.993529 + 0.113581i \(0.963768\pi\)
\(54\) 0 0
\(55\) −1.81570 1.81570i −0.244829 0.244829i
\(56\) 13.6194 + 0.892662i 1.81997 + 0.119287i
\(57\) 0 0
\(58\) −0.0221803 0.338405i −0.00291241 0.0444348i
\(59\) 0.445276 3.38221i 0.0579700 0.440326i −0.937706 0.347430i \(-0.887054\pi\)
0.995676 0.0928957i \(-0.0296123\pi\)
\(60\) 0 0
\(61\) 0.762232 1.54565i 0.0975938 0.197901i −0.842601 0.538539i \(-0.818976\pi\)
0.940194 + 0.340638i \(0.110643\pi\)
\(62\) 0.209263 1.05204i 0.0265765 0.133609i
\(63\) 0 0
\(64\) 2.60783 2.60783i 0.325978 0.325978i
\(65\) −10.5637 + 9.26409i −1.31026 + 1.14907i
\(66\) 0 0
\(67\) −1.90636 1.10063i −0.232898 0.134464i 0.379010 0.925393i \(-0.376265\pi\)
−0.611908 + 0.790929i \(0.709598\pi\)
\(68\) 4.36244 3.43625i 0.529023 0.416707i
\(69\) 0 0
\(70\) −1.65732 12.5886i −0.198088 1.50462i
\(71\) 2.14171 0.426013i 0.254174 0.0505584i −0.0663583 0.997796i \(-0.521138\pi\)
0.320533 + 0.947237i \(0.396138\pi\)
\(72\) 0 0
\(73\) 4.79086 + 3.20115i 0.560727 + 0.374666i 0.803398 0.595443i \(-0.203023\pi\)
−0.242670 + 0.970109i \(0.578023\pi\)
\(74\) 0.0176075 + 0.0518700i 0.00204683 + 0.00602976i
\(75\) 0 0
\(76\) 2.83117 + 0.372731i 0.324758 + 0.0427552i
\(77\) 4.12590 + 0.543185i 0.470190 + 0.0619017i
\(78\) 0 0
\(79\) −4.25979 12.5489i −0.479263 1.41186i −0.870771 0.491689i \(-0.836380\pi\)
0.391507 0.920175i \(-0.371954\pi\)
\(80\) 1.31453 + 0.878338i 0.146968 + 0.0982012i
\(81\) 0 0
\(82\) 2.68181 0.533446i 0.296157 0.0589092i
\(83\) 0.479996 + 3.64594i 0.0526865 + 0.400193i 0.997386 + 0.0722565i \(0.0230200\pi\)
−0.944700 + 0.327937i \(0.893647\pi\)
\(84\) 0 0
\(85\) −9.75844 8.34121i −1.05845 0.904732i
\(86\) 5.06754 + 2.92574i 0.546447 + 0.315491i
\(87\) 0 0
\(88\) 1.67713 1.47080i 0.178783 0.156788i
\(89\) 3.26760 3.26760i 0.346365 0.346365i −0.512389 0.858754i \(-0.671239\pi\)
0.858754 + 0.512389i \(0.171239\pi\)
\(90\) 0 0
\(91\) 4.44238 22.3333i 0.465688 2.34117i
\(92\) 2.36226 4.79019i 0.246282 0.499411i
\(93\) 0 0
\(94\) −0.567653 + 4.31175i −0.0585489 + 0.444723i
\(95\) −0.431749 6.58721i −0.0442965 0.675833i
\(96\) 0 0
\(97\) 17.3795 + 1.13911i 1.76462 + 0.115659i 0.912859 0.408276i \(-0.133870\pi\)
0.851758 + 0.523935i \(0.175537\pi\)
\(98\) 10.5505 + 10.5505i 1.06576 + 1.06576i
\(99\) 0 0
\(100\) 2.41954 5.84130i 0.241954 0.584130i
\(101\) −7.22857 12.5203i −0.719270 1.24581i −0.961289 0.275541i \(-0.911143\pi\)
0.242020 0.970271i \(-0.422190\pi\)
\(102\) 0 0
\(103\) −0.972232 + 1.68395i −0.0957968 + 0.165925i −0.909941 0.414738i \(-0.863873\pi\)
0.814144 + 0.580663i \(0.197207\pi\)
\(104\) −7.43051 9.68363i −0.728621 0.949558i
\(105\) 0 0
\(106\) −1.47753 + 5.51420i −0.143510 + 0.535587i
\(107\) −2.20029 + 3.29297i −0.212710 + 0.318344i −0.922447 0.386123i \(-0.873814\pi\)
0.709737 + 0.704467i \(0.248814\pi\)
\(108\) 0 0
\(109\) −12.7255 + 8.50289i −1.21888 + 0.814430i −0.987374 0.158404i \(-0.949365\pi\)
−0.231506 + 0.972834i \(0.574365\pi\)
\(110\) −1.64637 1.26331i −0.156976 0.120452i
\(111\) 0 0
\(112\) −2.55671 + 0.167576i −0.241587 + 0.0158344i
\(113\) 0.316254 + 0.277347i 0.0297506 + 0.0260906i 0.674092 0.738647i \(-0.264535\pi\)
−0.644341 + 0.764738i \(0.722868\pi\)
\(114\) 0 0
\(115\) −11.9261 3.19560i −1.11212 0.297991i
\(116\) 0.110262 + 0.554324i 0.0102376 + 0.0514677i
\(117\) 0 0
\(118\) 2.75698i 0.253801i
\(119\) 20.7763 + 1.09713i 1.90456 + 0.100574i
\(120\) 0 0
\(121\) −8.18729 + 6.28233i −0.744299 + 0.571121i
\(122\) 0.447695 1.31887i 0.0405324 0.119405i
\(123\) 0 0
\(124\) −0.116917 + 1.78381i −0.0104995 + 0.160191i
\(125\) 0.933539 + 0.185692i 0.0834983 + 0.0166088i
\(126\) 0 0
\(127\) 6.87458 + 16.5967i 0.610020 + 1.47272i 0.862978 + 0.505241i \(0.168596\pi\)
−0.252958 + 0.967477i \(0.581404\pi\)
\(128\) −5.27157 + 6.87004i −0.465945 + 0.607232i
\(129\) 0 0
\(130\) −7.48695 + 8.53723i −0.656649 + 0.748765i
\(131\) −8.97762 + 4.42727i −0.784378 + 0.386812i −0.789949 0.613172i \(-0.789893\pi\)
0.00557139 + 0.999984i \(0.498227\pi\)
\(132\) 0 0
\(133\) 7.05401 + 8.04355i 0.611660 + 0.697464i
\(134\) −1.64358 0.680793i −0.141984 0.0588115i
\(135\) 0 0
\(136\) 7.78515 7.98532i 0.667571 0.684735i
\(137\) 0.180228 0.104055i 0.0153979 0.00889001i −0.492281 0.870436i \(-0.663837\pi\)
0.507679 + 0.861546i \(0.330504\pi\)
\(138\) 0 0
\(139\) −4.01066 1.36144i −0.340180 0.115475i 0.146122 0.989267i \(-0.453321\pi\)
−0.486301 + 0.873791i \(0.661654\pi\)
\(140\) 5.47679 + 20.4397i 0.462873 + 1.72747i
\(141\) 0 0
\(142\) 1.67112 0.567268i 0.140237 0.0476041i
\(143\) −2.06763 3.09442i −0.172904 0.258769i
\(144\) 0 0
\(145\) 1.20709 0.499993i 0.100243 0.0415222i
\(146\) 4.17638 + 2.05956i 0.345639 + 0.170450i
\(147\) 0 0
\(148\) −0.0403762 0.0818748i −0.00331890 0.00673007i
\(149\) −22.7638 + 6.09953i −1.86488 + 0.499693i −0.999997 0.00227989i \(-0.999274\pi\)
−0.864883 + 0.501973i \(0.832608\pi\)
\(150\) 0 0
\(151\) −12.4407 + 1.63785i −1.01241 + 0.133287i −0.618437 0.785834i \(-0.712234\pi\)
−0.393976 + 0.919121i \(0.628901\pi\)
\(152\) 5.73475 0.465149
\(153\) 0 0
\(154\) 3.36319 0.271014
\(155\) 4.09715 0.539400i 0.329091 0.0433257i
\(156\) 0 0
\(157\) 9.34317 2.50349i 0.745666 0.199801i 0.134071 0.990972i \(-0.457195\pi\)
0.611595 + 0.791171i \(0.290528\pi\)
\(158\) −4.73692 9.60553i −0.376849 0.764175i
\(159\) 0 0
\(160\) 16.2523 + 8.01473i 1.28485 + 0.633620i
\(161\) 18.4868 7.65748i 1.45696 0.603494i
\(162\) 0 0
\(163\) −0.147654 0.220979i −0.0115651 0.0173084i 0.825642 0.564194i \(-0.190813\pi\)
−0.837207 + 0.546886i \(0.815813\pi\)
\(164\) −4.31513 + 1.46479i −0.336955 + 0.114381i
\(165\) 0 0
\(166\) 0.769199 + 2.87069i 0.0597014 + 0.222809i
\(167\) 1.69588 + 0.575674i 0.131231 + 0.0445470i 0.386282 0.922381i \(-0.373759\pi\)
−0.255051 + 0.966928i \(0.582092\pi\)
\(168\) 0 0
\(169\) −6.37741 + 3.68200i −0.490570 + 0.283231i
\(170\) −8.69889 5.65405i −0.667174 0.433646i
\(171\) 0 0
\(172\) −9.00955 3.73188i −0.686972 0.284553i
\(173\) −11.6422 13.2754i −0.885143 1.00931i −0.999873 0.0159158i \(-0.994934\pi\)
0.114730 0.993397i \(-0.463400\pi\)
\(174\) 0 0
\(175\) 21.2447 10.4767i 1.60595 0.791964i
\(176\) −0.276108 + 0.314841i −0.0208124 + 0.0237320i
\(177\) 0 0
\(178\) 2.27349 2.96287i 0.170405 0.222076i
\(179\) 8.88505 + 21.4504i 0.664100 + 1.60328i 0.791319 + 0.611403i \(0.209395\pi\)
−0.127220 + 0.991875i \(0.540605\pi\)
\(180\) 0 0
\(181\) −9.79946 1.94923i −0.728388 0.144885i −0.183052 0.983103i \(-0.558598\pi\)
−0.545336 + 0.838218i \(0.683598\pi\)
\(182\) 1.20360 18.3633i 0.0892164 1.36118i
\(183\) 0 0
\(184\) 3.44776 10.1568i 0.254172 0.748768i
\(185\) −0.167425 + 0.128470i −0.0123093 + 0.00944529i
\(186\) 0 0
\(187\) 2.52787 2.27429i 0.184856 0.166312i
\(188\) 7.24781i 0.528601i
\(189\) 0 0
\(190\) −1.04081 5.23249i −0.0755081 0.379605i
\(191\) 7.40789 + 1.98494i 0.536016 + 0.143625i 0.516665 0.856188i \(-0.327173\pi\)
0.0193512 + 0.999813i \(0.493840\pi\)
\(192\) 0 0
\(193\) 8.68803 + 7.61919i 0.625378 + 0.548442i 0.912305 0.409511i \(-0.134301\pi\)
−0.286928 + 0.957952i \(0.592634\pi\)
\(194\) 14.0455 0.920593i 1.00841 0.0660947i
\(195\) 0 0
\(196\) −19.7276 15.1375i −1.40912 1.08125i
\(197\) 1.59072 1.06288i 0.113334 0.0757274i −0.497611 0.867400i \(-0.665789\pi\)
0.610946 + 0.791673i \(0.290789\pi\)
\(198\) 0 0
\(199\) −7.63607 + 11.4282i −0.541306 + 0.810122i −0.996785 0.0801245i \(-0.974468\pi\)
0.455478 + 0.890247i \(0.349468\pi\)
\(200\) 3.28630 12.2646i 0.232376 0.867240i
\(201\) 0 0
\(202\) −7.11265 9.26939i −0.500445 0.652192i
\(203\) −1.05873 + 1.83377i −0.0743082 + 0.128705i
\(204\) 0 0
\(205\) 5.26721 + 9.12307i 0.367878 + 0.637183i
\(206\) −0.601370 + 1.45183i −0.0418994 + 0.101154i
\(207\) 0 0
\(208\) 1.62025 + 1.62025i 0.112344 + 0.112344i
\(209\) 1.74480 + 0.114360i 0.120690 + 0.00791045i
\(210\) 0 0
\(211\) −0.528242 8.05942i −0.0363657 0.554833i −0.976704 0.214592i \(-0.931158\pi\)
0.940338 0.340241i \(-0.110509\pi\)
\(212\) 1.24182 9.43255i 0.0852884 0.647830i
\(213\) 0 0
\(214\) −1.41563 + 2.87061i −0.0967704 + 0.196231i
\(215\) −4.39803 + 22.1104i −0.299943 + 1.50792i
\(216\) 0 0
\(217\) −4.73575 + 4.73575i −0.321484 + 0.321484i
\(218\) −9.29941 + 8.15536i −0.629835 + 0.552351i
\(219\) 0 0
\(220\) 2.99512 + 1.72923i 0.201931 + 0.116585i
\(221\) −11.5131 14.6163i −0.774457 0.983198i
\(222\) 0 0
\(223\) 2.37603 + 18.0478i 0.159111 + 1.20857i 0.865561 + 0.500804i \(0.166962\pi\)
−0.706450 + 0.707763i \(0.749704\pi\)
\(224\) −28.8036 + 5.72939i −1.92452 + 0.382811i
\(225\) 0 0
\(226\) 0.282656 + 0.188865i 0.0188020 + 0.0125631i
\(227\) −7.49766 22.0874i −0.497637 1.46599i −0.848313 0.529495i \(-0.822382\pi\)
0.350676 0.936497i \(-0.385952\pi\)
\(228\) 0 0
\(229\) 14.6011 + 1.92227i 0.964866 + 0.127027i 0.596464 0.802640i \(-0.296572\pi\)
0.368402 + 0.929667i \(0.379905\pi\)
\(230\) −9.89297 1.30243i −0.652323 0.0858800i
\(231\) 0 0
\(232\) 0.364842 + 1.07479i 0.0239531 + 0.0705635i
\(233\) −20.3987 13.6300i −1.33636 0.892930i −0.337535 0.941313i \(-0.609593\pi\)
−0.998829 + 0.0483830i \(0.984593\pi\)
\(234\) 0 0
\(235\) −16.4329 + 3.26871i −1.07197 + 0.213227i
\(236\) 0.599726 + 4.55537i 0.0390388 + 0.296529i
\(237\) 0 0
\(238\) 16.7628 1.31255i 1.08657 0.0850803i
\(239\) 23.2883 + 13.4455i 1.50639 + 0.869717i 0.999972 + 0.00743049i \(0.00236522\pi\)
0.506421 + 0.862286i \(0.330968\pi\)
\(240\) 0 0
\(241\) −6.95983 + 6.10361i −0.448322 + 0.393168i −0.853519 0.521061i \(-0.825536\pi\)
0.405197 + 0.914229i \(0.367203\pi\)
\(242\) −5.89740 + 5.89740i −0.379099 + 0.379099i
\(243\) 0 0
\(244\) −0.452835 + 2.27656i −0.0289898 + 0.145742i
\(245\) −25.4243 + 51.5553i −1.62430 + 3.29375i
\(246\) 0 0
\(247\) 1.24883 9.48581i 0.0794612 0.603567i
\(248\) 0.234798 + 3.58232i 0.0149097 + 0.227478i
\(249\) 0 0
\(250\) 0.767591 + 0.0503106i 0.0485467 + 0.00318192i
\(251\) −12.0194 12.0194i −0.758657 0.758657i 0.217421 0.976078i \(-0.430236\pi\)
−0.976078 + 0.217421i \(0.930236\pi\)
\(252\) 0 0
\(253\) 1.25152 3.02145i 0.0786827 0.189957i
\(254\) 7.25902 + 12.5730i 0.455472 + 0.788900i
\(255\) 0 0
\(256\) −7.18719 + 12.4486i −0.449200 + 0.778036i
\(257\) 10.2997 + 13.4228i 0.642477 + 0.837292i 0.995141 0.0984576i \(-0.0313909\pi\)
−0.352664 + 0.935750i \(0.614724\pi\)
\(258\) 0 0
\(259\) 0.0885198 0.330360i 0.00550035 0.0205276i
\(260\) 10.5136 15.7347i 0.652027 0.975827i
\(261\) 0 0
\(262\) −6.72634 + 4.49440i −0.415555 + 0.277665i
\(263\) 17.2622 + 13.2458i 1.06444 + 0.816770i 0.983673 0.179963i \(-0.0575978\pi\)
0.0807624 + 0.996733i \(0.474264\pi\)
\(264\) 0 0
\(265\) −21.9464 + 1.43845i −1.34816 + 0.0883630i
\(266\) 6.50055 + 5.70083i 0.398574 + 0.349540i
\(267\) 0 0
\(268\) 2.86379 + 0.767349i 0.174934 + 0.0468733i
\(269\) −0.232394 1.16832i −0.0141693 0.0712339i 0.973054 0.230579i \(-0.0740619\pi\)
−0.987223 + 0.159345i \(0.949062\pi\)
\(270\) 0 0
\(271\) 18.6384i 1.13220i 0.824336 + 0.566101i \(0.191549\pi\)
−0.824336 + 0.566101i \(0.808451\pi\)
\(272\) −1.25331 + 1.67699i −0.0759929 + 0.101682i
\(273\) 0 0
\(274\) 0.133432 0.102386i 0.00806094 0.00618538i
\(275\) 1.24443 3.66598i 0.0750421 0.221067i
\(276\) 0 0
\(277\) −0.716507 + 10.9318i −0.0430507 + 0.656827i 0.920742 + 0.390173i \(0.127585\pi\)
−0.963792 + 0.266654i \(0.914082\pi\)
\(278\) −3.35717 0.667784i −0.201350 0.0400510i
\(279\) 0 0
\(280\) 16.2625 + 39.2610i 0.971868 + 2.34630i
\(281\) 16.4155 21.3931i 0.979266 1.27620i 0.0182154 0.999834i \(-0.494202\pi\)
0.961051 0.276371i \(-0.0891318\pi\)
\(282\) 0 0
\(283\) −6.05533 + 6.90478i −0.359952 + 0.410447i −0.903265 0.429084i \(-0.858836\pi\)
0.543313 + 0.839530i \(0.317170\pi\)
\(284\) −2.63780 + 1.30082i −0.156525 + 0.0771893i
\(285\) 0 0
\(286\) −1.98312 2.26131i −0.117264 0.133714i
\(287\) −15.7731 6.53342i −0.931054 0.385655i
\(288\) 0 0
\(289\) 11.7118 12.3220i 0.688931 0.724826i
\(290\) 0.914444 0.527954i 0.0536980 0.0310025i
\(291\) 0 0
\(292\) −7.34866 2.49453i −0.430048 0.145982i
\(293\) 1.14029 + 4.25560i 0.0666162 + 0.248615i 0.991202 0.132359i \(-0.0422553\pi\)
−0.924586 + 0.380974i \(0.875589\pi\)
\(294\) 0 0
\(295\) 10.0579 3.41420i 0.585594 0.198782i
\(296\) −0.101853 0.152434i −0.00592010 0.00886006i
\(297\) 0 0
\(298\) −17.5962 + 7.28857i −1.01932 + 0.422215i
\(299\) −16.0495 7.91472i −0.928164 0.457720i
\(300\) 0 0
\(301\) −16.1592 32.7675i −0.931398 1.88869i
\(302\) −9.79543 + 2.62468i −0.563664 + 0.151033i
\(303\) 0 0
\(304\) −1.06735 + 0.140519i −0.0612168 + 0.00805934i
\(305\) 5.36586 0.307248
\(306\) 0 0
\(307\) 16.0286 0.914801 0.457400 0.889261i \(-0.348781\pi\)
0.457400 + 0.889261i \(0.348781\pi\)
\(308\) −5.55702 + 0.731596i −0.316641 + 0.0416865i
\(309\) 0 0
\(310\) 3.22596 0.864394i 0.183222 0.0490943i
\(311\) −6.02290 12.2132i −0.341528 0.692549i 0.656566 0.754269i \(-0.272008\pi\)
−0.998094 + 0.0617192i \(0.980342\pi\)
\(312\) 0 0
\(313\) −1.94022 0.956812i −0.109668 0.0540822i 0.386627 0.922236i \(-0.373640\pi\)
−0.496295 + 0.868154i \(0.665307\pi\)
\(314\) 7.22217 2.99152i 0.407571 0.168821i
\(315\) 0 0
\(316\) 9.91633 + 14.8408i 0.557837 + 0.834862i
\(317\) 8.63970 2.93278i 0.485254 0.164722i −0.0680819 0.997680i \(-0.521688\pi\)
0.553336 + 0.832958i \(0.313355\pi\)
\(318\) 0 0
\(319\) 0.0895703 + 0.334281i 0.00501497 + 0.0187161i
\(320\) 10.8735 + 3.69106i 0.607848 + 0.206337i
\(321\) 0 0
\(322\) 14.0049 8.08572i 0.780461 0.450599i
\(323\) 8.74105 0.110949i 0.486365 0.00617335i
\(324\) 0 0
\(325\) −19.5712 8.10665i −1.08561 0.449676i
\(326\) −0.141619 0.161485i −0.00784353 0.00894383i
\(327\) 0 0
\(328\) −8.20773 + 4.04761i −0.453196 + 0.223492i
\(329\) 17.9038 20.4153i 0.987067 1.12553i
\(330\) 0 0
\(331\) 0.826504 1.07712i 0.0454288 0.0592039i −0.770087 0.637939i \(-0.779787\pi\)
0.815515 + 0.578736i \(0.196454\pi\)
\(332\) −1.89541 4.57593i −0.104024 0.251137i
\(333\) 0 0
\(334\) 1.41956 + 0.282368i 0.0776747 + 0.0154505i
\(335\) 0.448260 6.83912i 0.0244911 0.373661i
\(336\) 0 0
\(337\) 7.70958 22.7117i 0.419968 1.23718i −0.506968 0.861965i \(-0.669234\pi\)
0.926936 0.375220i \(-0.122433\pi\)
\(338\) −4.72152 + 3.62295i −0.256817 + 0.197063i
\(339\) 0 0
\(340\) 15.6031 + 7.44994i 0.846199 + 0.404029i
\(341\) 1.09460i 0.0592761i
\(342\) 0 0
\(343\) −11.2838 56.7273i −0.609266 3.06299i
\(344\) −18.9168 5.06875i −1.01993 0.273289i
\(345\) 0 0
\(346\) −10.7288 9.40890i −0.576783 0.505825i
\(347\) 4.13052 0.270728i 0.221738 0.0145335i 0.0458707 0.998947i \(-0.485394\pi\)
0.175867 + 0.984414i \(0.443727\pi\)
\(348\) 0 0
\(349\) 1.34809 + 1.03443i 0.0721618 + 0.0553717i 0.644212 0.764847i \(-0.277185\pi\)
−0.572051 + 0.820218i \(0.693852\pi\)
\(350\) 15.9172 10.6355i 0.850811 0.568494i
\(351\) 0 0
\(352\) −2.66664 + 3.99092i −0.142133 + 0.212717i
\(353\) −4.91469 + 18.3419i −0.261582 + 0.976238i 0.702727 + 0.711460i \(0.251966\pi\)
−0.964309 + 0.264779i \(0.914701\pi\)
\(354\) 0 0
\(355\) 4.13897 + 5.39401i 0.219674 + 0.286284i
\(356\) −3.11198 + 5.39011i −0.164935 + 0.285675i
\(357\) 0 0
\(358\) 9.38193 + 16.2500i 0.495850 + 0.858838i
\(359\) −9.63555 + 23.2623i −0.508545 + 1.22774i 0.436176 + 0.899861i \(0.356333\pi\)
−0.944721 + 0.327875i \(0.893667\pi\)
\(360\) 0 0
\(361\) −10.2564 10.2564i −0.539813 0.539813i
\(362\) −8.05748 0.528115i −0.423492 0.0277571i
\(363\) 0 0
\(364\) 2.00587 + 30.6036i 0.105136 + 1.60406i
\(365\) −2.34165 + 17.7866i −0.122568 + 0.930994i
\(366\) 0 0
\(367\) 4.54401 9.21434i 0.237195 0.480985i −0.745430 0.666584i \(-0.767756\pi\)
0.982626 + 0.185599i \(0.0594225\pi\)
\(368\) −0.392824 + 1.97486i −0.0204774 + 0.102947i
\(369\) 0 0
\(370\) −0.120598 + 0.120598i −0.00626961 + 0.00626961i
\(371\) 26.7985 23.5017i 1.39131 1.22015i
\(372\) 0 0
\(373\) 5.50433 + 3.17793i 0.285004 + 0.164547i 0.635686 0.771947i \(-0.280717\pi\)
−0.350683 + 0.936494i \(0.614050\pi\)
\(374\) 1.78556 2.08894i 0.0923292 0.108017i
\(375\) 0 0
\(376\) −1.89986 14.4308i −0.0979776 0.744214i
\(377\) 1.85726 0.369431i 0.0956535 0.0190267i
\(378\) 0 0
\(379\) 6.75771 + 4.51536i 0.347120 + 0.231938i 0.716892 0.697184i \(-0.245564\pi\)
−0.369772 + 0.929123i \(0.620564\pi\)
\(380\) 2.85795 + 8.41926i 0.146610 + 0.431899i
\(381\) 0 0
\(382\) 6.14499 + 0.809004i 0.314405 + 0.0413922i
\(383\) −16.4005 2.15916i −0.838026 0.110328i −0.300716 0.953714i \(-0.597226\pi\)
−0.537309 + 0.843385i \(0.680559\pi\)
\(384\) 0 0
\(385\) 4.16493 + 12.2695i 0.212264 + 0.625310i
\(386\) 7.76505 + 5.18844i 0.395231 + 0.264085i
\(387\) 0 0
\(388\) −23.0072 + 4.57643i −1.16802 + 0.232333i
\(389\) 0.312441 + 2.37323i 0.0158414 + 0.120327i 0.997538 0.0701220i \(-0.0223389\pi\)
−0.981697 + 0.190449i \(0.939006\pi\)
\(390\) 0 0
\(391\) 5.05867 15.5479i 0.255828 0.786293i
\(392\) −43.2469 24.9686i −2.18430 1.26111i
\(393\) 0 0
\(394\) 1.16245 1.01944i 0.0585634 0.0513587i
\(395\) 29.1764 29.1764i 1.46802 1.46802i
\(396\) 0 0
\(397\) −1.66437 + 8.36734i −0.0835322 + 0.419945i 0.916280 + 0.400539i \(0.131177\pi\)
−0.999812 + 0.0194052i \(0.993823\pi\)
\(398\) −4.91291 + 9.96239i −0.246262 + 0.499370i
\(399\) 0 0
\(400\) −0.311124 + 2.36322i −0.0155562 + 0.118161i
\(401\) 0.562463 + 8.58153i 0.0280881 + 0.428541i 0.988626 + 0.150393i \(0.0480539\pi\)
−0.960538 + 0.278148i \(0.910279\pi\)
\(402\) 0 0
\(403\) 5.97663 + 0.391729i 0.297717 + 0.0195134i
\(404\) 13.7686 + 13.7686i 0.685015 + 0.685015i
\(405\) 0 0
\(406\) −0.654872 + 1.58100i −0.0325007 + 0.0784637i
\(407\) −0.0279491 0.0484092i −0.00138538 0.00239956i
\(408\) 0 0
\(409\) 8.77562 15.1998i 0.433926 0.751582i −0.563281 0.826265i \(-0.690461\pi\)
0.997207 + 0.0746830i \(0.0237945\pi\)
\(410\) 5.18274 + 6.75428i 0.255957 + 0.333570i
\(411\) 0 0
\(412\) 0.677828 2.52969i 0.0333942 0.124629i
\(413\) −9.56355 + 14.3129i −0.470591 + 0.704290i
\(414\) 0 0
\(415\) −9.52017 + 6.36118i −0.467327 + 0.312258i
\(416\) 20.8364 + 15.9883i 1.02159 + 0.783893i
\(417\) 0 0
\(418\) 1.41009 0.0924222i 0.0689698 0.00452052i
\(419\) −2.19918 1.92863i −0.107437 0.0942197i 0.603942 0.797028i \(-0.293596\pi\)
−0.711379 + 0.702808i \(0.751929\pi\)
\(420\) 0 0
\(421\) 13.5300 + 3.62534i 0.659410 + 0.176688i 0.572980 0.819569i \(-0.305787\pi\)
0.0864304 + 0.996258i \(0.472454\pi\)
\(422\) −1.27342 6.40192i −0.0619892 0.311641i
\(423\) 0 0
\(424\) 19.1063i 0.927885i
\(425\) 4.77178 18.7576i 0.231465 0.909879i
\(426\) 0 0
\(427\) −6.89916 + 5.29391i −0.333874 + 0.256190i
\(428\) 1.71461 5.05107i 0.0828786 0.244152i
\(429\) 0 0
\(430\) −1.19158 + 18.1800i −0.0574631 + 0.876717i
\(431\) −21.7828 4.33286i −1.04924 0.208707i −0.359785 0.933035i \(-0.617150\pi\)
−0.689455 + 0.724329i \(0.742150\pi\)
\(432\) 0 0
\(433\) −13.5406 32.6900i −0.650721 1.57098i −0.811734 0.584027i \(-0.801476\pi\)
0.161014 0.986952i \(-0.448524\pi\)
\(434\) −3.29498 + 4.29410i −0.158164 + 0.206124i
\(435\) 0 0
\(436\) 13.5914 15.4980i 0.650911 0.742221i
\(437\) 7.54055 3.71859i 0.360713 0.177884i
\(438\) 0 0
\(439\) 9.74245 + 11.1091i 0.464982 + 0.530210i 0.936041 0.351892i \(-0.114461\pi\)
−0.471059 + 0.882102i \(0.656128\pi\)
\(440\) 6.41675 + 2.65790i 0.305907 + 0.126711i
\(441\) 0 0
\(442\) −10.7668 10.4969i −0.512123 0.499286i
\(443\) 16.9977 9.81360i 0.807583 0.466258i −0.0385327 0.999257i \(-0.512268\pi\)
0.846116 + 0.532999i \(0.178935\pi\)
\(444\) 0 0
\(445\) 13.6245 + 4.62488i 0.645862 + 0.219241i
\(446\) 3.80762 + 14.2102i 0.180296 + 0.672873i
\(447\) 0 0
\(448\) −17.6222 + 5.98193i −0.832571 + 0.282620i
\(449\) 10.8428 + 16.2274i 0.511703 + 0.765818i 0.993905 0.110242i \(-0.0351627\pi\)
−0.482202 + 0.876060i \(0.660163\pi\)
\(450\) 0 0
\(451\) −2.57792 + 1.06781i −0.121389 + 0.0502812i
\(452\) −0.508118 0.250576i −0.0238999 0.0117861i
\(453\) 0 0
\(454\) −8.33747 16.9067i −0.391297 0.793472i
\(455\) 68.4828 18.3499i 3.21053 0.860258i
\(456\) 0 0
\(457\) −16.2263 + 2.13623i −0.759034 + 0.0999287i −0.500101 0.865967i \(-0.666704\pi\)
−0.258932 + 0.965896i \(0.583371\pi\)
\(458\) 11.9019 0.556142
\(459\) 0 0
\(460\) 16.6295 0.775355
\(461\) −26.1730 + 3.44575i −1.21900 + 0.160484i −0.712448 0.701725i \(-0.752414\pi\)
−0.506552 + 0.862209i \(0.669080\pi\)
\(462\) 0 0
\(463\) 29.5309 7.91277i 1.37242 0.367738i 0.504055 0.863671i \(-0.331841\pi\)
0.868360 + 0.495934i \(0.165174\pi\)
\(464\) −0.0942403 0.191100i −0.00437500 0.00887161i
\(465\) 0 0
\(466\) −17.7824 8.76929i −0.823752 0.406229i
\(467\) 32.3041 13.3808i 1.49486 0.619190i 0.522489 0.852646i \(-0.325004\pi\)
0.972367 + 0.233456i \(0.0750035\pi\)
\(468\) 0 0
\(469\) 6.17107 + 9.23566i 0.284954 + 0.426463i
\(470\) −12.8222 + 4.35254i −0.591442 + 0.200768i
\(471\) 0 0
\(472\) 2.38819 + 8.91283i 0.109925 + 0.410246i
\(473\) −5.65437 1.91940i −0.259988 0.0882540i
\(474\) 0 0
\(475\) 8.61937 4.97639i 0.395484 0.228333i
\(476\) −27.4118 + 5.81516i −1.25642 + 0.266537i
\(477\) 0 0
\(478\) 20.0782 + 8.31665i 0.918354 + 0.380395i
\(479\) 6.12119 + 6.97988i 0.279684 + 0.318919i 0.874577 0.484886i \(-0.161139\pi\)
−0.594893 + 0.803805i \(0.702806\pi\)
\(480\) 0 0
\(481\) −0.274320 + 0.135280i −0.0125079 + 0.00616823i
\(482\) −4.93275 + 5.62472i −0.224680 + 0.256199i
\(483\) 0 0
\(484\) 8.46144 11.0272i 0.384611 0.501235i
\(485\) 20.7522 + 50.1003i 0.942311 + 2.27494i
\(486\) 0 0
\(487\) −4.25328 0.846029i −0.192734 0.0383373i 0.0977791 0.995208i \(-0.468826\pi\)
−0.290514 + 0.956871i \(0.593826\pi\)
\(488\) −0.304874 + 4.65147i −0.0138010 + 0.210562i
\(489\) 0 0
\(490\) −14.9329 + 43.9909i −0.674599 + 1.98731i
\(491\) 14.5255 11.1458i 0.655527 0.503004i −0.226616 0.973984i \(-0.572766\pi\)
0.882144 + 0.470980i \(0.156100\pi\)
\(492\) 0 0
\(493\) 0.576896 + 1.63117i 0.0259821 + 0.0734640i
\(494\) 7.73228i 0.347892i
\(495\) 0 0
\(496\) −0.131479 0.660989i −0.00590357 0.0296793i
\(497\) −10.6434 2.85188i −0.477421 0.127924i
\(498\) 0 0
\(499\) −19.5224 17.1207i −0.873942 0.766426i 0.0995780 0.995030i \(-0.468251\pi\)
−0.973520 + 0.228604i \(0.926584\pi\)
\(500\) −1.27924 + 0.0838457i −0.0572092 + 0.00374969i
\(501\) 0 0
\(502\) −10.8985 8.36270i −0.486423 0.373246i
\(503\) 15.4167 10.3011i 0.687399 0.459305i −0.162184 0.986761i \(-0.551854\pi\)
0.849583 + 0.527455i \(0.176854\pi\)
\(504\) 0 0
\(505\) 25.0080 37.4272i 1.11284 1.66549i
\(506\) 0.684066 2.55297i 0.0304104 0.113493i
\(507\) 0 0
\(508\) −14.7291 19.1954i −0.653499 0.851657i
\(509\) −2.96228 + 5.13082i −0.131301 + 0.227420i −0.924178 0.381961i \(-0.875249\pi\)
0.792877 + 0.609381i \(0.208582\pi\)
\(510\) 0 0
\(511\) −14.5373 25.1794i −0.643094 1.11387i
\(512\) 2.18209 5.26802i 0.0964355 0.232816i
\(513\) 0 0
\(514\) 9.66861 + 9.66861i 0.426464 + 0.426464i
\(515\) −6.04125 0.395965i −0.266209 0.0174483i
\(516\) 0 0
\(517\) −0.290257 4.42847i −0.0127655 0.194764i
\(518\) 0.0360781 0.274041i 0.00158518 0.0120407i
\(519\) 0 0
\(520\) 16.8088 34.0848i 0.737113 1.49472i
\(521\) 5.18504 26.0670i 0.227161 1.14202i −0.683847 0.729626i \(-0.739694\pi\)
0.911008 0.412389i \(-0.135306\pi\)
\(522\) 0 0
\(523\) −1.49694 + 1.49694i −0.0654567 + 0.0654567i −0.739077 0.673621i \(-0.764738\pi\)
0.673621 + 0.739077i \(0.264738\pi\)
\(524\) 10.1363 8.88929i 0.442806 0.388330i
\(525\) 0 0
\(526\) 15.2287 + 8.79231i 0.664004 + 0.383363i
\(527\) 0.427191 + 5.45573i 0.0186087 + 0.237655i
\(528\) 0 0
\(529\) 0.949552 + 7.21256i 0.0412849 + 0.313590i
\(530\) −17.4330 + 3.46763i −0.757239 + 0.150624i
\(531\) 0 0
\(532\) −11.9810 8.00544i −0.519441 0.347080i
\(533\) 4.90776 + 14.4578i 0.212579 + 0.626236i
\(534\) 0 0
\(535\) −12.2255 1.60952i −0.528556 0.0695858i
\(536\) 5.90312 + 0.777161i 0.254976 + 0.0335682i
\(537\) 0 0
\(538\) −0.309450 0.911610i −0.0133413 0.0393023i
\(539\) −12.6600 8.45912i −0.545303 0.364360i
\(540\) 0 0
\(541\) 16.6949 3.32083i 0.717772 0.142774i 0.177325 0.984152i \(-0.443255\pi\)
0.540446 + 0.841379i \(0.318255\pi\)
\(542\) 1.96611 + 14.9341i 0.0844518 + 0.641475i
\(543\) 0 0
\(544\) −11.7336 + 20.9322i −0.503072 + 0.897462i
\(545\) −41.2683 23.8263i −1.76774 1.02061i
\(546\) 0 0
\(547\) 22.8366 20.0272i 0.976424 0.856301i −0.0132100 0.999913i \(-0.504205\pi\)
0.989634 + 0.143612i \(0.0458717\pi\)
\(548\) −0.198199 + 0.198199i −0.00846663 + 0.00846663i
\(549\) 0 0
\(550\) 0.610393 3.06866i 0.0260273 0.130848i
\(551\) −0.393501 + 0.797942i −0.0167637 + 0.0339935i
\(552\) 0 0
\(553\) −8.72840 + 66.2988i −0.371169 + 2.81931i
\(554\) 0.579058 + 8.83472i 0.0246018 + 0.375351i
\(555\) 0 0
\(556\) 5.69234 + 0.373095i 0.241409 + 0.0158228i
\(557\) −17.8937 17.8937i −0.758182 0.758182i 0.217809 0.975991i \(-0.430109\pi\)
−0.975991 + 0.217809i \(0.930109\pi\)
\(558\) 0 0
\(559\) −12.5036 + 30.1864i −0.528846 + 1.27675i
\(560\) −3.98879 6.90879i −0.168557 0.291950i
\(561\) 0 0
\(562\) 10.8963 18.8729i 0.459633 0.796107i
\(563\) −16.0519 20.9192i −0.676506 0.881640i 0.321358 0.946958i \(-0.395861\pi\)
−0.997865 + 0.0653178i \(0.979194\pi\)
\(564\) 0 0
\(565\) −0.338973 + 1.26506i −0.0142607 + 0.0532216i
\(566\) −4.12350 + 6.17125i −0.173323 + 0.259397i
\(567\) 0 0
\(568\) −4.91104 + 3.28145i −0.206063 + 0.137687i
\(569\) 10.1086 + 7.75657i 0.423773 + 0.325172i 0.798535 0.601949i \(-0.205609\pi\)
−0.374762 + 0.927121i \(0.622276\pi\)
\(570\) 0 0
\(571\) 26.0799 1.70937i 1.09141 0.0715349i 0.490949 0.871188i \(-0.336650\pi\)
0.600462 + 0.799653i \(0.294983\pi\)
\(572\) 3.76862 + 3.30499i 0.157574 + 0.138188i
\(573\) 0 0
\(574\) −13.3274 3.57107i −0.556276 0.149054i
\(575\) −3.63165 18.2576i −0.151450 0.761393i
\(576\) 0 0
\(577\) 0.792090i 0.0329751i −0.999864 0.0164876i \(-0.994752\pi\)
0.999864 0.0164876i \(-0.00524839\pi\)
\(578\) 8.08435 11.1085i 0.336264 0.462055i
\(579\) 0 0
\(580\) −1.39609 + 1.07126i −0.0579696 + 0.0444817i
\(581\) 5.96469 17.5714i 0.247457 0.728985i
\(582\) 0 0
\(583\) 0.381011 5.81310i 0.0157798 0.240754i
\(584\) −15.2855 3.04048i −0.632520 0.125816i
\(585\) 0 0
\(586\) 1.36257 + 3.28954i 0.0562873 + 0.135890i
\(587\) −4.71260 + 6.14158i −0.194510 + 0.253490i −0.880419 0.474197i \(-0.842738\pi\)
0.685909 + 0.727688i \(0.259405\pi\)
\(588\) 0 0
\(589\) −1.85542 + 2.11570i −0.0764514 + 0.0871761i
\(590\) 7.69879 3.79663i 0.316954 0.156305i
\(591\) 0 0
\(592\) 0.0226921 + 0.0258753i 0.000932638 + 0.00106347i
\(593\) 27.9427 + 11.5742i 1.14747 + 0.475297i 0.873684 0.486495i \(-0.161725\pi\)
0.273784 + 0.961791i \(0.411725\pi\)
\(594\) 0 0
\(595\) 25.5472 + 59.5281i 1.04733 + 2.44041i
\(596\) 27.4887 15.8706i 1.12598 0.650086i
\(597\) 0 0
\(598\) −13.6946 4.64869i −0.560014 0.190099i
\(599\) −7.63845 28.5071i −0.312098 1.16477i −0.926661 0.375899i \(-0.877334\pi\)
0.614562 0.788868i \(-0.289333\pi\)
\(600\) 0 0
\(601\) −2.10832 + 0.715679i −0.0860002 + 0.0291931i −0.364108 0.931357i \(-0.618626\pi\)
0.278108 + 0.960550i \(0.410293\pi\)
\(602\) −16.4042 24.5505i −0.668583 1.00061i
\(603\) 0 0
\(604\) 15.6141 6.46757i 0.635328 0.263162i
\(605\) −28.8179 14.2114i −1.17161 0.577776i
\(606\) 0 0
\(607\) 3.93237 + 7.97406i 0.159610 + 0.323657i 0.961957 0.273201i \(-0.0880823\pi\)
−0.802347 + 0.596858i \(0.796416\pi\)
\(608\) −11.9191 + 3.19371i −0.483382 + 0.129522i
\(609\) 0 0
\(610\) 4.29942 0.566029i 0.174078 0.0229179i
\(611\) −24.2837 −0.982413
\(612\) 0 0
\(613\) 45.0558 1.81979 0.909893 0.414842i \(-0.136163\pi\)
0.909893 + 0.414842i \(0.136163\pi\)
\(614\) 12.8430 1.69081i 0.518301 0.0682356i
\(615\) 0 0
\(616\) −10.8726 + 2.91331i −0.438070 + 0.117380i
\(617\) 17.9929 + 36.4860i 0.724367 + 1.46887i 0.876951 + 0.480580i \(0.159574\pi\)
−0.152584 + 0.988291i \(0.548759\pi\)
\(618\) 0 0
\(619\) −10.2190 5.03947i −0.410737 0.202553i 0.225169 0.974320i \(-0.427707\pi\)
−0.635906 + 0.771767i \(0.719373\pi\)
\(620\) −5.14224 + 2.12999i −0.206517 + 0.0855423i
\(621\) 0 0
\(622\) −6.11422 9.15058i −0.245158 0.366905i
\(623\) −22.0805 + 7.49534i −0.884638 + 0.300294i
\(624\) 0 0
\(625\) 6.84190 + 25.5343i 0.273676 + 1.02137i
\(626\) −1.65554 0.561982i −0.0661689 0.0224613i
\(627\) 0 0
\(628\) −11.2825 + 6.51394i −0.450220 + 0.259935i
\(629\) −0.158197 0.230374i −0.00630771 0.00918560i
\(630\) 0 0
\(631\) 4.28340 + 1.77424i 0.170520 + 0.0706315i 0.466310 0.884621i \(-0.345583\pi\)
−0.295791 + 0.955253i \(0.595583\pi\)
\(632\) 23.6342 + 26.9497i 0.940120 + 1.07200i
\(633\) 0 0
\(634\) 6.61323 3.26128i 0.262645 0.129522i
\(635\) −36.8789 + 42.0523i −1.46349 + 1.66879i
\(636\) 0 0
\(637\) −50.7181 + 66.0971i −2.00953 + 2.61886i
\(638\) 0.107031 + 0.258396i 0.00423740 + 0.0102300i
\(639\) 0 0
\(640\) −26.4439 5.26001i −1.04529 0.207920i
\(641\) −0.425807 + 6.49656i −0.0168184 + 0.256599i 0.981167 + 0.193160i \(0.0618735\pi\)
−0.997986 + 0.0634391i \(0.979793\pi\)
\(642\) 0 0
\(643\) −8.29150 + 24.4260i −0.326985 + 0.963266i 0.651803 + 0.758388i \(0.274013\pi\)
−0.978788 + 0.204877i \(0.934320\pi\)
\(644\) −21.3814 + 16.4065i −0.842546 + 0.646508i
\(645\) 0 0
\(646\) 6.99211 1.01097i 0.275101 0.0397760i
\(647\) 32.6053i 1.28185i 0.767604 + 0.640924i \(0.221449\pi\)
−0.767604 + 0.640924i \(0.778551\pi\)
\(648\) 0 0
\(649\) 0.548869 + 2.75935i 0.0215450 + 0.108314i
\(650\) −16.5367 4.43099i −0.648621 0.173798i
\(651\) 0 0
\(652\) 0.269125 + 0.236016i 0.0105397 + 0.00924311i
\(653\) 39.1805 2.56802i 1.53325 0.100495i 0.724759 0.689002i \(-0.241951\pi\)
0.808492 + 0.588508i \(0.200284\pi\)
\(654\) 0 0
\(655\) −24.7261 18.9730i −0.966127 0.741336i
\(656\) 1.42844 0.954456i 0.0557714 0.0372652i
\(657\) 0 0
\(658\) 12.1919 18.2465i 0.475291 0.711323i
\(659\) 2.37308 8.85644i 0.0924420 0.344998i −0.904177 0.427157i \(-0.859515\pi\)
0.996619 + 0.0821594i \(0.0261817\pi\)
\(660\) 0 0
\(661\) 9.51560 + 12.4010i 0.370114 + 0.482342i 0.940865 0.338781i \(-0.110015\pi\)
−0.570751 + 0.821123i \(0.693348\pi\)
\(662\) 0.548618 0.950234i 0.0213226 0.0369319i
\(663\) 0 0
\(664\) −4.97337 8.61412i −0.193004 0.334293i
\(665\) −12.7474 + 30.7749i −0.494322 + 1.19340i
\(666\) 0 0
\(667\) 1.17666 + 1.17666i 0.0455603 + 0.0455603i
\(668\) −2.40696 0.157761i −0.0931283 0.00610395i
\(669\) 0 0
\(670\) −0.362270 5.52717i −0.0139957 0.213533i
\(671\) −0.185516 + 1.40913i −0.00716175 + 0.0543989i
\(672\) 0 0
\(673\) −14.2403 + 28.8764i −0.548923 + 1.11311i 0.428838 + 0.903381i \(0.358923\pi\)
−0.977761 + 0.209724i \(0.932744\pi\)
\(674\) 3.78154 19.0111i 0.145660 0.732281i
\(675\) 0 0
\(676\) 7.01329 7.01329i 0.269742 0.269742i
\(677\) 13.0734 11.4650i 0.502450 0.440637i −0.370222 0.928943i \(-0.620718\pi\)
0.872672 + 0.488306i \(0.162385\pi\)
\(678\) 0 0
\(679\) −76.1108 43.9426i −2.92086 1.68636i
\(680\) 33.0197 + 10.7433i 1.26625 + 0.411985i
\(681\) 0 0
\(682\) 0.115467 + 0.877057i 0.00442145 + 0.0335842i
\(683\) −39.2414 + 7.80559i −1.50153 + 0.298673i −0.876299 0.481768i \(-0.839995\pi\)
−0.625230 + 0.780441i \(0.714995\pi\)
\(684\) 0 0
\(685\) 0.538762 + 0.359989i 0.0205850 + 0.0137545i
\(686\) −15.0252 44.2627i −0.573664 1.68996i
\(687\) 0 0
\(688\) 3.64500 + 0.479873i 0.138964 + 0.0182950i
\(689\) −31.6036 4.16070i −1.20400 0.158510i
\(690\) 0 0
\(691\) −6.50427 19.1610i −0.247434 0.728917i −0.997700 0.0677814i \(-0.978408\pi\)
0.750266 0.661136i \(-0.229925\pi\)
\(692\) 19.7739 + 13.2125i 0.751692 + 0.502265i
\(693\) 0 0
\(694\) 3.28104 0.652639i 0.124547 0.0247738i
\(695\) −1.72129 13.0745i −0.0652922 0.495944i
\(696\) 0 0
\(697\) −12.4321 + 6.32826i −0.470901 + 0.239700i
\(698\) 1.18928 + 0.686634i 0.0450151 + 0.0259895i
\(699\) 0 0
\(700\) −23.9865 + 21.0356i −0.906606 + 0.795072i
\(701\) −14.1508 + 14.1508i −0.534469 + 0.534469i −0.921899 0.387430i \(-0.873363\pi\)
0.387430 + 0.921899i \(0.373363\pi\)
\(702\) 0 0
\(703\) 0.0280353 0.140943i 0.00105737 0.00531577i
\(704\) −1.34524 + 2.72789i −0.0507008 + 0.102811i
\(705\) 0 0
\(706\) −2.00308 + 15.2149i −0.0753871 + 0.572622i
\(707\) 4.77122 + 72.7948i 0.179440 + 2.73773i
\(708\) 0 0
\(709\) 17.7197 + 1.16141i 0.665476 + 0.0436176i 0.394398 0.918940i \(-0.370953\pi\)
0.271078 + 0.962557i \(0.412620\pi\)
\(710\) 3.88537 + 3.88537i 0.145815 + 0.145815i
\(711\) 0 0
\(712\) −4.78325 + 11.5478i −0.179260 + 0.432772i
\(713\) 2.63162 + 4.55810i 0.0985550 + 0.170702i
\(714\) 0 0
\(715\) 5.79377 10.0351i 0.216675 0.375292i
\(716\) −19.0367 24.8091i −0.711433 0.927158i
\(717\) 0 0
\(718\) −5.26666 + 19.6554i −0.196550 + 0.733535i
\(719\) 27.9359 41.8091i 1.04183 1.55922i 0.231862 0.972749i \(-0.425518\pi\)
0.809973 0.586467i \(-0.199482\pi\)
\(720\) 0 0
\(721\) 8.15820 5.45114i 0.303827 0.203011i
\(722\) −9.29995 7.13610i −0.346108 0.265578i
\(723\) 0 0
\(724\) 13.4283 0.880137i 0.499059 0.0327100i
\(725\) 1.48102 + 1.29882i 0.0550038 + 0.0482371i
\(726\) 0 0
\(727\) −5.23752 1.40339i −0.194249 0.0520488i 0.160383 0.987055i \(-0.448727\pi\)
−0.354632 + 0.935006i \(0.615394\pi\)
\(728\) 12.0159 + 60.4079i 0.445338 + 2.23887i
\(729\) 0 0
\(730\) 14.4986i 0.536618i
\(731\) −28.9316 7.35994i −1.07007 0.272217i
\(732\) 0 0
\(733\) 28.5784 21.9290i 1.05557 0.809966i 0.0732741 0.997312i \(-0.476655\pi\)
0.982294 + 0.187346i \(0.0599885\pi\)
\(734\) 2.66891 7.86237i 0.0985115 0.290205i
\(735\) 0 0
\(736\) −1.50946 + 23.0299i −0.0556394 + 0.848893i
\(737\) 1.78053 + 0.354169i 0.0655866 + 0.0130460i
\(738\) 0 0
\(739\) −0.924601 2.23219i −0.0340120 0.0821123i 0.905961 0.423362i \(-0.139150\pi\)
−0.939973 + 0.341249i \(0.889150\pi\)
\(740\) 0.173031 0.225499i 0.00636076 0.00828950i
\(741\) 0 0
\(742\) 18.9933 21.6577i 0.697266 0.795080i
\(743\) −32.1039 + 15.8319i −1.17778 + 0.580815i −0.922479 0.386047i \(-0.873840\pi\)
−0.255298 + 0.966863i \(0.582173\pi\)
\(744\) 0 0
\(745\) −48.3807 55.1676i −1.77253 2.02118i
\(746\) 4.74561 + 1.96569i 0.173749 + 0.0719692i
\(747\) 0 0
\(748\) −2.49588 + 3.83998i −0.0912585 + 0.140403i
\(749\) 17.3070 9.99217i 0.632382 0.365106i
\(750\) 0 0
\(751\) −1.32298 0.449091i −0.0482762 0.0163875i 0.297197 0.954816i \(-0.403948\pi\)
−0.345473 + 0.938429i \(0.612282\pi\)
\(752\) 0.707203 + 2.63932i 0.0257890 + 0.0962460i
\(753\) 0 0
\(754\) 1.44916 0.491925i 0.0527754 0.0179149i
\(755\) −21.7057 32.4850i −0.789953 1.18225i
\(756\) 0 0
\(757\) −34.0649 + 14.1101i −1.23811 + 0.512842i −0.903123 0.429382i \(-0.858732\pi\)
−0.334986 + 0.942223i \(0.608732\pi\)
\(758\) 5.89096 + 2.90510i 0.213969 + 0.105518i
\(759\) 0 0
\(760\) 7.89729 + 16.0141i 0.286465 + 0.580893i
\(761\) 24.0278 6.43824i 0.871008 0.233386i 0.204484 0.978870i \(-0.434448\pi\)
0.666524 + 0.745484i \(0.267782\pi\)
\(762\) 0 0
\(763\) 76.5676 10.0803i 2.77193 0.364932i
\(764\) −10.3294 −0.373704
\(765\) 0 0
\(766\) −13.3687 −0.483032
\(767\) 15.2627 2.00937i 0.551105 0.0725543i
\(768\) 0 0
\(769\) −39.1986 + 10.5032i −1.41354 + 0.378757i −0.883187 0.469021i \(-0.844607\pi\)
−0.530352 + 0.847778i \(0.677940\pi\)
\(770\) 4.63144 + 9.39163i 0.166905 + 0.338451i
\(771\) 0 0
\(772\) −13.9589 6.88375i −0.502391 0.247752i
\(773\) −40.1788 + 16.6426i −1.44513 + 0.598593i −0.961036 0.276422i \(-0.910851\pi\)
−0.484096 + 0.875015i \(0.660851\pi\)
\(774\) 0 0
\(775\) 3.46150 + 5.18051i 0.124341 + 0.186089i
\(776\) −44.6093 + 15.1428i −1.60138 + 0.543595i
\(777\) 0 0
\(778\) 0.500690 + 1.86860i 0.0179506 + 0.0669925i
\(779\) −6.79273 2.30582i −0.243375 0.0826146i
\(780\) 0 0
\(781\) −1.55962 + 0.900448i −0.0558077 + 0.0322206i
\(782\) 2.41317 12.9915i 0.0862950 0.464574i
\(783\) 0 0
\(784\) 8.66093 + 3.58748i 0.309319 + 0.128124i
\(785\) 19.8574 + 22.6430i 0.708740 + 0.808163i
\(786\) 0 0
\(787\) −13.4590 + 6.63725i −0.479762 + 0.236592i −0.666056 0.745902i \(-0.732019\pi\)
0.186294 + 0.982494i \(0.440352\pi\)
\(788\) −1.69896 + 1.93730i −0.0605231 + 0.0690133i
\(789\) 0 0
\(790\) 20.3000 26.4555i 0.722241 0.941243i
\(791\) −0.812266 1.96098i −0.0288809 0.0697246i
\(792\) 0 0
\(793\) 7.62758 + 1.51722i 0.270863 + 0.0538780i
\(794\) −0.450935 + 6.87994i −0.0160031 + 0.244160i
\(795\) 0 0
\(796\) 5.95050 17.5296i 0.210910 0.621320i
\(797\) 7.94728 6.09816i 0.281507 0.216008i −0.458350 0.888772i \(-0.651560\pi\)
0.739858 + 0.672764i \(0.234893\pi\)
\(798\) 0 0
\(799\) −3.17500 21.9591i −0.112323 0.776858i
\(800\) 27.3209i 0.965940i
\(801\) 0 0
\(802\) 1.35592 + 6.81666i 0.0478791 + 0.240705i
\(803\) −4.58999 1.22988i −0.161977 0.0434017i
\(804\) 0 0
\(805\) 46.8414 + 41.0788i 1.65094 + 1.44784i
\(806\) 4.83012 0.316583i 0.170134 0.0111512i
\(807\) 0 0
\(808\) 31.0234 + 23.8051i 1.09140 + 0.837460i
\(809\) 43.7755 29.2499i 1.53907 1.02837i 0.559125 0.829084i \(-0.311137\pi\)
0.979941 0.199287i \(-0.0638627\pi\)
\(810\) 0 0
\(811\) −25.6922 + 38.4511i −0.902175 + 1.35020i 0.0342802 + 0.999412i \(0.489086\pi\)
−0.936455 + 0.350788i \(0.885914\pi\)
\(812\) 0.738132 2.75475i 0.0259034 0.0966727i
\(813\) 0 0
\(814\) −0.0275009 0.0358399i −0.000963906 0.00125619i
\(815\) 0.413745 0.716628i 0.0144929 0.0251024i
\(816\) 0 0
\(817\) −7.67553 13.2944i −0.268533 0.465113i
\(818\) 5.42812 13.1046i 0.189790 0.458193i
\(819\) 0 0
\(820\) −10.0327 10.0327i −0.350358 0.350358i
\(821\) 40.5886 + 2.66032i 1.41655 + 0.0928457i 0.754346 0.656477i \(-0.227954\pi\)
0.662205 + 0.749323i \(0.269621\pi\)
\(822\) 0 0
\(823\) 0.457694 + 6.98305i 0.0159542 + 0.243414i 0.998386 + 0.0567922i \(0.0180872\pi\)
−0.982432 + 0.186622i \(0.940246\pi\)
\(824\) 0.686495 5.21445i 0.0239152 0.181654i
\(825\) 0 0
\(826\) −6.15302 + 12.4771i −0.214091 + 0.434133i
\(827\) −8.31435 + 41.7991i −0.289118 + 1.45350i 0.514058 + 0.857755i \(0.328141\pi\)
−0.803177 + 0.595741i \(0.796859\pi\)
\(828\) 0 0
\(829\) −13.5908 + 13.5908i −0.472029 + 0.472029i −0.902571 0.430542i \(-0.858322\pi\)
0.430542 + 0.902571i \(0.358322\pi\)
\(830\) −6.95706 + 6.10118i −0.241483 + 0.211775i
\(831\) 0 0
\(832\) 14.4131 + 8.32138i 0.499683 + 0.288492i
\(833\) −66.4012 37.2211i −2.30066 1.28964i
\(834\) 0 0
\(835\) 0.727835 + 5.52846i 0.0251878 + 0.191320i
\(836\) −2.30979 + 0.459447i −0.0798859 + 0.0158903i
\(837\) 0 0
\(838\) −1.96555 1.31334i −0.0678988 0.0453685i
\(839\) −10.0456 29.5934i −0.346813 1.02168i −0.970727 0.240185i \(-0.922792\pi\)
0.623914 0.781493i \(-0.285542\pi\)
\(840\) 0 0
\(841\) 28.5773 + 3.76228i 0.985425 + 0.129734i
\(842\) 11.2234 + 1.47759i 0.386783 + 0.0509210i
\(843\) 0 0
\(844\) 3.49669 + 10.3009i 0.120361 + 0.354572i
\(845\) −19.0642 12.7383i −0.655828 0.438210i
\(846\) 0 0
\(847\) 51.0735 10.1592i 1.75491 0.349073i
\(848\) 0.468165 + 3.55607i 0.0160769 + 0.122116i
\(849\) 0 0
\(850\) 1.84472 15.5330i 0.0632734 0.532778i
\(851\) −0.232769 0.134389i −0.00797921 0.00460680i
\(852\) 0 0
\(853\) −13.9130 + 12.2014i −0.476373 + 0.417768i −0.863570 0.504229i \(-0.831777\pi\)
0.387197 + 0.921997i \(0.373443\pi\)
\(854\) −4.96954 + 4.96954i −0.170054 + 0.170054i
\(855\) 0 0
\(856\) 2.08986 10.5064i 0.0714300 0.359103i
\(857\) 1.95578 3.96593i 0.0668082 0.135474i −0.860907 0.508762i \(-0.830103\pi\)
0.927715 + 0.373289i \(0.121770\pi\)
\(858\) 0 0
\(859\) 3.86989 29.3947i 0.132039 1.00294i −0.789254 0.614067i \(-0.789533\pi\)
0.921293 0.388869i \(-0.127134\pi\)
\(860\) −1.98584 30.2981i −0.0677166 1.03316i
\(861\) 0 0
\(862\) −17.9106 1.17392i −0.610038 0.0399840i
\(863\) 5.63591 + 5.63591i 0.191849 + 0.191849i 0.796494 0.604646i \(-0.206685\pi\)
−0.604646 + 0.796494i \(0.706685\pi\)
\(864\) 0 0
\(865\) 21.0388 50.7922i 0.715341 1.72699i
\(866\) −14.2979 24.7646i −0.485861 0.841536i
\(867\) 0 0
\(868\) 4.51022 7.81192i 0.153087 0.265154i
\(869\) 6.65330 + 8.67075i 0.225698 + 0.294135i
\(870\) 0 0
\(871\) 2.57099 9.59508i 0.0871148 0.325117i
\(872\) 22.9989 34.4203i 0.778841 1.16562i
\(873\) 0 0
\(874\) 5.64964 3.77497i 0.191102 0.127690i
\(875\) −3.81043 2.92384i −0.128816 0.0988439i
\(876\) 0 0
\(877\) −31.7829 + 2.08316i −1.07323 + 0.0703433i −0.591756 0.806117i \(-0.701565\pi\)
−0.481474 + 0.876460i \(0.659899\pi\)
\(878\) 8.97806 + 7.87354i 0.302995 + 0.265719i
\(879\) 0 0
\(880\) −1.25941 0.337459i −0.0424548 0.0113757i
\(881\) −2.24207 11.2716i −0.0755371 0.379751i 0.924462 0.381275i \(-0.124515\pi\)
−0.999999 + 0.00152420i \(0.999515\pi\)
\(882\) 0 0
\(883\) 20.4281i 0.687460i 0.939068 + 0.343730i \(0.111691\pi\)
−0.939068 + 0.343730i \(0.888309\pi\)
\(884\) 20.0734 + 15.0019i 0.675141 + 0.504570i
\(885\) 0 0
\(886\) 12.5842 9.65623i 0.422776 0.324407i
\(887\) 6.81537 20.0774i 0.228838 0.674134i −0.770489 0.637453i \(-0.779988\pi\)
0.999327 0.0366814i \(-0.0116787\pi\)
\(888\) 0 0
\(889\) 5.92861 90.4532i 0.198839 3.03370i
\(890\) 11.4045 + 2.26850i 0.382281 + 0.0760404i
\(891\) 0 0
\(892\) −9.38249 22.6513i −0.314149 0.758422i
\(893\) 6.94551 9.05157i 0.232423 0.302899i
\(894\) 0 0
\(895\) −47.6641 + 54.3505i −1.59324 + 1.81674i
\(896\) 39.1897 19.3262i 1.30924 0.645644i
\(897\) 0 0
\(898\) 10.3996 + 11.8585i 0.347040 + 0.395723i
\(899\) −0.514561 0.213138i −0.0171616 0.00710856i
\(900\) 0 0
\(901\) −0.369645 29.1223i −0.0123147 0.970206i
\(902\) −1.95293 + 1.12752i −0.0650254 + 0.0375425i
\(903\) 0 0
\(904\) −1.07738 0.365721i −0.0358331 0.0121637i
\(905\) −8.05161 30.0490i −0.267644 0.998863i
\(906\) 0 0
\(907\) 36.8376 12.5047i 1.22317 0.415212i 0.366183 0.930543i \(-0.380664\pi\)
0.856991 + 0.515331i \(0.172331\pi\)
\(908\) 17.4538 + 26.1214i 0.579223 + 0.866869i
\(909\) 0 0
\(910\) 52.9365 21.9270i 1.75483 0.726874i
\(911\) 16.8905 + 8.32947i 0.559607 + 0.275968i 0.700017 0.714126i \(-0.253176\pi\)
−0.140410 + 0.990093i \(0.544842\pi\)
\(912\) 0 0
\(913\) −1.34137 2.72002i −0.0443928 0.0900197i
\(914\) −12.7760 + 3.42333i −0.422594 + 0.113234i
\(915\) 0 0
\(916\) −19.6656 + 2.58903i −0.649771 + 0.0855440i
\(917\) 50.5101 1.66799
\(918\) 0 0
\(919\) −1.78397 −0.0588476 −0.0294238 0.999567i \(-0.509367\pi\)
−0.0294238 + 0.999567i \(0.509367\pi\)
\(920\) 33.1104 4.35907i 1.09162 0.143714i
\(921\) 0 0
\(922\) −20.6078 + 5.52184i −0.678681 + 0.181852i
\(923\) 4.35837 + 8.83791i 0.143458 + 0.290903i
\(924\) 0 0
\(925\) −0.285363 0.140725i −0.00938267 0.00462702i
\(926\) 22.8271 9.45527i 0.750143 0.310720i
\(927\) 0 0
\(928\) −1.35684 2.03066i −0.0445406 0.0666597i
\(929\) 21.4783 7.29092i 0.704682 0.239207i 0.0539815 0.998542i \(-0.482809\pi\)
0.650700 + 0.759335i \(0.274475\pi\)
\(930\) 0 0
\(931\) −10.1311 37.8096i −0.332032 1.23916i
\(932\) 31.2894 + 10.6213i 1.02492 + 0.347913i
\(933\) 0 0
\(934\) 24.4723 14.1291i 0.800759 0.462318i
\(935\) 9.83200 + 3.92711i 0.321541 + 0.128430i
\(936\) 0 0
\(937\) −40.8313 16.9129i −1.33390 0.552520i −0.402136 0.915580i \(-0.631732\pi\)
−0.931766 + 0.363060i \(0.881732\pi\)
\(938\) 5.91884 + 6.74915i 0.193257 + 0.220367i
\(939\) 0 0
\(940\) 20.2393 9.98092i 0.660133 0.325542i
\(941\) −11.3524 + 12.9449i −0.370078 + 0.421993i −0.906665 0.421852i \(-0.861380\pi\)
0.536587 + 0.843845i \(0.319713\pi\)
\(942\) 0 0
\(943\) −8.16766 + 10.6443i −0.265976 + 0.346626i
\(944\) −0.662882 1.60034i −0.0215750 0.0520866i
\(945\) 0 0
\(946\) −4.73306 0.941464i −0.153885 0.0306096i
\(947\) −3.72847 + 56.8854i −0.121159 + 1.84853i 0.315531 + 0.948915i \(0.397817\pi\)
−0.436690 + 0.899612i \(0.643849\pi\)
\(948\) 0 0
\(949\) −8.35790 + 24.6216i −0.271309 + 0.799251i
\(950\) 6.38136 4.89659i 0.207039 0.158866i
\(951\) 0 0
\(952\) −53.0543 + 18.7638i −1.71950 + 0.608137i
\(953\) 26.5831i 0.861112i 0.902564 + 0.430556i \(0.141682\pi\)
−0.902564 + 0.430556i \(0.858318\pi\)
\(954\) 0 0
\(955\) 4.65849 + 23.4198i 0.150745 + 0.757846i
\(956\) −34.9844 9.37403i −1.13148 0.303178i
\(957\) 0 0
\(958\) 5.64092 + 4.94695i 0.182250 + 0.159829i
\(959\) −1.04788 + 0.0686814i −0.0338377 + 0.00221784i
\(960\) 0 0
\(961\) 23.1964 + 17.7992i 0.748270 + 0.574168i
\(962\) −0.205530 + 0.137331i −0.00662656 + 0.00442773i
\(963\) 0 0
\(964\) 6.92685 10.3668i 0.223099 0.333891i
\(965\) −9.31215 + 34.7534i −0.299769 + 1.11875i
\(966\) 0 0
\(967\) 3.37951 + 4.40426i 0.108678 + 0.141631i 0.844525 0.535516i \(-0.179883\pi\)
−0.735848 + 0.677147i \(0.763216\pi\)
\(968\) 13.9567 24.1738i 0.448586 0.776974i
\(969\) 0 0
\(970\) 21.9128 + 37.9540i 0.703577 + 1.21863i
\(971\) 3.10599 7.49852i 0.0996759 0.240639i −0.866173 0.499744i \(-0.833428\pi\)
0.965849 + 0.259105i \(0.0834275\pi\)
\(972\) 0 0
\(973\) 15.1123 + 15.1123i 0.484479 + 0.484479i
\(974\) −3.49720 0.229219i −0.112058 0.00734465i
\(975\) 0 0
\(976\) −0.0572327 0.873202i −0.00183197 0.0279505i
\(977\) 1.75362 13.3200i 0.0561031 0.426146i −0.940227 0.340549i \(-0.889387\pi\)
0.996330 0.0855966i \(-0.0272796\pi\)
\(978\) 0 0
\(979\) −1.68559 + 3.41803i −0.0538716 + 0.109241i
\(980\) 15.1043 75.9347i 0.482491 2.42564i
\(981\) 0 0
\(982\) 10.4629 10.4629i 0.333884 0.333884i
\(983\) −46.0381 + 40.3743i −1.46839 + 1.28774i −0.592181 + 0.805805i \(0.701733\pi\)
−0.876206 + 0.481936i \(0.839934\pi\)
\(984\) 0 0
\(985\) 5.15865 + 2.97835i 0.164368 + 0.0948980i
\(986\) 0.634308 + 1.24612i 0.0202005 + 0.0396847i
\(987\) 0 0
\(988\) 1.68200 + 12.7761i 0.0535117 + 0.406461i
\(989\) −28.1602 + 5.60142i −0.895444 + 0.178115i
\(990\) 0 0
\(991\) 7.14926 + 4.77698i 0.227104 + 0.151746i 0.663917 0.747806i \(-0.268893\pi\)
−0.436813 + 0.899552i \(0.643893\pi\)
\(992\) −2.48301 7.31473i −0.0788358 0.232243i
\(993\) 0 0
\(994\) −8.82889 1.16235i −0.280035 0.0368674i
\(995\) −42.4285 5.58582i −1.34507 0.177082i
\(996\) 0 0
\(997\) 15.1502 + 44.6310i 0.479811 + 1.41348i 0.870141 + 0.492802i \(0.164027\pi\)
−0.390331 + 0.920675i \(0.627639\pi\)
\(998\) −17.4484 11.6587i −0.552320 0.369048i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.368.9 256
3.2 odd 2 153.2.s.a.113.8 yes 256
9.2 odd 6 inner 459.2.y.a.62.9 256
9.7 even 3 153.2.s.a.11.8 256
17.14 odd 16 inner 459.2.y.a.422.9 256
51.14 even 16 153.2.s.a.14.8 yes 256
153.65 even 48 inner 459.2.y.a.116.9 256
153.133 odd 48 153.2.s.a.65.8 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.8 256 9.7 even 3
153.2.s.a.14.8 yes 256 51.14 even 16
153.2.s.a.65.8 yes 256 153.133 odd 48
153.2.s.a.113.8 yes 256 3.2 odd 2
459.2.y.a.62.9 256 9.2 odd 6 inner
459.2.y.a.116.9 256 153.65 even 48 inner
459.2.y.a.368.9 256 1.1 even 1 trivial
459.2.y.a.422.9 256 17.14 odd 16 inner