Properties

Label 459.2.y.a.62.6
Level $459$
Weight $2$
Character 459.62
Analytic conductor $3.665$
Analytic rank $0$
Dimension $256$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(44,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([40, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.44");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.y (of order \(48\), degree \(16\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(256\)
Relative dimension: \(16\) over \(\Q(\zeta_{48})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 62.6
Character \(\chi\) \(=\) 459.62
Dual form 459.2.y.a.422.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.260648 - 0.339683i) q^{2} +(0.470191 - 1.75478i) q^{4} +(-1.46900 - 0.0962834i) q^{5} +(-0.0205877 - 0.314107i) q^{7} +(-1.50976 + 0.625364i) q^{8} +(0.350186 + 0.524091i) q^{10} +(-1.30742 - 1.14658i) q^{11} +(-4.45178 - 1.19285i) q^{13} +(-0.101331 + 0.0888647i) q^{14} +(-2.54064 - 1.46684i) q^{16} +(0.980810 - 4.00475i) q^{17} +(2.71326 + 1.12387i) q^{19} +(-0.859666 + 2.53250i) q^{20} +(-0.0486964 + 0.742964i) q^{22} +(1.15753 + 3.40999i) q^{23} +(-2.80853 - 0.369750i) q^{25} +(0.755157 + 1.82311i) q^{26} +(-0.560867 - 0.111563i) q^{28} +(-6.45120 + 3.18138i) q^{29} +(-6.04943 - 6.89806i) q^{31} +(0.590552 + 4.48569i) q^{32} +(-1.61599 + 0.710666i) q^{34} +0.463405i q^{35} +(0.433080 + 2.17724i) q^{37} +(-0.325446 - 1.21458i) q^{38} +(2.27805 - 0.773295i) q^{40} +(1.97235 - 3.99953i) q^{41} +(0.375298 - 2.85067i) q^{43} +(-2.62673 + 1.75512i) q^{44} +(0.856606 - 1.28200i) q^{46} +(4.65071 - 1.24615i) q^{47} +(6.84187 - 0.900750i) q^{49} +(0.606441 + 1.05039i) q^{50} +(-4.18637 + 7.25101i) q^{52} +(4.06143 - 9.80516i) q^{53} +(1.81021 + 1.81021i) q^{55} +(0.227514 + 0.461352i) q^{56} +(2.76216 + 1.36214i) q^{58} +(-5.20950 - 3.99739i) q^{59} +(-3.81967 + 0.250355i) q^{61} +(-0.766381 + 3.85286i) q^{62} +(-2.77905 + 2.77905i) q^{64} +(6.42482 + 2.18093i) q^{65} +(4.04083 - 2.33298i) q^{67} +(-6.56627 - 3.60410i) q^{68} +(0.157411 - 0.120786i) q^{70} +(-5.89482 + 1.17255i) q^{71} +(6.74041 + 4.50380i) q^{73} +(0.626690 - 0.714603i) q^{74} +(3.24788 - 4.23273i) q^{76} +(-0.333232 + 0.434276i) q^{77} +(5.06005 - 5.76989i) q^{79} +(3.59096 + 2.39940i) q^{80} +(-1.87266 + 0.372496i) q^{82} +(3.29965 - 2.53191i) q^{83} +(-1.82640 + 5.78854i) q^{85} +(-1.06615 + 0.615539i) q^{86} +(2.69093 + 0.913447i) q^{88} +(2.40264 - 2.40264i) q^{89} +(-0.283031 + 1.42289i) q^{91} +(6.52802 - 0.427869i) q^{92} +(-1.63550 - 1.25496i) q^{94} +(-3.87757 - 1.91220i) q^{95} +(8.28805 + 16.8065i) q^{97} +(-2.08929 - 2.08929i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 256 q + 24 q^{2} - 8 q^{4} + 24 q^{5} - 8 q^{7} - 32 q^{10} + 24 q^{11} - 8 q^{13} + 24 q^{14} - 32 q^{19} + 24 q^{20} - 8 q^{22} + 24 q^{23} - 8 q^{25} - 32 q^{28} + 24 q^{29} - 8 q^{31} + 24 q^{32} - 56 q^{34}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.260648 0.339683i −0.184306 0.240192i 0.692058 0.721842i \(-0.256704\pi\)
−0.876364 + 0.481650i \(0.840038\pi\)
\(3\) 0 0
\(4\) 0.470191 1.75478i 0.235095 0.877388i
\(5\) −1.46900 0.0962834i −0.656957 0.0430592i −0.266721 0.963774i \(-0.585940\pi\)
−0.390236 + 0.920715i \(0.627607\pi\)
\(6\) 0 0
\(7\) −0.0205877 0.314107i −0.00778140 0.118721i 0.992201 0.124648i \(-0.0397801\pi\)
−0.999982 + 0.00592667i \(0.998113\pi\)
\(8\) −1.50976 + 0.625364i −0.533781 + 0.221099i
\(9\) 0 0
\(10\) 0.350186 + 0.524091i 0.110739 + 0.165732i
\(11\) −1.30742 1.14658i −0.394203 0.345707i 0.439183 0.898397i \(-0.355268\pi\)
−0.833387 + 0.552691i \(0.813601\pi\)
\(12\) 0 0
\(13\) −4.45178 1.19285i −1.23470 0.330837i −0.418294 0.908312i \(-0.637372\pi\)
−0.816409 + 0.577474i \(0.804038\pi\)
\(14\) −0.101331 + 0.0888647i −0.0270818 + 0.0237501i
\(15\) 0 0
\(16\) −2.54064 1.46684i −0.635159 0.366709i
\(17\) 0.980810 4.00475i 0.237881 0.971294i
\(18\) 0 0
\(19\) 2.71326 + 1.12387i 0.622464 + 0.257833i 0.671547 0.740962i \(-0.265630\pi\)
−0.0490835 + 0.998795i \(0.515630\pi\)
\(20\) −0.859666 + 2.53250i −0.192227 + 0.566283i
\(21\) 0 0
\(22\) −0.0486964 + 0.742964i −0.0103821 + 0.158400i
\(23\) 1.15753 + 3.40999i 0.241363 + 0.711031i 0.998340 + 0.0575906i \(0.0183418\pi\)
−0.756978 + 0.653441i \(0.773325\pi\)
\(24\) 0 0
\(25\) −2.80853 0.369750i −0.561707 0.0739501i
\(26\) 0.755157 + 1.82311i 0.148099 + 0.357541i
\(27\) 0 0
\(28\) −0.560867 0.111563i −0.105994 0.0210835i
\(29\) −6.45120 + 3.18138i −1.19796 + 0.590767i −0.928172 0.372153i \(-0.878620\pi\)
−0.269786 + 0.962920i \(0.586953\pi\)
\(30\) 0 0
\(31\) −6.04943 6.89806i −1.08651 1.23893i −0.969316 0.245819i \(-0.920943\pi\)
−0.117194 0.993109i \(-0.537390\pi\)
\(32\) 0.590552 + 4.48569i 0.104396 + 0.792965i
\(33\) 0 0
\(34\) −1.61599 + 0.710666i −0.277140 + 0.121878i
\(35\) 0.463405i 0.0783298i
\(36\) 0 0
\(37\) 0.433080 + 2.17724i 0.0711978 + 0.357936i 0.999917 0.0128470i \(-0.00408945\pi\)
−0.928720 + 0.370783i \(0.879089\pi\)
\(38\) −0.325446 1.21458i −0.0527944 0.197031i
\(39\) 0 0
\(40\) 2.27805 0.773295i 0.360192 0.122269i
\(41\) 1.97235 3.99953i 0.308029 0.624622i −0.686725 0.726918i \(-0.740952\pi\)
0.994754 + 0.102296i \(0.0326188\pi\)
\(42\) 0 0
\(43\) 0.375298 2.85067i 0.0572324 0.434723i −0.938708 0.344712i \(-0.887977\pi\)
0.995941 0.0900108i \(-0.0286902\pi\)
\(44\) −2.62673 + 1.75512i −0.395994 + 0.264595i
\(45\) 0 0
\(46\) 0.856606 1.28200i 0.126300 0.189021i
\(47\) 4.65071 1.24615i 0.678376 0.181770i 0.0968512 0.995299i \(-0.469123\pi\)
0.581525 + 0.813528i \(0.302456\pi\)
\(48\) 0 0
\(49\) 6.84187 0.900750i 0.977411 0.128679i
\(50\) 0.606441 + 1.05039i 0.0857637 + 0.148547i
\(51\) 0 0
\(52\) −4.18637 + 7.25101i −0.580546 + 1.00553i
\(53\) 4.06143 9.80516i 0.557881 1.34684i −0.353560 0.935412i \(-0.615029\pi\)
0.911441 0.411431i \(-0.134971\pi\)
\(54\) 0 0
\(55\) 1.81021 + 1.81021i 0.244089 + 0.244089i
\(56\) 0.227514 + 0.461352i 0.0304028 + 0.0616507i
\(57\) 0 0
\(58\) 2.76216 + 1.36214i 0.362689 + 0.178858i
\(59\) −5.20950 3.99739i −0.678220 0.520416i 0.211238 0.977435i \(-0.432251\pi\)
−0.889457 + 0.457019i \(0.848917\pi\)
\(60\) 0 0
\(61\) −3.81967 + 0.250355i −0.489059 + 0.0320546i −0.307938 0.951406i \(-0.599639\pi\)
−0.181120 + 0.983461i \(0.557972\pi\)
\(62\) −0.766381 + 3.85286i −0.0973305 + 0.489313i
\(63\) 0 0
\(64\) −2.77905 + 2.77905i −0.347382 + 0.347382i
\(65\) 6.42482 + 2.18093i 0.796901 + 0.270511i
\(66\) 0 0
\(67\) 4.04083 2.33298i 0.493666 0.285018i −0.232428 0.972614i \(-0.574667\pi\)
0.726094 + 0.687595i \(0.241334\pi\)
\(68\) −6.56627 3.60410i −0.796277 0.437061i
\(69\) 0 0
\(70\) 0.157411 0.120786i 0.0188142 0.0144367i
\(71\) −5.89482 + 1.17255i −0.699586 + 0.139156i −0.532054 0.846710i \(-0.678580\pi\)
−0.167532 + 0.985867i \(0.553580\pi\)
\(72\) 0 0
\(73\) 6.74041 + 4.50380i 0.788905 + 0.527130i 0.883525 0.468384i \(-0.155164\pi\)
−0.0946199 + 0.995513i \(0.530164\pi\)
\(74\) 0.626690 0.714603i 0.0728512 0.0830709i
\(75\) 0 0
\(76\) 3.24788 4.23273i 0.372558 0.485527i
\(77\) −0.333232 + 0.434276i −0.0379753 + 0.0494904i
\(78\) 0 0
\(79\) 5.06005 5.76989i 0.569301 0.649163i −0.393516 0.919318i \(-0.628742\pi\)
0.962817 + 0.270155i \(0.0870748\pi\)
\(80\) 3.59096 + 2.39940i 0.401482 + 0.268262i
\(81\) 0 0
\(82\) −1.87266 + 0.372496i −0.206801 + 0.0411353i
\(83\) 3.29965 2.53191i 0.362184 0.277913i −0.411598 0.911365i \(-0.635029\pi\)
0.773782 + 0.633452i \(0.218363\pi\)
\(84\) 0 0
\(85\) −1.82640 + 5.78854i −0.198101 + 0.627855i
\(86\) −1.06615 + 0.615539i −0.114965 + 0.0663753i
\(87\) 0 0
\(88\) 2.69093 + 0.913447i 0.286854 + 0.0973738i
\(89\) 2.40264 2.40264i 0.254680 0.254680i −0.568206 0.822886i \(-0.692363\pi\)
0.822886 + 0.568206i \(0.192363\pi\)
\(90\) 0 0
\(91\) −0.283031 + 1.42289i −0.0296697 + 0.149160i
\(92\) 6.52802 0.427869i 0.680594 0.0446085i
\(93\) 0 0
\(94\) −1.63550 1.25496i −0.168689 0.129439i
\(95\) −3.87757 1.91220i −0.397830 0.196188i
\(96\) 0 0
\(97\) 8.28805 + 16.8065i 0.841524 + 1.70644i 0.697157 + 0.716919i \(0.254448\pi\)
0.144367 + 0.989524i \(0.453885\pi\)
\(98\) −2.08929 2.08929i −0.211050 0.211050i
\(99\) 0 0
\(100\) −1.96938 + 4.75449i −0.196938 + 0.475449i
\(101\) 1.81085 3.13649i 0.180187 0.312092i −0.761757 0.647862i \(-0.775663\pi\)
0.941944 + 0.335770i \(0.108996\pi\)
\(102\) 0 0
\(103\) 6.75574 + 11.7013i 0.665663 + 1.15296i 0.979105 + 0.203355i \(0.0651844\pi\)
−0.313442 + 0.949607i \(0.601482\pi\)
\(104\) 7.46710 0.983062i 0.732209 0.0963972i
\(105\) 0 0
\(106\) −4.38926 + 1.17610i −0.426322 + 0.114233i
\(107\) −2.01958 + 3.02251i −0.195240 + 0.292197i −0.916153 0.400828i \(-0.868723\pi\)
0.720913 + 0.693025i \(0.243723\pi\)
\(108\) 0 0
\(109\) 6.81952 4.55666i 0.653192 0.436449i −0.184321 0.982866i \(-0.559009\pi\)
0.837513 + 0.546417i \(0.184009\pi\)
\(110\) 0.143070 1.08673i 0.0136412 0.103615i
\(111\) 0 0
\(112\) −0.408438 + 0.828230i −0.0385938 + 0.0782604i
\(113\) 17.8320 6.05316i 1.67750 0.569434i 0.689552 0.724236i \(-0.257807\pi\)
0.987945 + 0.154802i \(0.0494741\pi\)
\(114\) 0 0
\(115\) −1.37209 5.12072i −0.127948 0.477510i
\(116\) 2.54931 + 12.8163i 0.236698 + 1.18996i
\(117\) 0 0
\(118\) 2.81149i 0.258819i
\(119\) −1.27811 0.225631i −0.117164 0.0206835i
\(120\) 0 0
\(121\) −1.04108 7.90776i −0.0946433 0.718887i
\(122\) 1.08063 + 1.23222i 0.0978358 + 0.111560i
\(123\) 0 0
\(124\) −14.9489 + 7.37200i −1.34245 + 0.662025i
\(125\) 11.3095 + 2.24959i 1.01155 + 0.201210i
\(126\) 0 0
\(127\) −6.18204 14.9248i −0.548568 1.32436i −0.918544 0.395318i \(-0.870634\pi\)
0.369977 0.929041i \(-0.379366\pi\)
\(128\) 10.6397 + 1.40075i 0.940428 + 0.123810i
\(129\) 0 0
\(130\) −0.933791 2.75086i −0.0818989 0.241266i
\(131\) −0.471269 + 7.19017i −0.0411750 + 0.628209i 0.926546 + 0.376183i \(0.122763\pi\)
−0.967720 + 0.252026i \(0.918903\pi\)
\(132\) 0 0
\(133\) 0.297155 0.875391i 0.0257666 0.0759060i
\(134\) −1.84571 0.764518i −0.159445 0.0660443i
\(135\) 0 0
\(136\) 1.02364 + 6.65958i 0.0877760 + 0.571054i
\(137\) −16.9099 9.76295i −1.44471 0.834105i −0.446553 0.894757i \(-0.647349\pi\)
−0.998159 + 0.0606525i \(0.980682\pi\)
\(138\) 0 0
\(139\) 7.89024 6.91956i 0.669242 0.586909i −0.255821 0.966724i \(-0.582346\pi\)
0.925062 + 0.379815i \(0.124012\pi\)
\(140\) 0.813173 + 0.217889i 0.0687256 + 0.0184150i
\(141\) 0 0
\(142\) 1.93477 + 1.69675i 0.162362 + 0.142388i
\(143\) 4.45267 + 6.66389i 0.372351 + 0.557262i
\(144\) 0 0
\(145\) 9.78313 4.05231i 0.812445 0.336526i
\(146\) −0.227010 3.46351i −0.0187875 0.286642i
\(147\) 0 0
\(148\) 4.02419 + 0.263760i 0.330787 + 0.0216809i
\(149\) 0.760197 2.83710i 0.0622778 0.232424i −0.927771 0.373151i \(-0.878277\pi\)
0.990048 + 0.140727i \(0.0449440\pi\)
\(150\) 0 0
\(151\) −2.39553 3.12191i −0.194945 0.254058i 0.685645 0.727936i \(-0.259520\pi\)
−0.880590 + 0.473878i \(0.842854\pi\)
\(152\) −4.79920 −0.389266
\(153\) 0 0
\(154\) 0.234373 0.0188863
\(155\) 8.22245 + 10.7157i 0.660443 + 0.860706i
\(156\) 0 0
\(157\) −1.50636 + 5.62181i −0.120221 + 0.448669i −0.999624 0.0274075i \(-0.991275\pi\)
0.879404 + 0.476077i \(0.157941\pi\)
\(158\) −3.27883 0.214906i −0.260850 0.0170970i
\(159\) 0 0
\(160\) −0.435624 6.64634i −0.0344391 0.525439i
\(161\) 1.04727 0.433793i 0.0825364 0.0341877i
\(162\) 0 0
\(163\) −4.31689 6.46068i −0.338125 0.506039i 0.622975 0.782242i \(-0.285924\pi\)
−0.961099 + 0.276203i \(0.910924\pi\)
\(164\) −6.09090 5.34158i −0.475619 0.417107i
\(165\) 0 0
\(166\) −1.72010 0.460898i −0.133505 0.0357727i
\(167\) 2.26505 1.98640i 0.175275 0.153712i −0.567214 0.823571i \(-0.691979\pi\)
0.742489 + 0.669859i \(0.233645\pi\)
\(168\) 0 0
\(169\) 7.13714 + 4.12063i 0.549011 + 0.316972i
\(170\) 2.44232 0.888375i 0.187317 0.0681352i
\(171\) 0 0
\(172\) −4.82582 1.99892i −0.367966 0.152416i
\(173\) −7.99671 + 23.5575i −0.607978 + 1.79105i 0.00376823 + 0.999993i \(0.498801\pi\)
−0.611747 + 0.791054i \(0.709533\pi\)
\(174\) 0 0
\(175\) −0.0583200 + 0.889792i −0.00440858 + 0.0672619i
\(176\) 1.63984 + 4.83082i 0.123608 + 0.364137i
\(177\) 0 0
\(178\) −1.44238 0.189893i −0.108111 0.0142331i
\(179\) −5.98135 14.4403i −0.447067 1.07932i −0.973415 0.229047i \(-0.926439\pi\)
0.526348 0.850269i \(-0.323561\pi\)
\(180\) 0 0
\(181\) −0.871620 0.173376i −0.0647870 0.0128869i 0.162590 0.986694i \(-0.448015\pi\)
−0.227377 + 0.973807i \(0.573015\pi\)
\(182\) 0.557105 0.274734i 0.0412954 0.0203646i
\(183\) 0 0
\(184\) −3.88008 4.42439i −0.286044 0.326170i
\(185\) −0.426562 3.24006i −0.0313615 0.238214i
\(186\) 0 0
\(187\) −5.87410 + 4.11133i −0.429557 + 0.300650i
\(188\) 8.74689i 0.637933i
\(189\) 0 0
\(190\) 0.361137 + 1.81556i 0.0261996 + 0.131714i
\(191\) −5.51673 20.5887i −0.399177 1.48975i −0.814548 0.580096i \(-0.803015\pi\)
0.415372 0.909652i \(-0.363651\pi\)
\(192\) 0 0
\(193\) −6.94554 + 2.35769i −0.499951 + 0.169710i −0.560012 0.828484i \(-0.689204\pi\)
0.0600615 + 0.998195i \(0.480870\pi\)
\(194\) 3.54863 7.19590i 0.254776 0.516636i
\(195\) 0 0
\(196\) 1.63637 12.4295i 0.116884 0.887820i
\(197\) −17.8237 + 11.9094i −1.26988 + 0.848509i −0.993643 0.112579i \(-0.964089\pi\)
−0.276241 + 0.961088i \(0.589089\pi\)
\(198\) 0 0
\(199\) −1.58466 + 2.37161i −0.112333 + 0.168119i −0.883376 0.468664i \(-0.844735\pi\)
0.771043 + 0.636783i \(0.219735\pi\)
\(200\) 4.47144 1.19812i 0.316179 0.0847199i
\(201\) 0 0
\(202\) −1.53741 + 0.202404i −0.108172 + 0.0142411i
\(203\) 1.13211 + 1.96087i 0.0794585 + 0.137626i
\(204\) 0 0
\(205\) −3.28247 + 5.68541i −0.229258 + 0.397086i
\(206\) 2.21386 5.34473i 0.154247 0.372385i
\(207\) 0 0
\(208\) 9.56064 + 9.56064i 0.662911 + 0.662911i
\(209\) −2.25877 4.58034i −0.156243 0.316829i
\(210\) 0 0
\(211\) −20.0517 9.88840i −1.38042 0.680746i −0.407780 0.913080i \(-0.633697\pi\)
−0.972636 + 0.232334i \(0.925364\pi\)
\(212\) −15.2962 11.7372i −1.05055 0.806114i
\(213\) 0 0
\(214\) 1.55310 0.101795i 0.106168 0.00695859i
\(215\) −0.825785 + 4.15150i −0.0563180 + 0.283130i
\(216\) 0 0
\(217\) −2.04218 + 2.04218i −0.138632 + 0.138632i
\(218\) −3.32532 1.12879i −0.225219 0.0764515i
\(219\) 0 0
\(220\) 4.02766 2.32537i 0.271545 0.156776i
\(221\) −9.14342 + 16.6583i −0.615053 + 1.12056i
\(222\) 0 0
\(223\) 16.3407 12.5387i 1.09426 0.839653i 0.106293 0.994335i \(-0.466102\pi\)
0.987964 + 0.154682i \(0.0494353\pi\)
\(224\) 1.39683 0.277846i 0.0933295 0.0185644i
\(225\) 0 0
\(226\) −6.70405 4.47950i −0.445947 0.297972i
\(227\) −8.45193 + 9.63758i −0.560975 + 0.639669i −0.960906 0.276876i \(-0.910701\pi\)
0.399931 + 0.916545i \(0.369034\pi\)
\(228\) 0 0
\(229\) −16.7037 + 21.7687i −1.10381 + 1.43852i −0.217128 + 0.976143i \(0.569669\pi\)
−0.886685 + 0.462374i \(0.846998\pi\)
\(230\) −1.38179 + 1.80078i −0.0911126 + 0.118740i
\(231\) 0 0
\(232\) 7.75026 8.83747i 0.508829 0.580209i
\(233\) −7.36408 4.92052i −0.482437 0.322354i 0.290458 0.956888i \(-0.406192\pi\)
−0.772895 + 0.634533i \(0.781192\pi\)
\(234\) 0 0
\(235\) −6.95188 + 1.38282i −0.453491 + 0.0902049i
\(236\) −9.46399 + 7.26197i −0.616053 + 0.472714i
\(237\) 0 0
\(238\) 0.256495 + 0.492964i 0.0166261 + 0.0319541i
\(239\) −17.0123 + 9.82203i −1.10043 + 0.635334i −0.936334 0.351110i \(-0.885804\pi\)
−0.164097 + 0.986444i \(0.552471\pi\)
\(240\) 0 0
\(241\) 17.3786 + 5.89925i 1.11946 + 0.380004i 0.819001 0.573792i \(-0.194528\pi\)
0.300455 + 0.953796i \(0.402861\pi\)
\(242\) −2.41478 + 2.41478i −0.155228 + 0.155228i
\(243\) 0 0
\(244\) −1.35666 + 6.82038i −0.0868512 + 0.436630i
\(245\) −10.1374 + 0.664443i −0.647658 + 0.0424497i
\(246\) 0 0
\(247\) −10.7382 8.23973i −0.683257 0.524281i
\(248\) 13.4470 + 6.63133i 0.853885 + 0.421090i
\(249\) 0 0
\(250\) −2.18364 4.42799i −0.138106 0.280051i
\(251\) 8.88797 + 8.88797i 0.561004 + 0.561004i 0.929593 0.368589i \(-0.120159\pi\)
−0.368589 + 0.929593i \(0.620159\pi\)
\(252\) 0 0
\(253\) 2.39643 5.78550i 0.150663 0.363731i
\(254\) −3.45836 + 5.99005i −0.216997 + 0.375849i
\(255\) 0 0
\(256\) 1.63276 + 2.82802i 0.102048 + 0.176751i
\(257\) −5.18162 + 0.682173i −0.323220 + 0.0425528i −0.290391 0.956908i \(-0.593785\pi\)
−0.0328297 + 0.999461i \(0.510452\pi\)
\(258\) 0 0
\(259\) 0.674969 0.180858i 0.0419406 0.0112379i
\(260\) 6.84794 10.2487i 0.424691 0.635595i
\(261\) 0 0
\(262\) 2.56522 1.71402i 0.158480 0.105893i
\(263\) 1.34155 10.1901i 0.0827238 0.628350i −0.898988 0.437974i \(-0.855696\pi\)
0.981711 0.190375i \(-0.0609705\pi\)
\(264\) 0 0
\(265\) −6.91032 + 14.0127i −0.424498 + 0.860796i
\(266\) −0.374809 + 0.127230i −0.0229810 + 0.00780099i
\(267\) 0 0
\(268\) −2.19389 8.18770i −0.134013 0.500144i
\(269\) −2.69186 13.5329i −0.164126 0.825116i −0.971858 0.235567i \(-0.924305\pi\)
0.807733 0.589549i \(-0.200695\pi\)
\(270\) 0 0
\(271\) 9.45664i 0.574450i −0.957863 0.287225i \(-0.907267\pi\)
0.957863 0.287225i \(-0.0927327\pi\)
\(272\) −8.36619 + 8.73592i −0.507275 + 0.529693i
\(273\) 0 0
\(274\) 1.09123 + 8.28871i 0.0659236 + 0.500739i
\(275\) 3.24799 + 3.70363i 0.195861 + 0.223337i
\(276\) 0 0
\(277\) 7.96652 3.92865i 0.478662 0.236050i −0.186920 0.982375i \(-0.559850\pi\)
0.665581 + 0.746325i \(0.268184\pi\)
\(278\) −4.40703 0.876614i −0.264316 0.0525758i
\(279\) 0 0
\(280\) −0.289797 0.699632i −0.0173187 0.0418110i
\(281\) 29.8332 + 3.92761i 1.77970 + 0.234302i 0.947405 0.320036i \(-0.103695\pi\)
0.832292 + 0.554338i \(0.187028\pi\)
\(282\) 0 0
\(283\) 4.56871 + 13.4590i 0.271581 + 0.800053i 0.994077 + 0.108677i \(0.0346616\pi\)
−0.722496 + 0.691375i \(0.757005\pi\)
\(284\) −0.714123 + 10.8954i −0.0423754 + 0.646524i
\(285\) 0 0
\(286\) 1.10303 3.24943i 0.0652236 0.192143i
\(287\) −1.29689 0.537188i −0.0765528 0.0317092i
\(288\) 0 0
\(289\) −15.0760 7.85579i −0.886825 0.462106i
\(290\) −3.92646 2.26694i −0.230569 0.133119i
\(291\) 0 0
\(292\) 11.0724 9.71026i 0.647965 0.568250i
\(293\) 30.3108 + 8.12175i 1.77078 + 0.474478i 0.988853 0.148897i \(-0.0475723\pi\)
0.781923 + 0.623375i \(0.214239\pi\)
\(294\) 0 0
\(295\) 7.26788 + 6.37376i 0.423152 + 0.371095i
\(296\) −2.01541 3.01628i −0.117143 0.175318i
\(297\) 0 0
\(298\) −1.16186 + 0.481257i −0.0673046 + 0.0278785i
\(299\) −1.08548 16.5613i −0.0627752 0.957764i
\(300\) 0 0
\(301\) −0.903142 0.0591950i −0.0520562 0.00341194i
\(302\) −0.436072 + 1.62744i −0.0250931 + 0.0936488i
\(303\) 0 0
\(304\) −5.24487 6.83524i −0.300814 0.392028i
\(305\) 5.63520 0.322671
\(306\) 0 0
\(307\) −31.8168 −1.81588 −0.907940 0.419101i \(-0.862345\pi\)
−0.907940 + 0.419101i \(0.862345\pi\)
\(308\) 0.605375 + 0.788940i 0.0344944 + 0.0449540i
\(309\) 0 0
\(310\) 1.49678 5.58606i 0.0850114 0.317267i
\(311\) −32.1576 2.10772i −1.82349 0.119518i −0.885165 0.465277i \(-0.845955\pi\)
−0.938323 + 0.345759i \(0.887621\pi\)
\(312\) 0 0
\(313\) −0.853948 13.0287i −0.0482680 0.736427i −0.951572 0.307426i \(-0.900532\pi\)
0.903304 0.429001i \(-0.141134\pi\)
\(314\) 2.30226 0.953629i 0.129924 0.0538164i
\(315\) 0 0
\(316\) −7.74567 11.5922i −0.435728 0.652113i
\(317\) 14.4524 + 12.6744i 0.811729 + 0.711868i 0.960885 0.276946i \(-0.0893224\pi\)
−0.149156 + 0.988814i \(0.547656\pi\)
\(318\) 0 0
\(319\) 12.0822 + 3.23740i 0.676471 + 0.181260i
\(320\) 4.35001 3.81485i 0.243173 0.213257i
\(321\) 0 0
\(322\) −0.420321 0.242673i −0.0234236 0.0135236i
\(323\) 7.16200 9.76361i 0.398504 0.543262i
\(324\) 0 0
\(325\) 12.0619 + 4.99621i 0.669075 + 0.277140i
\(326\) −1.06940 + 3.15034i −0.0592284 + 0.174481i
\(327\) 0 0
\(328\) −0.476617 + 7.27178i −0.0263168 + 0.401517i
\(329\) −0.487173 1.43517i −0.0268587 0.0791233i
\(330\) 0 0
\(331\) −27.6154 3.63564i −1.51788 0.199833i −0.674953 0.737861i \(-0.735836\pi\)
−0.842927 + 0.538029i \(0.819169\pi\)
\(332\) −2.89147 6.98063i −0.158690 0.383112i
\(333\) 0 0
\(334\) −1.26513 0.251650i −0.0692248 0.0137697i
\(335\) −6.16061 + 3.03808i −0.336590 + 0.165988i
\(336\) 0 0
\(337\) 8.38319 + 9.55920i 0.456662 + 0.520723i 0.933650 0.358187i \(-0.116605\pi\)
−0.476988 + 0.878910i \(0.658272\pi\)
\(338\) −0.460573 3.49840i −0.0250519 0.190288i
\(339\) 0 0
\(340\) 9.29884 + 5.92664i 0.504300 + 0.321417i
\(341\) 15.9548i 0.864003i
\(342\) 0 0
\(343\) −0.853665 4.29166i −0.0460936 0.231728i
\(344\) 1.21610 + 4.53853i 0.0655675 + 0.244701i
\(345\) 0 0
\(346\) 10.0864 3.42388i 0.542250 0.184069i
\(347\) 13.4709 27.3162i 0.723154 1.46641i −0.154941 0.987924i \(-0.549519\pi\)
0.878095 0.478487i \(-0.158815\pi\)
\(348\) 0 0
\(349\) 2.54288 19.3151i 0.136117 1.03391i −0.777943 0.628335i \(-0.783737\pi\)
0.914060 0.405578i \(-0.132930\pi\)
\(350\) 0.317448 0.212112i 0.0169683 0.0113379i
\(351\) 0 0
\(352\) 4.37110 6.54181i 0.232980 0.348680i
\(353\) 5.37930 1.44138i 0.286311 0.0767169i −0.112805 0.993617i \(-0.535984\pi\)
0.399116 + 0.916900i \(0.369317\pi\)
\(354\) 0 0
\(355\) 8.77239 1.15491i 0.465590 0.0612961i
\(356\) −3.08640 5.34580i −0.163579 0.283327i
\(357\) 0 0
\(358\) −3.34609 + 5.79559i −0.176846 + 0.306307i
\(359\) −12.0601 + 29.1158i −0.636510 + 1.53667i 0.194789 + 0.980845i \(0.437598\pi\)
−0.831299 + 0.555826i \(0.812402\pi\)
\(360\) 0 0
\(361\) −7.33635 7.33635i −0.386123 0.386123i
\(362\) 0.168293 + 0.341265i 0.00884530 + 0.0179365i
\(363\) 0 0
\(364\) 2.36378 + 1.16569i 0.123896 + 0.0610986i
\(365\) −9.46802 7.26507i −0.495579 0.380271i
\(366\) 0 0
\(367\) 9.89647 0.648649i 0.516592 0.0338592i 0.195122 0.980779i \(-0.437490\pi\)
0.321470 + 0.946920i \(0.395823\pi\)
\(368\) 2.06102 10.3614i 0.107438 0.540128i
\(369\) 0 0
\(370\) −0.989412 + 0.989412i −0.0514371 + 0.0514371i
\(371\) −3.16349 1.07386i −0.164240 0.0557520i
\(372\) 0 0
\(373\) −24.3815 + 14.0767i −1.26243 + 0.728863i −0.973544 0.228501i \(-0.926618\pi\)
−0.288884 + 0.957364i \(0.593284\pi\)
\(374\) 2.92762 + 0.923723i 0.151384 + 0.0477646i
\(375\) 0 0
\(376\) −6.24217 + 4.78978i −0.321915 + 0.247014i
\(377\) 32.5143 6.46749i 1.67457 0.333093i
\(378\) 0 0
\(379\) −19.3719 12.9439i −0.995067 0.664883i −0.0524031 0.998626i \(-0.516688\pi\)
−0.942664 + 0.333743i \(0.891688\pi\)
\(380\) −5.17868 + 5.90516i −0.265661 + 0.302928i
\(381\) 0 0
\(382\) −5.55572 + 7.24035i −0.284255 + 0.370449i
\(383\) 12.4032 16.1641i 0.633772 0.825947i −0.360508 0.932756i \(-0.617397\pi\)
0.994280 + 0.106809i \(0.0340633\pi\)
\(384\) 0 0
\(385\) 0.531331 0.605867i 0.0270792 0.0308779i
\(386\) 2.61121 + 1.74476i 0.132907 + 0.0888057i
\(387\) 0 0
\(388\) 33.3886 6.64141i 1.69505 0.337167i
\(389\) 19.8781 15.2530i 1.00786 0.773359i 0.0337501 0.999430i \(-0.489255\pi\)
0.974111 + 0.226071i \(0.0725883\pi\)
\(390\) 0 0
\(391\) 14.7915 1.29109i 0.748036 0.0652930i
\(392\) −9.76630 + 5.63858i −0.493273 + 0.284791i
\(393\) 0 0
\(394\) 8.69113 + 2.95024i 0.437853 + 0.148631i
\(395\) −7.98877 + 7.98877i −0.401958 + 0.401958i
\(396\) 0 0
\(397\) −0.535806 + 2.69368i −0.0268914 + 0.135192i −0.991899 0.127030i \(-0.959455\pi\)
0.965007 + 0.262222i \(0.0844554\pi\)
\(398\) 1.21863 0.0798735i 0.0610846 0.00400370i
\(399\) 0 0
\(400\) 6.59310 + 5.05906i 0.329655 + 0.252953i
\(401\) 14.3340 + 7.06875i 0.715806 + 0.352997i 0.763449 0.645868i \(-0.223504\pi\)
−0.0476429 + 0.998864i \(0.515171\pi\)
\(402\) 0 0
\(403\) 18.7024 + 37.9247i 0.931633 + 1.88917i
\(404\) −4.65239 4.65239i −0.231465 0.231465i
\(405\) 0 0
\(406\) 0.370993 0.895656i 0.0184121 0.0444506i
\(407\) 1.93016 3.34313i 0.0956744 0.165713i
\(408\) 0 0
\(409\) 4.21393 + 7.29874i 0.208365 + 0.360899i 0.951200 0.308576i \(-0.0998523\pi\)
−0.742834 + 0.669475i \(0.766519\pi\)
\(410\) 2.78681 0.366890i 0.137631 0.0181194i
\(411\) 0 0
\(412\) 23.7096 6.35297i 1.16809 0.312989i
\(413\) −1.14836 + 1.71864i −0.0565070 + 0.0845687i
\(414\) 0 0
\(415\) −5.09097 + 3.40168i −0.249906 + 0.166982i
\(416\) 2.72175 20.6737i 0.133445 1.01361i
\(417\) 0 0
\(418\) −0.967119 + 1.96112i −0.0473033 + 0.0959217i
\(419\) −10.8486 + 3.68261i −0.529989 + 0.179907i −0.573591 0.819142i \(-0.694450\pi\)
0.0436016 + 0.999049i \(0.486117\pi\)
\(420\) 0 0
\(421\) 3.00563 + 11.2172i 0.146485 + 0.546691i 0.999685 + 0.0251059i \(0.00799230\pi\)
−0.853199 + 0.521585i \(0.825341\pi\)
\(422\) 1.86751 + 9.38862i 0.0909091 + 0.457031i
\(423\) 0 0
\(424\) 17.3433i 0.842267i
\(425\) −4.23539 + 10.8848i −0.205447 + 0.527991i
\(426\) 0 0
\(427\) 0.157276 + 1.19463i 0.00761113 + 0.0578123i
\(428\) 4.35425 + 4.96507i 0.210470 + 0.239996i
\(429\) 0 0
\(430\) 1.62543 0.801576i 0.0783854 0.0386554i
\(431\) −16.3546 3.25313i −0.787772 0.156698i −0.215220 0.976566i \(-0.569047\pi\)
−0.572552 + 0.819868i \(0.694047\pi\)
\(432\) 0 0
\(433\) 2.99292 + 7.22556i 0.143831 + 0.347238i 0.979335 0.202246i \(-0.0648242\pi\)
−0.835504 + 0.549484i \(0.814824\pi\)
\(434\) 1.22599 + 0.161404i 0.0588493 + 0.00774765i
\(435\) 0 0
\(436\) −4.78944 14.1092i −0.229373 0.675710i
\(437\) −0.691686 + 10.5531i −0.0330878 + 0.504823i
\(438\) 0 0
\(439\) −6.41610 + 18.9012i −0.306224 + 0.902106i 0.679491 + 0.733684i \(0.262201\pi\)
−0.985715 + 0.168422i \(0.946133\pi\)
\(440\) −3.86502 1.60095i −0.184258 0.0763221i
\(441\) 0 0
\(442\) 8.04177 1.23609i 0.382508 0.0587948i
\(443\) 23.4193 + 13.5212i 1.11269 + 0.642410i 0.939524 0.342483i \(-0.111268\pi\)
0.173163 + 0.984893i \(0.444601\pi\)
\(444\) 0 0
\(445\) −3.76082 + 3.29815i −0.178280 + 0.156347i
\(446\) −8.51837 2.28249i −0.403356 0.108079i
\(447\) 0 0
\(448\) 0.930134 + 0.815706i 0.0439447 + 0.0385385i
\(449\) 19.2189 + 28.7631i 0.906996 + 1.35741i 0.933808 + 0.357774i \(0.116464\pi\)
−0.0268124 + 0.999640i \(0.508536\pi\)
\(450\) 0 0
\(451\) −7.16448 + 2.96762i −0.337362 + 0.139740i
\(452\) −2.23748 34.1374i −0.105242 1.60569i
\(453\) 0 0
\(454\) 5.47671 + 0.358962i 0.257035 + 0.0168469i
\(455\) 0.552774 2.06298i 0.0259144 0.0967140i
\(456\) 0 0
\(457\) −0.429092 0.559204i −0.0200721 0.0261584i 0.783209 0.621758i \(-0.213581\pi\)
−0.803282 + 0.595599i \(0.796915\pi\)
\(458\) 11.7483 0.548960
\(459\) 0 0
\(460\) −9.63087 −0.449041
\(461\) 9.18375 + 11.9685i 0.427730 + 0.557428i 0.956649 0.291244i \(-0.0940692\pi\)
−0.528919 + 0.848672i \(0.677402\pi\)
\(462\) 0 0
\(463\) 0.430077 1.60507i 0.0199874 0.0745938i −0.955212 0.295923i \(-0.904373\pi\)
0.975199 + 0.221329i \(0.0710395\pi\)
\(464\) 21.0567 + 1.38013i 0.977534 + 0.0640709i
\(465\) 0 0
\(466\) 0.248015 + 3.78398i 0.0114891 + 0.175290i
\(467\) −7.68148 + 3.18177i −0.355457 + 0.147235i −0.553264 0.833006i \(-0.686618\pi\)
0.197807 + 0.980241i \(0.436618\pi\)
\(468\) 0 0
\(469\) −0.815995 1.22122i −0.0376792 0.0563909i
\(470\) 2.28172 + 2.00101i 0.105248 + 0.0922997i
\(471\) 0 0
\(472\) 10.3649 + 2.77728i 0.477085 + 0.127834i
\(473\) −3.75919 + 3.29672i −0.172848 + 0.151584i
\(474\) 0 0
\(475\) −7.20472 4.15965i −0.330575 0.190858i
\(476\) −0.996888 + 2.13671i −0.0456923 + 0.0979360i
\(477\) 0 0
\(478\) 7.77059 + 3.21868i 0.355419 + 0.147219i
\(479\) −4.44762 + 13.1023i −0.203217 + 0.598658i −0.999984 0.00562848i \(-0.998208\pi\)
0.796767 + 0.604286i \(0.206542\pi\)
\(480\) 0 0
\(481\) 0.669146 10.2092i 0.0305104 0.465499i
\(482\) −2.52583 7.44086i −0.115049 0.338922i
\(483\) 0 0
\(484\) −14.3659 1.89130i −0.652993 0.0859682i
\(485\) −10.5570 25.4868i −0.479367 1.15729i
\(486\) 0 0
\(487\) 23.3311 + 4.64084i 1.05723 + 0.210296i 0.692945 0.720991i \(-0.256313\pi\)
0.364286 + 0.931287i \(0.381313\pi\)
\(488\) 5.61023 2.76666i 0.253963 0.125241i
\(489\) 0 0
\(490\) 2.86801 + 3.27033i 0.129563 + 0.147739i
\(491\) −3.45165 26.2179i −0.155771 1.18320i −0.873483 0.486855i \(-0.838144\pi\)
0.717712 0.696340i \(-0.245189\pi\)
\(492\) 0 0
\(493\) 6.41323 + 28.9558i 0.288837 + 1.30410i
\(494\) 5.79526i 0.260741i
\(495\) 0 0
\(496\) 5.25108 + 26.3990i 0.235781 + 1.18535i
\(497\) 0.489667 + 1.82746i 0.0219646 + 0.0819730i
\(498\) 0 0
\(499\) 28.9006 9.81042i 1.29377 0.439175i 0.412140 0.911121i \(-0.364782\pi\)
0.881627 + 0.471946i \(0.156448\pi\)
\(500\) 9.26513 18.7878i 0.414349 0.840217i
\(501\) 0 0
\(502\) 0.702462 5.33573i 0.0313524 0.238145i
\(503\) 10.6641 7.12553i 0.475489 0.317712i −0.294630 0.955611i \(-0.595197\pi\)
0.770119 + 0.637900i \(0.220197\pi\)
\(504\) 0 0
\(505\) −2.96214 + 4.43315i −0.131813 + 0.197273i
\(506\) −2.58987 + 0.693952i −0.115134 + 0.0308499i
\(507\) 0 0
\(508\) −29.0964 + 3.83061i −1.29094 + 0.169956i
\(509\) 4.49484 + 7.78528i 0.199230 + 0.345077i 0.948279 0.317438i \(-0.102823\pi\)
−0.749049 + 0.662515i \(0.769489\pi\)
\(510\) 0 0
\(511\) 1.27590 2.20993i 0.0564427 0.0977616i
\(512\) 8.74862 21.1210i 0.386638 0.933427i
\(513\) 0 0
\(514\) 1.58230 + 1.58230i 0.0697923 + 0.0697923i
\(515\) −8.79754 17.8397i −0.387666 0.786109i
\(516\) 0 0
\(517\) −7.50927 3.70316i −0.330257 0.162865i
\(518\) −0.237364 0.182136i −0.0104292 0.00800258i
\(519\) 0 0
\(520\) −11.0638 + 0.725161i −0.485181 + 0.0318004i
\(521\) −2.27564 + 11.4404i −0.0996976 + 0.501214i 0.898379 + 0.439221i \(0.144745\pi\)
−0.998077 + 0.0619925i \(0.980255\pi\)
\(522\) 0 0
\(523\) 12.3418 12.3418i 0.539671 0.539671i −0.383761 0.923432i \(-0.625371\pi\)
0.923432 + 0.383761i \(0.125371\pi\)
\(524\) 12.3956 + 4.20773i 0.541503 + 0.183815i
\(525\) 0 0
\(526\) −3.81109 + 2.20033i −0.166171 + 0.0959390i
\(527\) −33.5583 + 17.4608i −1.46182 + 0.760603i
\(528\) 0 0
\(529\) 7.95900 6.10716i 0.346044 0.265529i
\(530\) 6.56106 1.30508i 0.284994 0.0566888i
\(531\) 0 0
\(532\) −1.39639 0.933041i −0.0605414 0.0404525i
\(533\) −13.5513 + 15.4523i −0.586973 + 0.669314i
\(534\) 0 0
\(535\) 3.25778 4.24562i 0.140846 0.183554i
\(536\) −4.64174 + 6.04923i −0.200493 + 0.261287i
\(537\) 0 0
\(538\) −3.89527 + 4.44171i −0.167937 + 0.191496i
\(539\) −9.97801 6.66709i −0.429783 0.287172i
\(540\) 0 0
\(541\) −4.00985 + 0.797608i −0.172397 + 0.0342918i −0.280534 0.959844i \(-0.590511\pi\)
0.108137 + 0.994136i \(0.465511\pi\)
\(542\) −3.21226 + 2.46486i −0.137978 + 0.105875i
\(543\) 0 0
\(544\) 18.5433 + 2.03460i 0.795036 + 0.0872325i
\(545\) −10.4566 + 6.03713i −0.447912 + 0.258602i
\(546\) 0 0
\(547\) −18.3367 6.22446i −0.784019 0.266139i −0.0994077 0.995047i \(-0.531695\pi\)
−0.684612 + 0.728908i \(0.740028\pi\)
\(548\) −25.0827 + 25.0827i −1.07148 + 1.07148i
\(549\) 0 0
\(550\) 0.411477 2.06863i 0.0175454 0.0882068i
\(551\) −21.0792 + 1.38160i −0.898005 + 0.0588583i
\(552\) 0 0
\(553\) −1.91654 1.47061i −0.0814994 0.0625367i
\(554\) −3.41096 1.68210i −0.144918 0.0714655i
\(555\) 0 0
\(556\) −8.43235 17.0991i −0.357611 0.725164i
\(557\) −2.32543 2.32543i −0.0985316 0.0985316i 0.656123 0.754654i \(-0.272195\pi\)
−0.754654 + 0.656123i \(0.772195\pi\)
\(558\) 0 0
\(559\) −5.07117 + 12.2429i −0.214488 + 0.517819i
\(560\) 0.679740 1.17734i 0.0287243 0.0497519i
\(561\) 0 0
\(562\) −6.44181 11.1575i −0.271732 0.470653i
\(563\) 9.97726 1.31353i 0.420491 0.0553587i 0.0826881 0.996575i \(-0.473649\pi\)
0.337803 + 0.941217i \(0.390316\pi\)
\(564\) 0 0
\(565\) −26.7781 + 7.17517i −1.12656 + 0.301862i
\(566\) 3.38096 5.05997i 0.142113 0.212686i
\(567\) 0 0
\(568\) 8.16650 5.45668i 0.342659 0.228957i
\(569\) 3.11503 23.6610i 0.130589 0.991921i −0.793185 0.608981i \(-0.791578\pi\)
0.923773 0.382940i \(-0.125088\pi\)
\(570\) 0 0
\(571\) 8.08248 16.3896i 0.338241 0.685885i −0.659596 0.751620i \(-0.729273\pi\)
0.997837 + 0.0657352i \(0.0209393\pi\)
\(572\) 13.7872 4.68013i 0.576473 0.195686i
\(573\) 0 0
\(574\) 0.155557 + 0.580548i 0.00649284 + 0.0242316i
\(575\) −1.99013 10.0051i −0.0829941 0.417240i
\(576\) 0 0
\(577\) 22.3597i 0.930846i −0.885088 0.465423i \(-0.845902\pi\)
0.885088 0.465423i \(-0.154098\pi\)
\(578\) 1.26106 + 7.16867i 0.0524530 + 0.298177i
\(579\) 0 0
\(580\) −2.51095 19.0726i −0.104262 0.791945i
\(581\) −0.863223 0.984317i −0.0358125 0.0408364i
\(582\) 0 0
\(583\) −16.5524 + 8.16275i −0.685531 + 0.338066i
\(584\) −12.9929 2.58445i −0.537651 0.106945i
\(585\) 0 0
\(586\) −5.14163 12.4130i −0.212399 0.512776i
\(587\) 25.3285 + 3.33456i 1.04542 + 0.137632i 0.633621 0.773644i \(-0.281568\pi\)
0.411797 + 0.911276i \(0.364901\pi\)
\(588\) 0 0
\(589\) −8.66116 25.5150i −0.356877 1.05133i
\(590\) 0.270700 4.13009i 0.0111446 0.170033i
\(591\) 0 0
\(592\) 2.09336 6.16683i 0.0860364 0.253455i
\(593\) 8.60925 + 3.56607i 0.353539 + 0.146441i 0.552383 0.833590i \(-0.313719\pi\)
−0.198844 + 0.980031i \(0.563719\pi\)
\(594\) 0 0
\(595\) 1.85582 + 0.454513i 0.0760813 + 0.0186332i
\(596\) −4.62103 2.66795i −0.189285 0.109284i
\(597\) 0 0
\(598\) −5.34266 + 4.68539i −0.218478 + 0.191600i
\(599\) 17.7417 + 4.75389i 0.724908 + 0.194239i 0.602361 0.798224i \(-0.294227\pi\)
0.122548 + 0.992463i \(0.460894\pi\)
\(600\) 0 0
\(601\) 19.9125 + 17.4628i 0.812249 + 0.712323i 0.960999 0.276552i \(-0.0891917\pi\)
−0.148750 + 0.988875i \(0.547525\pi\)
\(602\) 0.215295 + 0.322211i 0.00877475 + 0.0131323i
\(603\) 0 0
\(604\) −6.60461 + 2.73572i −0.268738 + 0.111315i
\(605\) 0.767956 + 11.7167i 0.0312218 + 0.476353i
\(606\) 0 0
\(607\) −25.5436 1.67422i −1.03678 0.0679544i −0.462507 0.886616i \(-0.653050\pi\)
−0.574276 + 0.818661i \(0.694717\pi\)
\(608\) −3.43900 + 12.8345i −0.139470 + 0.520509i
\(609\) 0 0
\(610\) −1.46881 1.91418i −0.0594702 0.0775031i
\(611\) −22.1904 −0.897729
\(612\) 0 0
\(613\) 30.5459 1.23374 0.616869 0.787066i \(-0.288401\pi\)
0.616869 + 0.787066i \(0.288401\pi\)
\(614\) 8.29299 + 10.8076i 0.334678 + 0.436160i
\(615\) 0 0
\(616\) 0.231520 0.864045i 0.00932821 0.0348134i
\(617\) 7.17371 + 0.470190i 0.288803 + 0.0189291i 0.209116 0.977891i \(-0.432941\pi\)
0.0796868 + 0.996820i \(0.474608\pi\)
\(618\) 0 0
\(619\) −1.61113 24.5811i −0.0647569 0.987999i −0.899377 0.437173i \(-0.855980\pi\)
0.834620 0.550826i \(-0.185687\pi\)
\(620\) 22.6698 9.39013i 0.910441 0.377117i
\(621\) 0 0
\(622\) 7.66585 + 11.4728i 0.307373 + 0.460016i
\(623\) −0.804151 0.705222i −0.0322176 0.0282541i
\(624\) 0 0
\(625\) −2.71579 0.727694i −0.108632 0.0291077i
\(626\) −4.20306 + 3.68599i −0.167988 + 0.147322i
\(627\) 0 0
\(628\) 9.15674 + 5.28664i 0.365394 + 0.210960i
\(629\) 9.14406 + 0.401082i 0.364598 + 0.0159922i
\(630\) 0 0
\(631\) −4.23320 1.75345i −0.168521 0.0698036i 0.296828 0.954931i \(-0.404071\pi\)
−0.465349 + 0.885127i \(0.654071\pi\)
\(632\) −4.03120 + 11.8755i −0.160352 + 0.472383i
\(633\) 0 0
\(634\) 0.538297 8.21282i 0.0213785 0.326173i
\(635\) 7.64442 + 22.5197i 0.303359 + 0.893668i
\(636\) 0 0
\(637\) −31.5330 4.15140i −1.24938 0.164484i
\(638\) −2.04950 4.94793i −0.0811405 0.195890i
\(639\) 0 0
\(640\) −15.4949 3.08213i −0.612490 0.121832i
\(641\) −9.60317 + 4.73576i −0.379303 + 0.187051i −0.621938 0.783066i \(-0.713655\pi\)
0.242636 + 0.970117i \(0.421988\pi\)
\(642\) 0 0
\(643\) 16.4527 + 18.7607i 0.648831 + 0.739850i 0.978952 0.204089i \(-0.0654231\pi\)
−0.330122 + 0.943938i \(0.607090\pi\)
\(644\) −0.268793 2.04169i −0.0105919 0.0804538i
\(645\) 0 0
\(646\) −5.18330 + 0.112056i −0.203934 + 0.00440880i
\(647\) 23.7610i 0.934140i −0.884220 0.467070i \(-0.845310\pi\)
0.884220 0.467070i \(-0.154690\pi\)
\(648\) 0 0
\(649\) 2.22770 + 11.1994i 0.0874448 + 0.439615i
\(650\) −1.44679 5.39949i −0.0567477 0.211785i
\(651\) 0 0
\(652\) −13.3668 + 4.53742i −0.523484 + 0.177699i
\(653\) 8.64330 17.5269i 0.338239 0.685880i −0.659598 0.751618i \(-0.729274\pi\)
0.997837 + 0.0657383i \(0.0209403\pi\)
\(654\) 0 0
\(655\) 1.38459 10.5170i 0.0541004 0.410933i
\(656\) −10.8777 + 7.26824i −0.424702 + 0.283777i
\(657\) 0 0
\(658\) −0.360521 + 0.539558i −0.0140546 + 0.0210342i
\(659\) −33.1069 + 8.87097i −1.28966 + 0.345564i −0.837532 0.546388i \(-0.816003\pi\)
−0.452130 + 0.891952i \(0.649336\pi\)
\(660\) 0 0
\(661\) −18.5673 + 2.44443i −0.722183 + 0.0950772i −0.482653 0.875812i \(-0.660327\pi\)
−0.239530 + 0.970889i \(0.576993\pi\)
\(662\) 5.96294 + 10.3281i 0.231756 + 0.401413i
\(663\) 0 0
\(664\) −3.39832 + 5.88607i −0.131880 + 0.228424i
\(665\) −0.520806 + 1.25734i −0.0201960 + 0.0487575i
\(666\) 0 0
\(667\) −18.3160 18.3160i −0.709196 0.709196i
\(668\) −2.42068 4.90865i −0.0936589 0.189921i
\(669\) 0 0
\(670\) 2.63774 + 1.30079i 0.101905 + 0.0502538i
\(671\) 5.28098 + 4.05224i 0.203870 + 0.156435i
\(672\) 0 0
\(673\) −3.40591 + 0.223235i −0.131288 + 0.00860507i −0.130905 0.991395i \(-0.541788\pi\)
−0.000382578 1.00000i \(0.500122\pi\)
\(674\) 1.06204 5.33922i 0.0409081 0.205659i
\(675\) 0 0
\(676\) 10.5866 10.5866i 0.407177 0.407177i
\(677\) −47.9069 16.2622i −1.84121 0.625007i −0.995871 0.0907793i \(-0.971064\pi\)
−0.845341 0.534228i \(-0.820602\pi\)
\(678\) 0 0
\(679\) 5.10841 2.94934i 0.196043 0.113185i
\(680\) −0.862514 9.88148i −0.0330759 0.378938i
\(681\) 0 0
\(682\) 5.41959 4.15860i 0.207527 0.159241i
\(683\) 25.0946 4.99162i 0.960218 0.190999i 0.309991 0.950739i \(-0.399674\pi\)
0.650227 + 0.759740i \(0.274674\pi\)
\(684\) 0 0
\(685\) 23.9007 + 15.9699i 0.913198 + 0.610179i
\(686\) −1.23530 + 1.40859i −0.0471640 + 0.0537802i
\(687\) 0 0
\(688\) −5.13496 + 6.69201i −0.195769 + 0.255131i
\(689\) −29.7767 + 38.8058i −1.13440 + 1.47838i
\(690\) 0 0
\(691\) 8.54287 9.74128i 0.324986 0.370576i −0.566157 0.824297i \(-0.691571\pi\)
0.891144 + 0.453721i \(0.149904\pi\)
\(692\) 37.5782 + 25.1090i 1.42851 + 0.954500i
\(693\) 0 0
\(694\) −12.7900 + 2.54409i −0.485502 + 0.0965724i
\(695\) −12.2570 + 9.40513i −0.464935 + 0.356757i
\(696\) 0 0
\(697\) −14.0826 11.8215i −0.533417 0.447773i
\(698\) −7.22381 + 4.17067i −0.273425 + 0.157862i
\(699\) 0 0
\(700\) 1.53396 + 0.520711i 0.0579784 + 0.0196810i
\(701\) −11.6445 + 11.6445i −0.439808 + 0.439808i −0.891947 0.452139i \(-0.850661\pi\)
0.452139 + 0.891947i \(0.350661\pi\)
\(702\) 0 0
\(703\) −1.27187 + 6.39413i −0.0479695 + 0.241159i
\(704\) 6.81981 0.446994i 0.257031 0.0168467i
\(705\) 0 0
\(706\) −1.89172 1.45157i −0.0711957 0.0546304i
\(707\) −1.02247 0.504229i −0.0384541 0.0189635i
\(708\) 0 0
\(709\) −10.0166 20.3117i −0.376182 0.762822i 0.623639 0.781712i \(-0.285653\pi\)
−0.999822 + 0.0188899i \(0.993987\pi\)
\(710\) −2.67881 2.67881i −0.100534 0.100534i
\(711\) 0 0
\(712\) −2.12489 + 5.12994i −0.0796337 + 0.192253i
\(713\) 16.5199 28.6132i 0.618673 1.07157i
\(714\) 0 0
\(715\) −5.89935 10.2180i −0.220623 0.382130i
\(716\) −28.1518 + 3.70625i −1.05208 + 0.138509i
\(717\) 0 0
\(718\) 13.0336 3.49234i 0.486409 0.130333i
\(719\) −6.76012 + 10.1172i −0.252110 + 0.377309i −0.935840 0.352426i \(-0.885357\pi\)
0.683730 + 0.729735i \(0.260357\pi\)
\(720\) 0 0
\(721\) 3.53637 2.36293i 0.131701 0.0880000i
\(722\) −0.579829 + 4.40424i −0.0215790 + 0.163909i
\(723\) 0 0
\(724\) −0.714064 + 1.44798i −0.0265380 + 0.0538137i
\(725\) 19.2947 6.54968i 0.716588 0.243249i
\(726\) 0 0
\(727\) −7.64487 28.5310i −0.283533 1.05816i −0.949905 0.312539i \(-0.898821\pi\)
0.666372 0.745619i \(-0.267846\pi\)
\(728\) −0.462517 2.32523i −0.0171420 0.0861787i
\(729\) 0 0
\(730\) 5.10976i 0.189121i
\(731\) −11.0481 4.29894i −0.408629 0.159002i
\(732\) 0 0
\(733\) −1.78939 13.5918i −0.0660927 0.502024i −0.992190 0.124738i \(-0.960191\pi\)
0.926097 0.377285i \(-0.123142\pi\)
\(734\) −2.79983 3.19260i −0.103344 0.117841i
\(735\) 0 0
\(736\) −14.6126 + 7.20611i −0.538626 + 0.265621i
\(737\) −7.95803 1.58295i −0.293138 0.0583087i
\(738\) 0 0
\(739\) 18.6853 + 45.1102i 0.687349 + 1.65941i 0.750055 + 0.661375i \(0.230027\pi\)
−0.0627066 + 0.998032i \(0.519973\pi\)
\(740\) −5.88615 0.774926i −0.216379 0.0284869i
\(741\) 0 0
\(742\) 0.459785 + 1.35448i 0.0168792 + 0.0497246i
\(743\) 0.0945344 1.44232i 0.00346813 0.0529135i −0.995774 0.0918369i \(-0.970726\pi\)
0.999242 + 0.0389234i \(0.0123928\pi\)
\(744\) 0 0
\(745\) −1.38990 + 4.09450i −0.0509218 + 0.150011i
\(746\) 11.1366 + 4.61294i 0.407741 + 0.168892i
\(747\) 0 0
\(748\) 4.45251 + 12.2408i 0.162800 + 0.447569i
\(749\) 0.990971 + 0.572137i 0.0362093 + 0.0209054i
\(750\) 0 0
\(751\) 20.4355 17.9214i 0.745700 0.653962i −0.199706 0.979856i \(-0.563999\pi\)
0.945406 + 0.325894i \(0.105665\pi\)
\(752\) −13.6437 3.65581i −0.497534 0.133314i
\(753\) 0 0
\(754\) −10.6717 9.35881i −0.388640 0.340828i
\(755\) 3.21844 + 4.81674i 0.117131 + 0.175299i
\(756\) 0 0
\(757\) 17.6756 7.32147i 0.642430 0.266103i −0.0375938 0.999293i \(-0.511969\pi\)
0.680024 + 0.733190i \(0.261969\pi\)
\(758\) 0.652427 + 9.95411i 0.0236972 + 0.361549i
\(759\) 0 0
\(760\) 7.05002 + 0.462083i 0.255731 + 0.0167615i
\(761\) 8.72766 32.5721i 0.316377 1.18074i −0.606323 0.795218i \(-0.707356\pi\)
0.922700 0.385518i \(-0.125977\pi\)
\(762\) 0 0
\(763\) −1.57168 2.04825i −0.0568985 0.0741516i
\(764\) −38.7225 −1.40093
\(765\) 0 0
\(766\) −8.72354 −0.315194
\(767\) 18.4233 + 24.0097i 0.665226 + 0.866940i
\(768\) 0 0
\(769\) 6.36164 23.7420i 0.229407 0.856157i −0.751184 0.660093i \(-0.770517\pi\)
0.980591 0.196065i \(-0.0628163\pi\)
\(770\) −0.344294 0.0225662i −0.0124075 0.000813229i
\(771\) 0 0
\(772\) 0.871494 + 13.2964i 0.0313658 + 0.478549i
\(773\) −14.8745 + 6.16122i −0.534999 + 0.221604i −0.633791 0.773504i \(-0.718502\pi\)
0.0987921 + 0.995108i \(0.468502\pi\)
\(774\) 0 0
\(775\) 14.4395 + 21.6102i 0.518681 + 0.776261i
\(776\) −23.0232 20.1908i −0.826484 0.724807i
\(777\) 0 0
\(778\) −10.3624 2.77659i −0.371510 0.0995457i
\(779\) 9.84644 8.63509i 0.352785 0.309384i
\(780\) 0 0
\(781\) 9.05145 + 5.22586i 0.323886 + 0.186996i
\(782\) −4.29393 4.68789i −0.153551 0.167639i
\(783\) 0 0
\(784\) −18.7040 7.74744i −0.667999 0.276694i
\(785\) 2.75413 8.11340i 0.0982991 0.289580i
\(786\) 0 0
\(787\) −1.04438 + 15.9342i −0.0372282 + 0.567993i 0.937978 + 0.346695i \(0.112696\pi\)
−0.975206 + 0.221298i \(0.928971\pi\)
\(788\) 12.5178 + 36.8762i 0.445928 + 1.31366i
\(789\) 0 0
\(790\) 4.79591 + 0.631393i 0.170631 + 0.0224640i
\(791\) −2.26846 5.47655i −0.0806572 0.194724i
\(792\) 0 0
\(793\) 17.3030 + 3.44178i 0.614447 + 0.122221i
\(794\) 1.05466 0.520098i 0.0374283 0.0184576i
\(795\) 0 0
\(796\) 3.41655 + 3.89583i 0.121096 + 0.138084i
\(797\) 1.10425 + 8.38761i 0.0391145 + 0.297104i 0.999810 + 0.0194995i \(0.00620727\pi\)
−0.960695 + 0.277605i \(0.910459\pi\)
\(798\) 0 0
\(799\) −0.429071 19.8472i −0.0151794 0.702143i
\(800\) 12.8166i 0.453134i
\(801\) 0 0
\(802\) −1.33500 6.71148i −0.0471404 0.236991i
\(803\) −3.64861 13.6168i −0.128757 0.480526i
\(804\) 0 0
\(805\) −1.58021 + 0.536408i −0.0556950 + 0.0189059i
\(806\) 8.00765 16.2379i 0.282057 0.571956i
\(807\) 0 0
\(808\) −0.772510 + 5.86779i −0.0271768 + 0.206428i
\(809\) −6.98362 + 4.66631i −0.245531 + 0.164059i −0.672247 0.740327i \(-0.734671\pi\)
0.426716 + 0.904386i \(0.359671\pi\)
\(810\) 0 0
\(811\) −19.3160 + 28.9084i −0.678276 + 1.01511i 0.319443 + 0.947606i \(0.396504\pi\)
−0.997719 + 0.0675061i \(0.978496\pi\)
\(812\) 3.97319 1.06461i 0.139432 0.0373606i
\(813\) 0 0
\(814\) −1.63870 + 0.215739i −0.0574364 + 0.00756164i
\(815\) 5.71945 + 9.90638i 0.200344 + 0.347005i
\(816\) 0 0
\(817\) 4.22205 7.31281i 0.147711 0.255843i
\(818\) 1.38091 3.33380i 0.0482823 0.116564i
\(819\) 0 0
\(820\) 8.43323 + 8.43323i 0.294501 + 0.294501i
\(821\) 3.09953 + 6.28523i 0.108175 + 0.219356i 0.944228 0.329291i \(-0.106810\pi\)
−0.836054 + 0.548647i \(0.815143\pi\)
\(822\) 0 0
\(823\) −4.13996 2.04160i −0.144310 0.0711658i 0.368700 0.929548i \(-0.379803\pi\)
−0.513010 + 0.858383i \(0.671470\pi\)
\(824\) −17.5171 13.4414i −0.610238 0.468252i
\(825\) 0 0
\(826\) 0.883110 0.0578821i 0.0307273 0.00201398i
\(827\) −4.28494 + 21.5419i −0.149002 + 0.749084i 0.831953 + 0.554847i \(0.187223\pi\)
−0.980955 + 0.194237i \(0.937777\pi\)
\(828\) 0 0
\(829\) −23.5987 + 23.5987i −0.819616 + 0.819616i −0.986052 0.166437i \(-0.946774\pi\)
0.166437 + 0.986052i \(0.446774\pi\)
\(830\) 2.48245 + 0.842677i 0.0861669 + 0.0292497i
\(831\) 0 0
\(832\) 15.6867 9.05675i 0.543840 0.313986i
\(833\) 3.10330 28.2835i 0.107523 0.979964i
\(834\) 0 0
\(835\) −3.51862 + 2.69993i −0.121767 + 0.0934351i
\(836\) −9.09952 + 1.81001i −0.314713 + 0.0626004i
\(837\) 0 0
\(838\) 4.07859 + 2.72523i 0.140893 + 0.0941414i
\(839\) 33.9713 38.7369i 1.17282 1.33734i 0.242694 0.970103i \(-0.421969\pi\)
0.930125 0.367242i \(-0.119698\pi\)
\(840\) 0 0
\(841\) 13.8427 18.0402i 0.477336 0.622076i
\(842\) 3.02687 3.94469i 0.104313 0.135943i
\(843\) 0 0
\(844\) −26.7801 + 30.5368i −0.921808 + 1.05112i
\(845\) −10.0877 6.74040i −0.347028 0.231877i
\(846\) 0 0
\(847\) −2.46245 + 0.489812i −0.0846108 + 0.0168301i
\(848\) −24.7012 + 18.9539i −0.848242 + 0.650879i
\(849\) 0 0
\(850\) 4.80134 1.39841i 0.164685 0.0479652i
\(851\) −6.92305 + 3.99702i −0.237319 + 0.137016i
\(852\) 0 0
\(853\) 6.66902 + 2.26383i 0.228343 + 0.0775120i 0.433266 0.901266i \(-0.357361\pi\)
−0.204923 + 0.978778i \(0.565694\pi\)
\(854\) 0.364803 0.364803i 0.0124833 0.0124833i
\(855\) 0 0
\(856\) 1.15891 5.82625i 0.0396108 0.199137i
\(857\) −21.2926 + 1.39559i −0.727340 + 0.0476724i −0.424575 0.905393i \(-0.639576\pi\)
−0.302765 + 0.953065i \(0.597910\pi\)
\(858\) 0 0
\(859\) 16.1417 + 12.3859i 0.550747 + 0.422603i 0.846287 0.532727i \(-0.178833\pi\)
−0.295540 + 0.955330i \(0.595500\pi\)
\(860\) 6.89668 + 3.40106i 0.235175 + 0.115975i
\(861\) 0 0
\(862\) 3.15776 + 6.40330i 0.107554 + 0.218097i
\(863\) −8.04291 8.04291i −0.273784 0.273784i 0.556837 0.830621i \(-0.312015\pi\)
−0.830621 + 0.556837i \(0.812015\pi\)
\(864\) 0 0
\(865\) 14.0154 33.8361i 0.476537 1.15046i
\(866\) 1.67430 2.89997i 0.0568951 0.0985452i
\(867\) 0 0
\(868\) 2.62336 + 4.54379i 0.0890426 + 0.154226i
\(869\) −13.2313 + 1.74193i −0.448840 + 0.0590909i
\(870\) 0 0
\(871\) −20.7718 + 5.56579i −0.703826 + 0.188590i
\(872\) −7.44629 + 11.1442i −0.252163 + 0.377389i
\(873\) 0 0
\(874\) 3.76499 2.51569i 0.127353 0.0850944i
\(875\) 0.473777 3.59869i 0.0160166 0.121658i
\(876\) 0 0
\(877\) −5.31252 + 10.7727i −0.179391 + 0.363769i −0.967932 0.251214i \(-0.919170\pi\)
0.788541 + 0.614983i \(0.210837\pi\)
\(878\) 8.09277 2.74713i 0.273118 0.0927110i
\(879\) 0 0
\(880\) −1.94380 7.25436i −0.0655255 0.244545i
\(881\) −9.38269 47.1700i −0.316111 1.58920i −0.732993 0.680236i \(-0.761877\pi\)
0.416882 0.908960i \(-0.363123\pi\)
\(882\) 0 0
\(883\) 20.2173i 0.680366i −0.940359 0.340183i \(-0.889511\pi\)
0.940359 0.340183i \(-0.110489\pi\)
\(884\) 24.9324 + 23.8772i 0.838569 + 0.803079i
\(885\) 0 0
\(886\) −1.51129 11.4794i −0.0507729 0.385659i
\(887\) −16.0199 18.2672i −0.537896 0.613353i 0.417501 0.908676i \(-0.362906\pi\)
−0.955397 + 0.295324i \(0.904573\pi\)
\(888\) 0 0
\(889\) −4.56070 + 2.24909i −0.152961 + 0.0754320i
\(890\) 2.10058 + 0.417830i 0.0704114 + 0.0140057i
\(891\) 0 0
\(892\) −14.3193 34.5699i −0.479447 1.15749i
\(893\) 14.0191 + 1.84565i 0.469131 + 0.0617623i
\(894\) 0 0
\(895\) 7.39625 + 21.7887i 0.247229 + 0.728314i
\(896\) 0.220937 3.37085i 0.00738100 0.112612i
\(897\) 0 0
\(898\) 4.76098 14.0254i 0.158876 0.468033i
\(899\) 60.9715 + 25.2552i 2.03351 + 0.842308i
\(900\) 0 0
\(901\) −35.2837 25.8820i −1.17547 0.862255i
\(902\) 2.87546 + 1.66015i 0.0957424 + 0.0552769i
\(903\) 0 0
\(904\) −23.1367 + 20.2903i −0.769515 + 0.674847i
\(905\) 1.26372 + 0.338612i 0.0420074 + 0.0112558i
\(906\) 0 0
\(907\) −2.33961 2.05178i −0.0776855 0.0681283i 0.619623 0.784900i \(-0.287286\pi\)
−0.697308 + 0.716772i \(0.745619\pi\)
\(908\) 12.9378 + 19.3628i 0.429355 + 0.642576i
\(909\) 0 0
\(910\) −0.844840 + 0.349944i −0.0280062 + 0.0116005i
\(911\) −0.871769 13.3006i −0.0288830 0.440669i −0.987671 0.156546i \(-0.949964\pi\)
0.958788 0.284123i \(-0.0917026\pi\)
\(912\) 0 0
\(913\) −7.21708 0.473033i −0.238851 0.0156551i
\(914\) −0.0781101 + 0.291511i −0.00258365 + 0.00964232i
\(915\) 0 0
\(916\) 30.3453 + 39.5467i 1.00264 + 1.30666i
\(917\) 2.26819 0.0749021
\(918\) 0 0
\(919\) 23.5802 0.777841 0.388920 0.921271i \(-0.372848\pi\)
0.388920 + 0.921271i \(0.372848\pi\)
\(920\) 5.27385 + 6.87301i 0.173874 + 0.226597i
\(921\) 0 0
\(922\) 1.67177 6.23913i 0.0550568 0.205475i
\(923\) 27.6411 + 1.81170i 0.909819 + 0.0596327i
\(924\) 0 0
\(925\) −0.411284 6.27498i −0.0135229 0.206320i
\(926\) −0.657313 + 0.272268i −0.0216007 + 0.00894729i
\(927\) 0 0
\(928\) −18.0804 27.0593i −0.593520 0.888265i
\(929\) 13.1610 + 11.5419i 0.431797 + 0.378676i 0.847474 0.530836i \(-0.178122\pi\)
−0.415677 + 0.909512i \(0.636455\pi\)
\(930\) 0 0
\(931\) 19.5761 + 5.24540i 0.641580 + 0.171911i
\(932\) −12.0969 + 10.6087i −0.396248 + 0.347501i
\(933\) 0 0
\(934\) 3.08296 + 1.77995i 0.100878 + 0.0582417i
\(935\) 9.02491 5.47396i 0.295146 0.179018i
\(936\) 0 0
\(937\) 38.3879 + 15.9008i 1.25408 + 0.519456i 0.908087 0.418782i \(-0.137543\pi\)
0.345991 + 0.938238i \(0.387543\pi\)
\(938\) −0.202142 + 0.595490i −0.00660015 + 0.0194434i
\(939\) 0 0
\(940\) −0.842180 + 12.8492i −0.0274689 + 0.419094i
\(941\) 4.96592 + 14.6291i 0.161884 + 0.476896i 0.997359 0.0726337i \(-0.0231404\pi\)
−0.835474 + 0.549529i \(0.814807\pi\)
\(942\) 0 0
\(943\) 15.9214 + 2.09609i 0.518473 + 0.0682582i
\(944\) 7.37193 + 17.7974i 0.239936 + 0.579256i
\(945\) 0 0
\(946\) 2.09967 + 0.417650i 0.0682661 + 0.0135790i
\(947\) −4.97929 + 2.45551i −0.161805 + 0.0797935i −0.521388 0.853320i \(-0.674586\pi\)
0.359583 + 0.933113i \(0.382919\pi\)
\(948\) 0 0
\(949\) −24.6345 28.0902i −0.799669 0.911847i
\(950\) 0.464934 + 3.53153i 0.0150845 + 0.114578i
\(951\) 0 0
\(952\) 2.07075 0.458636i 0.0671133 0.0148645i
\(953\) 15.3612i 0.497600i −0.968555 0.248800i \(-0.919964\pi\)
0.968555 0.248800i \(-0.0800361\pi\)
\(954\) 0 0
\(955\) 6.12173 + 30.7760i 0.198094 + 0.995888i
\(956\) 9.23645 + 34.4709i 0.298728 + 1.11487i
\(957\) 0 0
\(958\) 5.60989 1.90430i 0.181247 0.0615251i
\(959\) −2.71847 + 5.51252i −0.0877841 + 0.178009i
\(960\) 0 0
\(961\) −6.94123 + 52.7239i −0.223911 + 1.70077i
\(962\) −3.64230 + 2.43371i −0.117433 + 0.0784659i
\(963\) 0 0
\(964\) 18.5231 27.7218i 0.596590 0.892861i
\(965\) 10.4300 2.79471i 0.335754 0.0899650i
\(966\) 0 0
\(967\) 27.1102 3.56913i 0.871806 0.114775i 0.318669 0.947866i \(-0.396764\pi\)
0.553137 + 0.833091i \(0.313431\pi\)
\(968\) 6.51701 + 11.2878i 0.209464 + 0.362803i
\(969\) 0 0
\(970\) −5.90578 + 10.2291i −0.189623 + 0.328437i
\(971\) 15.7860 38.1109i 0.506598 1.22304i −0.439232 0.898374i \(-0.644749\pi\)
0.945830 0.324662i \(-0.105251\pi\)
\(972\) 0 0
\(973\) −2.33592 2.33592i −0.0748862 0.0748862i
\(974\) −4.50478 9.13480i −0.144343 0.292698i
\(975\) 0 0
\(976\) 10.0716 + 4.96678i 0.322385 + 0.158983i
\(977\) 18.0637 + 13.8608i 0.577911 + 0.443446i 0.855903 0.517137i \(-0.173002\pi\)
−0.277992 + 0.960583i \(0.589669\pi\)
\(978\) 0 0
\(979\) −5.89609 + 0.386450i −0.188440 + 0.0123510i
\(980\) −3.60058 + 18.1014i −0.115016 + 0.578227i
\(981\) 0 0
\(982\) −8.00610 + 8.00610i −0.255485 + 0.255485i
\(983\) 35.3341 + 11.9943i 1.12698 + 0.382560i 0.821824 0.569741i \(-0.192957\pi\)
0.305160 + 0.952301i \(0.401290\pi\)
\(984\) 0 0
\(985\) 27.3297 15.7788i 0.870795 0.502754i
\(986\) 8.16420 9.72573i 0.260001 0.309730i
\(987\) 0 0
\(988\) −19.5079 + 14.9689i −0.620629 + 0.476225i
\(989\) 10.1552 2.01999i 0.322915 0.0642319i
\(990\) 0 0
\(991\) 30.8345 + 20.6029i 0.979489 + 0.654474i 0.938715 0.344695i \(-0.112018\pi\)
0.0407744 + 0.999168i \(0.487018\pi\)
\(992\) 27.3700 31.2095i 0.868999 0.990904i
\(993\) 0 0
\(994\) 0.493128 0.642657i 0.0156411 0.0203838i
\(995\) 2.55621 3.33132i 0.0810373 0.105610i
\(996\) 0 0
\(997\) −7.02794 + 8.01383i −0.222577 + 0.253800i −0.852341 0.522986i \(-0.824818\pi\)
0.629764 + 0.776786i \(0.283151\pi\)
\(998\) −10.8653 7.25997i −0.343936 0.229810i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.y.a.62.6 256
3.2 odd 2 153.2.s.a.11.11 256
9.4 even 3 153.2.s.a.113.11 yes 256
9.5 odd 6 inner 459.2.y.a.368.6 256
17.14 odd 16 inner 459.2.y.a.116.6 256
51.14 even 16 153.2.s.a.65.11 yes 256
153.14 even 48 inner 459.2.y.a.422.6 256
153.31 odd 48 153.2.s.a.14.11 yes 256
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.s.a.11.11 256 3.2 odd 2
153.2.s.a.14.11 yes 256 153.31 odd 48
153.2.s.a.65.11 yes 256 51.14 even 16
153.2.s.a.113.11 yes 256 9.4 even 3
459.2.y.a.62.6 256 1.1 even 1 trivial
459.2.y.a.116.6 256 17.14 odd 16 inner
459.2.y.a.368.6 256 9.5 odd 6 inner
459.2.y.a.422.6 256 153.14 even 48 inner