Properties

Label 4598.2.a.by
Level 45984598
Weight 22
Character orbit 4598.a
Self dual yes
Analytic conductor 36.71536.715
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4598,2,Mod(1,4598)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4598, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4598.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4598=211219 4598 = 2 \cdot 11^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4598.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 36.715214849436.7152148494
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x816x64x5+75x4+32x390x228x2 x^{8} - 16x^{6} - 4x^{5} + 75x^{4} + 32x^{3} - 90x^{2} - 28x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+(β6+1)q3+q4+(β6+β5+β2)q5+(β61)q6+(β3+β2+β11)q7q8+(β7+β6β4++3)q9++(3β6β5β4+4)q98+O(q100) q - q^{2} + (\beta_{6} + 1) q^{3} + q^{4} + (\beta_{6} + \beta_{5} + \cdots - \beta_{2}) q^{5} + ( - \beta_{6} - 1) q^{6} + (\beta_{3} + \beta_{2} + \beta_1 - 1) q^{7} - q^{8} + (\beta_{7} + \beta_{6} - \beta_{4} + \cdots + 3) q^{9}+ \cdots + (3 \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 4) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q2+8q3+8q48q64q78q8+22q9+8q12+12q13+4q14+4q15+8q16+4q1722q18+8q19+20q21+14q238q24+36q25+34q98+O(q100) 8 q - 8 q^{2} + 8 q^{3} + 8 q^{4} - 8 q^{6} - 4 q^{7} - 8 q^{8} + 22 q^{9} + 8 q^{12} + 12 q^{13} + 4 q^{14} + 4 q^{15} + 8 q^{16} + 4 q^{17} - 22 q^{18} + 8 q^{19} + 20 q^{21} + 14 q^{23} - 8 q^{24} + 36 q^{25}+ \cdots - 34 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x816x64x5+75x4+32x390x228x2 x^{8} - 16x^{6} - 4x^{5} + 75x^{4} + 32x^{3} - 90x^{2} - 28x - 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν7ν615ν5+11ν4+64ν324ν266ν2)/8 ( \nu^{7} - \nu^{6} - 15\nu^{5} + 11\nu^{4} + 64\nu^{3} - 24\nu^{2} - 66\nu - 2 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν62ν513ν4+20ν3+44ν240ν18)/4 ( \nu^{6} - 2\nu^{5} - 13\nu^{4} + 20\nu^{3} + 44\nu^{2} - 40\nu - 18 ) / 4 Copy content Toggle raw display
β4\beta_{4}== (ν7+ν619ν515ν4+108ν3+56ν2166ν18)/4 ( \nu^{7} + \nu^{6} - 19\nu^{5} - 15\nu^{4} + 108\nu^{3} + 56\nu^{2} - 166\nu - 18 ) / 4 Copy content Toggle raw display
β5\beta_{5}== (3ν72ν645ν5+14ν4+196ν3+8ν2218ν32)/4 ( 3\nu^{7} - 2\nu^{6} - 45\nu^{5} + 14\nu^{4} + 196\nu^{3} + 8\nu^{2} - 218\nu - 32 ) / 4 Copy content Toggle raw display
β6\beta_{6}== (5ν7+3ν687ν553ν4+448ν3+232ν2610ν98)/8 ( 5\nu^{7} + 3\nu^{6} - 87\nu^{5} - 53\nu^{4} + 448\nu^{3} + 232\nu^{2} - 610\nu - 98 ) / 8 Copy content Toggle raw display
β7\beta_{7}== (7ν73ν6109ν5+13ν4+496ν3+72ν2582ν78)/8 ( 7\nu^{7} - 3\nu^{6} - 109\nu^{5} + 13\nu^{4} + 496\nu^{3} + 72\nu^{2} - 582\nu - 78 ) / 8 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7+β5+β3+β2+3 -\beta_{7} + \beta_{5} + \beta_{3} + \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== 2β7+2β5+β4+5β1+1 -2\beta_{7} + 2\beta_{5} + \beta_{4} + 5\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== 9β7+β6+8β5+6β3+10β2+18 -9\beta_{7} + \beta_{6} + 8\beta_{5} + 6\beta_{3} + 10\beta_{2} + 18 Copy content Toggle raw display
ν5\nu^{5}== 25β7+3β6+24β5+8β42β3+30β1+12 -25\beta_{7} + 3\beta_{6} + 24\beta_{5} + 8\beta_{4} - 2\beta_{3} + 30\beta _1 + 12 Copy content Toggle raw display
ν6\nu^{6}== 83β7+19β6+68β54β4+34β3+86β2+124 -83\beta_{7} + 19\beta_{6} + 68\beta_{5} - 4\beta_{4} + 34\beta_{3} + 86\beta_{2} + 124 Copy content Toggle raw display
ν7\nu^{7}== 255β7+53β6+236β5+52β438β3+8β2+196β1+116 -255\beta_{7} + 53\beta_{6} + 236\beta_{5} + 52\beta_{4} - 38\beta_{3} + 8\beta_{2} + 196\beta _1 + 116 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.93433
−0.115899
2.55131
3.02984
−1.84109
1.24609
−0.182716
−2.75320
−1.00000 −2.48823 1.00000 3.25915 2.48823 −4.58972 −1.00000 3.19127 −3.25915
1.2 −1.00000 −2.11129 1.00000 −2.75070 2.11129 −3.66381 −1.00000 1.45756 2.75070
1.3 −1.00000 −0.103249 1.00000 −3.91798 0.103249 4.45623 −1.00000 −2.98934 3.91798
1.4 −1.00000 1.55594 1.00000 2.24033 −1.55594 2.27752 −1.00000 −0.579065 −2.24033
1.5 −1.00000 1.67352 1.00000 −0.566489 −1.67352 −3.40033 −1.00000 −0.199325 0.566489
1.6 −1.00000 2.79123 1.00000 4.02325 −2.79123 −0.274917 −1.00000 4.79095 −4.02325
1.7 −1.00000 3.30349 1.00000 1.88260 −3.30349 −2.41197 −1.00000 7.91304 −1.88260
1.8 −1.00000 3.37860 1.00000 −4.17017 −3.37860 3.60700 −1.00000 8.41492 4.17017
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1111 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4598.2.a.by 8
11.b odd 2 1 4598.2.a.cb yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4598.2.a.by 8 1.a even 1 1 trivial
4598.2.a.cb yes 8 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4598))S_{2}^{\mathrm{new}}(\Gamma_0(4598)):

T388T37+9T36+72T35183T3480T33+557T32368T344 T_{3}^{8} - 8T_{3}^{7} + 9T_{3}^{6} + 72T_{3}^{5} - 183T_{3}^{4} - 80T_{3}^{3} + 557T_{3}^{2} - 368T_{3} - 44 Copy content Toggle raw display
T5838T56+12T55+470T54288T531984T52+1536T5+1408 T_{5}^{8} - 38T_{5}^{6} + 12T_{5}^{5} + 470T_{5}^{4} - 288T_{5}^{3} - 1984T_{5}^{2} + 1536T_{5} + 1408 Copy content Toggle raw display
T78+4T7737T76152T75+387T74+1716T73867T725408T71388 T_{7}^{8} + 4T_{7}^{7} - 37T_{7}^{6} - 152T_{7}^{5} + 387T_{7}^{4} + 1716T_{7}^{3} - 867T_{7}^{2} - 5408T_{7} - 1388 Copy content Toggle raw display
T13812T137+34T136+84T135451T134+72T133+1088T13296T13368 T_{13}^{8} - 12T_{13}^{7} + 34T_{13}^{6} + 84T_{13}^{5} - 451T_{13}^{4} + 72T_{13}^{3} + 1088T_{13}^{2} - 96T_{13} - 368 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
33 T88T7+44 T^{8} - 8 T^{7} + \cdots - 44 Copy content Toggle raw display
55 T838T6++1408 T^{8} - 38 T^{6} + \cdots + 1408 Copy content Toggle raw display
77 T8+4T7+1388 T^{8} + 4 T^{7} + \cdots - 1388 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T812T7+368 T^{8} - 12 T^{7} + \cdots - 368 Copy content Toggle raw display
1717 T84T7+92 T^{8} - 4 T^{7} + \cdots - 92 Copy content Toggle raw display
1919 (T1)8 (T - 1)^{8} Copy content Toggle raw display
2323 T814T7++35296 T^{8} - 14 T^{7} + \cdots + 35296 Copy content Toggle raw display
2929 T82T7++964 T^{8} - 2 T^{7} + \cdots + 964 Copy content Toggle raw display
3131 T8132T6+9344 T^{8} - 132 T^{6} + \cdots - 9344 Copy content Toggle raw display
3737 T824T7++29569 T^{8} - 24 T^{7} + \cdots + 29569 Copy content Toggle raw display
4141 T8+8T7+3872 T^{8} + 8 T^{7} + \cdots - 3872 Copy content Toggle raw display
4343 T8+8T7+67328 T^{8} + 8 T^{7} + \cdots - 67328 Copy content Toggle raw display
4747 T8+16T7+2659283 T^{8} + 16 T^{7} + \cdots - 2659283 Copy content Toggle raw display
5353 T836T7++2770816 T^{8} - 36 T^{7} + \cdots + 2770816 Copy content Toggle raw display
5959 T8+24T7+20032604 T^{8} + 24 T^{7} + \cdots - 20032604 Copy content Toggle raw display
6161 T8+12T7++16192 T^{8} + 12 T^{7} + \cdots + 16192 Copy content Toggle raw display
6767 T816T7++457168 T^{8} - 16 T^{7} + \cdots + 457168 Copy content Toggle raw display
7171 T84T7++3806464 T^{8} - 4 T^{7} + \cdots + 3806464 Copy content Toggle raw display
7373 T820T7+37382204 T^{8} - 20 T^{7} + \cdots - 37382204 Copy content Toggle raw display
7979 T812T7++51808 T^{8} - 12 T^{7} + \cdots + 51808 Copy content Toggle raw display
8383 T8+20T7+251648 T^{8} + 20 T^{7} + \cdots - 251648 Copy content Toggle raw display
8989 T88T7+320672 T^{8} - 8 T^{7} + \cdots - 320672 Copy content Toggle raw display
9797 T84T7+1921664 T^{8} - 4 T^{7} + \cdots - 1921664 Copy content Toggle raw display
show more
show less