Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4598,2,Mod(1,4598)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4598, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4598.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4598.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.00000 | −2.48823 | 1.00000 | 3.25915 | 2.48823 | −4.58972 | −1.00000 | 3.19127 | −3.25915 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −1.00000 | −2.11129 | 1.00000 | −2.75070 | 2.11129 | −3.66381 | −1.00000 | 1.45756 | 2.75070 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −1.00000 | −0.103249 | 1.00000 | −3.91798 | 0.103249 | 4.45623 | −1.00000 | −2.98934 | 3.91798 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | −1.00000 | 1.55594 | 1.00000 | 2.24033 | −1.55594 | 2.27752 | −1.00000 | −0.579065 | −2.24033 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | −1.00000 | 1.67352 | 1.00000 | −0.566489 | −1.67352 | −3.40033 | −1.00000 | −0.199325 | 0.566489 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | −1.00000 | 2.79123 | 1.00000 | 4.02325 | −2.79123 | −0.274917 | −1.00000 | 4.79095 | −4.02325 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | −1.00000 | 3.30349 | 1.00000 | 1.88260 | −3.30349 | −2.41197 | −1.00000 | 7.91304 | −1.88260 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | −1.00000 | 3.37860 | 1.00000 | −4.17017 | −3.37860 | 3.60700 | −1.00000 | 8.41492 | 4.17017 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4598.2.a.by | ✓ | 8 |
11.b | odd | 2 | 1 | 4598.2.a.cb | yes | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4598.2.a.by | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
4598.2.a.cb | yes | 8 | 11.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|