Properties

Label 4598.2.a.z.1.1
Level $4598$
Weight $2$
Character 4598.1
Self dual yes
Analytic conductor $36.715$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4598,2,Mod(1,4598)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4598, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4598.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4598 = 2 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4598.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.7152148494\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 418)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4598.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.85410 q^{5} -0.618034 q^{7} -1.00000 q^{8} -3.00000 q^{9} +3.85410 q^{10} -2.47214 q^{13} +0.618034 q^{14} +1.00000 q^{16} -4.09017 q^{17} +3.00000 q^{18} -1.00000 q^{19} -3.85410 q^{20} +1.14590 q^{23} +9.85410 q^{25} +2.47214 q^{26} -0.618034 q^{28} -1.23607 q^{29} -5.70820 q^{31} -1.00000 q^{32} +4.09017 q^{34} +2.38197 q^{35} -3.00000 q^{36} -9.23607 q^{37} +1.00000 q^{38} +3.85410 q^{40} -10.4721 q^{41} +1.61803 q^{43} +11.5623 q^{45} -1.14590 q^{46} -11.6180 q^{47} -6.61803 q^{49} -9.85410 q^{50} -2.47214 q^{52} +2.00000 q^{53} +0.618034 q^{56} +1.23607 q^{58} -10.0000 q^{59} -10.0902 q^{61} +5.70820 q^{62} +1.85410 q^{63} +1.00000 q^{64} +9.52786 q^{65} -8.00000 q^{67} -4.09017 q^{68} -2.38197 q^{70} +8.47214 q^{71} +3.00000 q^{72} +8.47214 q^{73} +9.23607 q^{74} -1.00000 q^{76} +12.0000 q^{79} -3.85410 q^{80} +9.00000 q^{81} +10.4721 q^{82} -3.85410 q^{83} +15.7639 q^{85} -1.61803 q^{86} -14.1803 q^{89} -11.5623 q^{90} +1.52786 q^{91} +1.14590 q^{92} +11.6180 q^{94} +3.85410 q^{95} -7.52786 q^{97} +6.61803 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - q^{5} + q^{7} - 2 q^{8} - 6 q^{9} + q^{10} + 4 q^{13} - q^{14} + 2 q^{16} + 3 q^{17} + 6 q^{18} - 2 q^{19} - q^{20} + 9 q^{23} + 13 q^{25} - 4 q^{26} + q^{28} + 2 q^{29}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.85410 −1.72361 −0.861803 0.507242i \(-0.830665\pi\)
−0.861803 + 0.507242i \(0.830665\pi\)
\(6\) 0 0
\(7\) −0.618034 −0.233595 −0.116797 0.993156i \(-0.537263\pi\)
−0.116797 + 0.993156i \(0.537263\pi\)
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) 3.85410 1.21877
\(11\) 0 0
\(12\) 0 0
\(13\) −2.47214 −0.685647 −0.342824 0.939400i \(-0.611383\pi\)
−0.342824 + 0.939400i \(0.611383\pi\)
\(14\) 0.618034 0.165177
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.09017 −0.992012 −0.496006 0.868319i \(-0.665201\pi\)
−0.496006 + 0.868319i \(0.665201\pi\)
\(18\) 3.00000 0.707107
\(19\) −1.00000 −0.229416
\(20\) −3.85410 −0.861803
\(21\) 0 0
\(22\) 0 0
\(23\) 1.14590 0.238936 0.119468 0.992838i \(-0.461881\pi\)
0.119468 + 0.992838i \(0.461881\pi\)
\(24\) 0 0
\(25\) 9.85410 1.97082
\(26\) 2.47214 0.484826
\(27\) 0 0
\(28\) −0.618034 −0.116797
\(29\) −1.23607 −0.229532 −0.114766 0.993393i \(-0.536612\pi\)
−0.114766 + 0.993393i \(0.536612\pi\)
\(30\) 0 0
\(31\) −5.70820 −1.02522 −0.512612 0.858620i \(-0.671322\pi\)
−0.512612 + 0.858620i \(0.671322\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.09017 0.701458
\(35\) 2.38197 0.402626
\(36\) −3.00000 −0.500000
\(37\) −9.23607 −1.51840 −0.759200 0.650857i \(-0.774410\pi\)
−0.759200 + 0.650857i \(0.774410\pi\)
\(38\) 1.00000 0.162221
\(39\) 0 0
\(40\) 3.85410 0.609387
\(41\) −10.4721 −1.63547 −0.817736 0.575593i \(-0.804771\pi\)
−0.817736 + 0.575593i \(0.804771\pi\)
\(42\) 0 0
\(43\) 1.61803 0.246748 0.123374 0.992360i \(-0.460629\pi\)
0.123374 + 0.992360i \(0.460629\pi\)
\(44\) 0 0
\(45\) 11.5623 1.72361
\(46\) −1.14590 −0.168953
\(47\) −11.6180 −1.69466 −0.847332 0.531063i \(-0.821793\pi\)
−0.847332 + 0.531063i \(0.821793\pi\)
\(48\) 0 0
\(49\) −6.61803 −0.945433
\(50\) −9.85410 −1.39358
\(51\) 0 0
\(52\) −2.47214 −0.342824
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.618034 0.0825883
\(57\) 0 0
\(58\) 1.23607 0.162304
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −10.0902 −1.29191 −0.645957 0.763374i \(-0.723541\pi\)
−0.645957 + 0.763374i \(0.723541\pi\)
\(62\) 5.70820 0.724943
\(63\) 1.85410 0.233595
\(64\) 1.00000 0.125000
\(65\) 9.52786 1.18179
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −4.09017 −0.496006
\(69\) 0 0
\(70\) −2.38197 −0.284699
\(71\) 8.47214 1.00546 0.502729 0.864444i \(-0.332329\pi\)
0.502729 + 0.864444i \(0.332329\pi\)
\(72\) 3.00000 0.353553
\(73\) 8.47214 0.991589 0.495794 0.868440i \(-0.334877\pi\)
0.495794 + 0.868440i \(0.334877\pi\)
\(74\) 9.23607 1.07367
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) −3.85410 −0.430902
\(81\) 9.00000 1.00000
\(82\) 10.4721 1.15645
\(83\) −3.85410 −0.423043 −0.211521 0.977373i \(-0.567842\pi\)
−0.211521 + 0.977373i \(0.567842\pi\)
\(84\) 0 0
\(85\) 15.7639 1.70984
\(86\) −1.61803 −0.174477
\(87\) 0 0
\(88\) 0 0
\(89\) −14.1803 −1.50311 −0.751557 0.659669i \(-0.770697\pi\)
−0.751557 + 0.659669i \(0.770697\pi\)
\(90\) −11.5623 −1.21877
\(91\) 1.52786 0.160164
\(92\) 1.14590 0.119468
\(93\) 0 0
\(94\) 11.6180 1.19831
\(95\) 3.85410 0.395423
\(96\) 0 0
\(97\) −7.52786 −0.764339 −0.382169 0.924092i \(-0.624823\pi\)
−0.382169 + 0.924092i \(0.624823\pi\)
\(98\) 6.61803 0.668522
\(99\) 0 0
\(100\) 9.85410 0.985410
\(101\) −1.38197 −0.137511 −0.0687554 0.997634i \(-0.521903\pi\)
−0.0687554 + 0.997634i \(0.521903\pi\)
\(102\) 0 0
\(103\) 7.41641 0.730760 0.365380 0.930858i \(-0.380939\pi\)
0.365380 + 0.930858i \(0.380939\pi\)
\(104\) 2.47214 0.242413
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 9.23607 0.892884 0.446442 0.894812i \(-0.352691\pi\)
0.446442 + 0.894812i \(0.352691\pi\)
\(108\) 0 0
\(109\) −1.70820 −0.163616 −0.0818081 0.996648i \(-0.526069\pi\)
−0.0818081 + 0.996648i \(0.526069\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.618034 −0.0583987
\(113\) −13.7082 −1.28956 −0.644780 0.764368i \(-0.723051\pi\)
−0.644780 + 0.764368i \(0.723051\pi\)
\(114\) 0 0
\(115\) −4.41641 −0.411832
\(116\) −1.23607 −0.114766
\(117\) 7.41641 0.685647
\(118\) 10.0000 0.920575
\(119\) 2.52786 0.231729
\(120\) 0 0
\(121\) 0 0
\(122\) 10.0902 0.913521
\(123\) 0 0
\(124\) −5.70820 −0.512612
\(125\) −18.7082 −1.67331
\(126\) −1.85410 −0.165177
\(127\) 5.23607 0.464626 0.232313 0.972641i \(-0.425371\pi\)
0.232313 + 0.972641i \(0.425371\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −9.52786 −0.835649
\(131\) 6.32624 0.552726 0.276363 0.961053i \(-0.410871\pi\)
0.276363 + 0.961053i \(0.410871\pi\)
\(132\) 0 0
\(133\) 0.618034 0.0535903
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 4.09017 0.350729
\(137\) −16.6180 −1.41977 −0.709887 0.704315i \(-0.751254\pi\)
−0.709887 + 0.704315i \(0.751254\pi\)
\(138\) 0 0
\(139\) 19.3262 1.63923 0.819615 0.572915i \(-0.194187\pi\)
0.819615 + 0.572915i \(0.194187\pi\)
\(140\) 2.38197 0.201313
\(141\) 0 0
\(142\) −8.47214 −0.710966
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 4.76393 0.395623
\(146\) −8.47214 −0.701159
\(147\) 0 0
\(148\) −9.23607 −0.759200
\(149\) −13.4164 −1.09911 −0.549557 0.835456i \(-0.685204\pi\)
−0.549557 + 0.835456i \(0.685204\pi\)
\(150\) 0 0
\(151\) 14.1803 1.15398 0.576990 0.816751i \(-0.304227\pi\)
0.576990 + 0.816751i \(0.304227\pi\)
\(152\) 1.00000 0.0811107
\(153\) 12.2705 0.992012
\(154\) 0 0
\(155\) 22.0000 1.76708
\(156\) 0 0
\(157\) 0.437694 0.0349318 0.0174659 0.999847i \(-0.494440\pi\)
0.0174659 + 0.999847i \(0.494440\pi\)
\(158\) −12.0000 −0.954669
\(159\) 0 0
\(160\) 3.85410 0.304694
\(161\) −0.708204 −0.0558143
\(162\) −9.00000 −0.707107
\(163\) 25.0902 1.96521 0.982607 0.185698i \(-0.0594546\pi\)
0.982607 + 0.185698i \(0.0594546\pi\)
\(164\) −10.4721 −0.817736
\(165\) 0 0
\(166\) 3.85410 0.299136
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −6.88854 −0.529888
\(170\) −15.7639 −1.20904
\(171\) 3.00000 0.229416
\(172\) 1.61803 0.123374
\(173\) 19.4164 1.47620 0.738101 0.674690i \(-0.235723\pi\)
0.738101 + 0.674690i \(0.235723\pi\)
\(174\) 0 0
\(175\) −6.09017 −0.460374
\(176\) 0 0
\(177\) 0 0
\(178\) 14.1803 1.06286
\(179\) 7.23607 0.540849 0.270425 0.962741i \(-0.412836\pi\)
0.270425 + 0.962741i \(0.412836\pi\)
\(180\) 11.5623 0.861803
\(181\) −12.6525 −0.940451 −0.470226 0.882546i \(-0.655827\pi\)
−0.470226 + 0.882546i \(0.655827\pi\)
\(182\) −1.52786 −0.113253
\(183\) 0 0
\(184\) −1.14590 −0.0844767
\(185\) 35.5967 2.61712
\(186\) 0 0
\(187\) 0 0
\(188\) −11.6180 −0.847332
\(189\) 0 0
\(190\) −3.85410 −0.279606
\(191\) 9.56231 0.691904 0.345952 0.938252i \(-0.387556\pi\)
0.345952 + 0.938252i \(0.387556\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 7.52786 0.540469
\(195\) 0 0
\(196\) −6.61803 −0.472717
\(197\) −7.52786 −0.536338 −0.268169 0.963372i \(-0.586419\pi\)
−0.268169 + 0.963372i \(0.586419\pi\)
\(198\) 0 0
\(199\) 4.61803 0.327364 0.163682 0.986513i \(-0.447663\pi\)
0.163682 + 0.986513i \(0.447663\pi\)
\(200\) −9.85410 −0.696790
\(201\) 0 0
\(202\) 1.38197 0.0972348
\(203\) 0.763932 0.0536175
\(204\) 0 0
\(205\) 40.3607 2.81891
\(206\) −7.41641 −0.516726
\(207\) −3.43769 −0.238936
\(208\) −2.47214 −0.171412
\(209\) 0 0
\(210\) 0 0
\(211\) 17.1246 1.17891 0.589453 0.807802i \(-0.299343\pi\)
0.589453 + 0.807802i \(0.299343\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) −9.23607 −0.631365
\(215\) −6.23607 −0.425296
\(216\) 0 0
\(217\) 3.52786 0.239487
\(218\) 1.70820 0.115694
\(219\) 0 0
\(220\) 0 0
\(221\) 10.1115 0.680170
\(222\) 0 0
\(223\) 4.47214 0.299476 0.149738 0.988726i \(-0.452157\pi\)
0.149738 + 0.988726i \(0.452157\pi\)
\(224\) 0.618034 0.0412941
\(225\) −29.5623 −1.97082
\(226\) 13.7082 0.911856
\(227\) −11.5279 −0.765131 −0.382566 0.923928i \(-0.624959\pi\)
−0.382566 + 0.923928i \(0.624959\pi\)
\(228\) 0 0
\(229\) −0.562306 −0.0371582 −0.0185791 0.999827i \(-0.505914\pi\)
−0.0185791 + 0.999827i \(0.505914\pi\)
\(230\) 4.41641 0.291209
\(231\) 0 0
\(232\) 1.23607 0.0811518
\(233\) 8.90983 0.583702 0.291851 0.956464i \(-0.405729\pi\)
0.291851 + 0.956464i \(0.405729\pi\)
\(234\) −7.41641 −0.484826
\(235\) 44.7771 2.92094
\(236\) −10.0000 −0.650945
\(237\) 0 0
\(238\) −2.52786 −0.163857
\(239\) −15.7984 −1.02191 −0.510956 0.859607i \(-0.670708\pi\)
−0.510956 + 0.859607i \(0.670708\pi\)
\(240\) 0 0
\(241\) −9.05573 −0.583331 −0.291665 0.956520i \(-0.594209\pi\)
−0.291665 + 0.956520i \(0.594209\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −10.0902 −0.645957
\(245\) 25.5066 1.62956
\(246\) 0 0
\(247\) 2.47214 0.157298
\(248\) 5.70820 0.362471
\(249\) 0 0
\(250\) 18.7082 1.18321
\(251\) −23.3262 −1.47234 −0.736170 0.676797i \(-0.763367\pi\)
−0.736170 + 0.676797i \(0.763367\pi\)
\(252\) 1.85410 0.116797
\(253\) 0 0
\(254\) −5.23607 −0.328540
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.70820 −0.356068 −0.178034 0.984024i \(-0.556974\pi\)
−0.178034 + 0.984024i \(0.556974\pi\)
\(258\) 0 0
\(259\) 5.70820 0.354691
\(260\) 9.52786 0.590893
\(261\) 3.70820 0.229532
\(262\) −6.32624 −0.390836
\(263\) 1.52786 0.0942121 0.0471061 0.998890i \(-0.485000\pi\)
0.0471061 + 0.998890i \(0.485000\pi\)
\(264\) 0 0
\(265\) −7.70820 −0.473511
\(266\) −0.618034 −0.0378941
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) 16.3607 0.997528 0.498764 0.866738i \(-0.333787\pi\)
0.498764 + 0.866738i \(0.333787\pi\)
\(270\) 0 0
\(271\) 14.0902 0.855917 0.427958 0.903798i \(-0.359233\pi\)
0.427958 + 0.903798i \(0.359233\pi\)
\(272\) −4.09017 −0.248003
\(273\) 0 0
\(274\) 16.6180 1.00393
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) −19.3262 −1.15911
\(279\) 17.1246 1.02522
\(280\) −2.38197 −0.142350
\(281\) −21.1246 −1.26019 −0.630094 0.776519i \(-0.716984\pi\)
−0.630094 + 0.776519i \(0.716984\pi\)
\(282\) 0 0
\(283\) −27.2705 −1.62106 −0.810532 0.585695i \(-0.800822\pi\)
−0.810532 + 0.585695i \(0.800822\pi\)
\(284\) 8.47214 0.502729
\(285\) 0 0
\(286\) 0 0
\(287\) 6.47214 0.382038
\(288\) 3.00000 0.176777
\(289\) −0.270510 −0.0159123
\(290\) −4.76393 −0.279748
\(291\) 0 0
\(292\) 8.47214 0.495794
\(293\) 1.70820 0.0997943 0.0498972 0.998754i \(-0.484111\pi\)
0.0498972 + 0.998754i \(0.484111\pi\)
\(294\) 0 0
\(295\) 38.5410 2.24394
\(296\) 9.23607 0.536836
\(297\) 0 0
\(298\) 13.4164 0.777192
\(299\) −2.83282 −0.163826
\(300\) 0 0
\(301\) −1.00000 −0.0576390
\(302\) −14.1803 −0.815987
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 38.8885 2.22675
\(306\) −12.2705 −0.701458
\(307\) 19.4164 1.10815 0.554076 0.832466i \(-0.313072\pi\)
0.554076 + 0.832466i \(0.313072\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −22.0000 −1.24952
\(311\) −33.3262 −1.88976 −0.944879 0.327420i \(-0.893821\pi\)
−0.944879 + 0.327420i \(0.893821\pi\)
\(312\) 0 0
\(313\) −1.03444 −0.0584701 −0.0292351 0.999573i \(-0.509307\pi\)
−0.0292351 + 0.999573i \(0.509307\pi\)
\(314\) −0.437694 −0.0247005
\(315\) −7.14590 −0.402626
\(316\) 12.0000 0.675053
\(317\) 15.4164 0.865872 0.432936 0.901425i \(-0.357478\pi\)
0.432936 + 0.901425i \(0.357478\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −3.85410 −0.215451
\(321\) 0 0
\(322\) 0.708204 0.0394667
\(323\) 4.09017 0.227583
\(324\) 9.00000 0.500000
\(325\) −24.3607 −1.35129
\(326\) −25.0902 −1.38962
\(327\) 0 0
\(328\) 10.4721 0.578227
\(329\) 7.18034 0.395865
\(330\) 0 0
\(331\) −16.4721 −0.905390 −0.452695 0.891665i \(-0.649537\pi\)
−0.452695 + 0.891665i \(0.649537\pi\)
\(332\) −3.85410 −0.211521
\(333\) 27.7082 1.51840
\(334\) 8.00000 0.437741
\(335\) 30.8328 1.68458
\(336\) 0 0
\(337\) 14.6525 0.798171 0.399086 0.916914i \(-0.369328\pi\)
0.399086 + 0.916914i \(0.369328\pi\)
\(338\) 6.88854 0.374687
\(339\) 0 0
\(340\) 15.7639 0.854919
\(341\) 0 0
\(342\) −3.00000 −0.162221
\(343\) 8.41641 0.454443
\(344\) −1.61803 −0.0872385
\(345\) 0 0
\(346\) −19.4164 −1.04383
\(347\) −17.2148 −0.924138 −0.462069 0.886844i \(-0.652893\pi\)
−0.462069 + 0.886844i \(0.652893\pi\)
\(348\) 0 0
\(349\) −31.2705 −1.67387 −0.836936 0.547301i \(-0.815655\pi\)
−0.836936 + 0.547301i \(0.815655\pi\)
\(350\) 6.09017 0.325533
\(351\) 0 0
\(352\) 0 0
\(353\) 8.32624 0.443161 0.221580 0.975142i \(-0.428878\pi\)
0.221580 + 0.975142i \(0.428878\pi\)
\(354\) 0 0
\(355\) −32.6525 −1.73301
\(356\) −14.1803 −0.751557
\(357\) 0 0
\(358\) −7.23607 −0.382438
\(359\) −1.72949 −0.0912790 −0.0456395 0.998958i \(-0.514533\pi\)
−0.0456395 + 0.998958i \(0.514533\pi\)
\(360\) −11.5623 −0.609387
\(361\) 1.00000 0.0526316
\(362\) 12.6525 0.664999
\(363\) 0 0
\(364\) 1.52786 0.0800818
\(365\) −32.6525 −1.70911
\(366\) 0 0
\(367\) 1.20163 0.0627244 0.0313622 0.999508i \(-0.490015\pi\)
0.0313622 + 0.999508i \(0.490015\pi\)
\(368\) 1.14590 0.0597341
\(369\) 31.4164 1.63547
\(370\) −35.5967 −1.85059
\(371\) −1.23607 −0.0641735
\(372\) 0 0
\(373\) −25.5967 −1.32535 −0.662675 0.748907i \(-0.730579\pi\)
−0.662675 + 0.748907i \(0.730579\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 11.6180 0.599154
\(377\) 3.05573 0.157378
\(378\) 0 0
\(379\) 1.52786 0.0784811 0.0392406 0.999230i \(-0.487506\pi\)
0.0392406 + 0.999230i \(0.487506\pi\)
\(380\) 3.85410 0.197711
\(381\) 0 0
\(382\) −9.56231 −0.489250
\(383\) 18.4721 0.943882 0.471941 0.881630i \(-0.343554\pi\)
0.471941 + 0.881630i \(0.343554\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) −4.85410 −0.246748
\(388\) −7.52786 −0.382169
\(389\) 7.61803 0.386250 0.193125 0.981174i \(-0.438138\pi\)
0.193125 + 0.981174i \(0.438138\pi\)
\(390\) 0 0
\(391\) −4.68692 −0.237028
\(392\) 6.61803 0.334261
\(393\) 0 0
\(394\) 7.52786 0.379248
\(395\) −46.2492 −2.32705
\(396\) 0 0
\(397\) 7.79837 0.391389 0.195695 0.980665i \(-0.437304\pi\)
0.195695 + 0.980665i \(0.437304\pi\)
\(398\) −4.61803 −0.231481
\(399\) 0 0
\(400\) 9.85410 0.492705
\(401\) −3.41641 −0.170607 −0.0853036 0.996355i \(-0.527186\pi\)
−0.0853036 + 0.996355i \(0.527186\pi\)
\(402\) 0 0
\(403\) 14.1115 0.702942
\(404\) −1.38197 −0.0687554
\(405\) −34.6869 −1.72361
\(406\) −0.763932 −0.0379133
\(407\) 0 0
\(408\) 0 0
\(409\) −23.7082 −1.17230 −0.586148 0.810204i \(-0.699356\pi\)
−0.586148 + 0.810204i \(0.699356\pi\)
\(410\) −40.3607 −1.99327
\(411\) 0 0
\(412\) 7.41641 0.365380
\(413\) 6.18034 0.304115
\(414\) 3.43769 0.168953
\(415\) 14.8541 0.729159
\(416\) 2.47214 0.121206
\(417\) 0 0
\(418\) 0 0
\(419\) 12.6738 0.619154 0.309577 0.950874i \(-0.399813\pi\)
0.309577 + 0.950874i \(0.399813\pi\)
\(420\) 0 0
\(421\) −24.7639 −1.20692 −0.603460 0.797393i \(-0.706212\pi\)
−0.603460 + 0.797393i \(0.706212\pi\)
\(422\) −17.1246 −0.833613
\(423\) 34.8541 1.69466
\(424\) −2.00000 −0.0971286
\(425\) −40.3050 −1.95508
\(426\) 0 0
\(427\) 6.23607 0.301784
\(428\) 9.23607 0.446442
\(429\) 0 0
\(430\) 6.23607 0.300730
\(431\) 27.8885 1.34334 0.671672 0.740849i \(-0.265576\pi\)
0.671672 + 0.740849i \(0.265576\pi\)
\(432\) 0 0
\(433\) −36.5410 −1.75605 −0.878025 0.478615i \(-0.841139\pi\)
−0.878025 + 0.478615i \(0.841139\pi\)
\(434\) −3.52786 −0.169343
\(435\) 0 0
\(436\) −1.70820 −0.0818081
\(437\) −1.14590 −0.0548157
\(438\) 0 0
\(439\) 36.3607 1.73540 0.867700 0.497088i \(-0.165597\pi\)
0.867700 + 0.497088i \(0.165597\pi\)
\(440\) 0 0
\(441\) 19.8541 0.945433
\(442\) −10.1115 −0.480953
\(443\) −2.61803 −0.124387 −0.0621933 0.998064i \(-0.519810\pi\)
−0.0621933 + 0.998064i \(0.519810\pi\)
\(444\) 0 0
\(445\) 54.6525 2.59078
\(446\) −4.47214 −0.211762
\(447\) 0 0
\(448\) −0.618034 −0.0291994
\(449\) −32.9443 −1.55474 −0.777368 0.629046i \(-0.783446\pi\)
−0.777368 + 0.629046i \(0.783446\pi\)
\(450\) 29.5623 1.39358
\(451\) 0 0
\(452\) −13.7082 −0.644780
\(453\) 0 0
\(454\) 11.5279 0.541029
\(455\) −5.88854 −0.276059
\(456\) 0 0
\(457\) 30.7984 1.44069 0.720344 0.693617i \(-0.243984\pi\)
0.720344 + 0.693617i \(0.243984\pi\)
\(458\) 0.562306 0.0262748
\(459\) 0 0
\(460\) −4.41641 −0.205916
\(461\) −25.3820 −1.18216 −0.591078 0.806614i \(-0.701297\pi\)
−0.591078 + 0.806614i \(0.701297\pi\)
\(462\) 0 0
\(463\) −17.8541 −0.829750 −0.414875 0.909878i \(-0.636175\pi\)
−0.414875 + 0.909878i \(0.636175\pi\)
\(464\) −1.23607 −0.0573830
\(465\) 0 0
\(466\) −8.90983 −0.412740
\(467\) 4.14590 0.191849 0.0959246 0.995389i \(-0.469419\pi\)
0.0959246 + 0.995389i \(0.469419\pi\)
\(468\) 7.41641 0.342824
\(469\) 4.94427 0.228305
\(470\) −44.7771 −2.06541
\(471\) 0 0
\(472\) 10.0000 0.460287
\(473\) 0 0
\(474\) 0 0
\(475\) −9.85410 −0.452137
\(476\) 2.52786 0.115864
\(477\) −6.00000 −0.274721
\(478\) 15.7984 0.722601
\(479\) −16.5623 −0.756751 −0.378376 0.925652i \(-0.623517\pi\)
−0.378376 + 0.925652i \(0.623517\pi\)
\(480\) 0 0
\(481\) 22.8328 1.04109
\(482\) 9.05573 0.412477
\(483\) 0 0
\(484\) 0 0
\(485\) 29.0132 1.31742
\(486\) 0 0
\(487\) 25.4164 1.15173 0.575864 0.817546i \(-0.304666\pi\)
0.575864 + 0.817546i \(0.304666\pi\)
\(488\) 10.0902 0.456761
\(489\) 0 0
\(490\) −25.5066 −1.15227
\(491\) 35.5623 1.60490 0.802452 0.596716i \(-0.203528\pi\)
0.802452 + 0.596716i \(0.203528\pi\)
\(492\) 0 0
\(493\) 5.05573 0.227699
\(494\) −2.47214 −0.111227
\(495\) 0 0
\(496\) −5.70820 −0.256306
\(497\) −5.23607 −0.234870
\(498\) 0 0
\(499\) −23.2705 −1.04173 −0.520866 0.853639i \(-0.674391\pi\)
−0.520866 + 0.853639i \(0.674391\pi\)
\(500\) −18.7082 −0.836656
\(501\) 0 0
\(502\) 23.3262 1.04110
\(503\) −27.4164 −1.22244 −0.611219 0.791462i \(-0.709320\pi\)
−0.611219 + 0.791462i \(0.709320\pi\)
\(504\) −1.85410 −0.0825883
\(505\) 5.32624 0.237014
\(506\) 0 0
\(507\) 0 0
\(508\) 5.23607 0.232313
\(509\) 22.9443 1.01699 0.508493 0.861066i \(-0.330203\pi\)
0.508493 + 0.861066i \(0.330203\pi\)
\(510\) 0 0
\(511\) −5.23607 −0.231630
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 5.70820 0.251778
\(515\) −28.5836 −1.25954
\(516\) 0 0
\(517\) 0 0
\(518\) −5.70820 −0.250804
\(519\) 0 0
\(520\) −9.52786 −0.417824
\(521\) −5.70820 −0.250081 −0.125040 0.992152i \(-0.539906\pi\)
−0.125040 + 0.992152i \(0.539906\pi\)
\(522\) −3.70820 −0.162304
\(523\) 23.7082 1.03669 0.518344 0.855172i \(-0.326549\pi\)
0.518344 + 0.855172i \(0.326549\pi\)
\(524\) 6.32624 0.276363
\(525\) 0 0
\(526\) −1.52786 −0.0666180
\(527\) 23.3475 1.01703
\(528\) 0 0
\(529\) −21.6869 −0.942909
\(530\) 7.70820 0.334823
\(531\) 30.0000 1.30189
\(532\) 0.618034 0.0267952
\(533\) 25.8885 1.12136
\(534\) 0 0
\(535\) −35.5967 −1.53898
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) −16.3607 −0.705359
\(539\) 0 0
\(540\) 0 0
\(541\) 31.2148 1.34203 0.671014 0.741445i \(-0.265859\pi\)
0.671014 + 0.741445i \(0.265859\pi\)
\(542\) −14.0902 −0.605225
\(543\) 0 0
\(544\) 4.09017 0.175365
\(545\) 6.58359 0.282010
\(546\) 0 0
\(547\) −26.7639 −1.14434 −0.572172 0.820134i \(-0.693899\pi\)
−0.572172 + 0.820134i \(0.693899\pi\)
\(548\) −16.6180 −0.709887
\(549\) 30.2705 1.29191
\(550\) 0 0
\(551\) 1.23607 0.0526583
\(552\) 0 0
\(553\) −7.41641 −0.315378
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 19.3262 0.819615
\(557\) 32.1459 1.36207 0.681033 0.732253i \(-0.261531\pi\)
0.681033 + 0.732253i \(0.261531\pi\)
\(558\) −17.1246 −0.724943
\(559\) −4.00000 −0.169182
\(560\) 2.38197 0.100656
\(561\) 0 0
\(562\) 21.1246 0.891088
\(563\) 10.9443 0.461246 0.230623 0.973043i \(-0.425924\pi\)
0.230623 + 0.973043i \(0.425924\pi\)
\(564\) 0 0
\(565\) 52.8328 2.22269
\(566\) 27.2705 1.14627
\(567\) −5.56231 −0.233595
\(568\) −8.47214 −0.355483
\(569\) −6.18034 −0.259093 −0.129547 0.991573i \(-0.541352\pi\)
−0.129547 + 0.991573i \(0.541352\pi\)
\(570\) 0 0
\(571\) −24.5066 −1.02557 −0.512784 0.858518i \(-0.671386\pi\)
−0.512784 + 0.858518i \(0.671386\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −6.47214 −0.270142
\(575\) 11.2918 0.470900
\(576\) −3.00000 −0.125000
\(577\) 32.4721 1.35183 0.675916 0.736978i \(-0.263748\pi\)
0.675916 + 0.736978i \(0.263748\pi\)
\(578\) 0.270510 0.0112517
\(579\) 0 0
\(580\) 4.76393 0.197812
\(581\) 2.38197 0.0988206
\(582\) 0 0
\(583\) 0 0
\(584\) −8.47214 −0.350579
\(585\) −28.5836 −1.18179
\(586\) −1.70820 −0.0705653
\(587\) 1.88854 0.0779485 0.0389743 0.999240i \(-0.487591\pi\)
0.0389743 + 0.999240i \(0.487591\pi\)
\(588\) 0 0
\(589\) 5.70820 0.235202
\(590\) −38.5410 −1.58671
\(591\) 0 0
\(592\) −9.23607 −0.379600
\(593\) −31.9098 −1.31038 −0.655190 0.755464i \(-0.727411\pi\)
−0.655190 + 0.755464i \(0.727411\pi\)
\(594\) 0 0
\(595\) −9.74265 −0.399410
\(596\) −13.4164 −0.549557
\(597\) 0 0
\(598\) 2.83282 0.115842
\(599\) 15.1246 0.617975 0.308987 0.951066i \(-0.400010\pi\)
0.308987 + 0.951066i \(0.400010\pi\)
\(600\) 0 0
\(601\) −22.0689 −0.900209 −0.450104 0.892976i \(-0.648613\pi\)
−0.450104 + 0.892976i \(0.648613\pi\)
\(602\) 1.00000 0.0407570
\(603\) 24.0000 0.977356
\(604\) 14.1803 0.576990
\(605\) 0 0
\(606\) 0 0
\(607\) 18.5836 0.754285 0.377142 0.926155i \(-0.376907\pi\)
0.377142 + 0.926155i \(0.376907\pi\)
\(608\) 1.00000 0.0405554
\(609\) 0 0
\(610\) −38.8885 −1.57455
\(611\) 28.7214 1.16194
\(612\) 12.2705 0.496006
\(613\) 11.9787 0.483816 0.241908 0.970299i \(-0.422227\pi\)
0.241908 + 0.970299i \(0.422227\pi\)
\(614\) −19.4164 −0.783582
\(615\) 0 0
\(616\) 0 0
\(617\) 30.9443 1.24577 0.622885 0.782314i \(-0.285961\pi\)
0.622885 + 0.782314i \(0.285961\pi\)
\(618\) 0 0
\(619\) 47.1033 1.89324 0.946621 0.322348i \(-0.104472\pi\)
0.946621 + 0.322348i \(0.104472\pi\)
\(620\) 22.0000 0.883541
\(621\) 0 0
\(622\) 33.3262 1.33626
\(623\) 8.76393 0.351120
\(624\) 0 0
\(625\) 22.8328 0.913313
\(626\) 1.03444 0.0413446
\(627\) 0 0
\(628\) 0.437694 0.0174659
\(629\) 37.7771 1.50627
\(630\) 7.14590 0.284699
\(631\) 17.5279 0.697773 0.348887 0.937165i \(-0.386560\pi\)
0.348887 + 0.937165i \(0.386560\pi\)
\(632\) −12.0000 −0.477334
\(633\) 0 0
\(634\) −15.4164 −0.612264
\(635\) −20.1803 −0.800832
\(636\) 0 0
\(637\) 16.3607 0.648234
\(638\) 0 0
\(639\) −25.4164 −1.00546
\(640\) 3.85410 0.152347
\(641\) −34.4721 −1.36157 −0.680784 0.732484i \(-0.738361\pi\)
−0.680784 + 0.732484i \(0.738361\pi\)
\(642\) 0 0
\(643\) −32.6738 −1.28853 −0.644264 0.764803i \(-0.722836\pi\)
−0.644264 + 0.764803i \(0.722836\pi\)
\(644\) −0.708204 −0.0279071
\(645\) 0 0
\(646\) −4.09017 −0.160926
\(647\) 20.3607 0.800461 0.400230 0.916415i \(-0.368930\pi\)
0.400230 + 0.916415i \(0.368930\pi\)
\(648\) −9.00000 −0.353553
\(649\) 0 0
\(650\) 24.3607 0.955504
\(651\) 0 0
\(652\) 25.0902 0.982607
\(653\) −11.6180 −0.454649 −0.227324 0.973819i \(-0.572998\pi\)
−0.227324 + 0.973819i \(0.572998\pi\)
\(654\) 0 0
\(655\) −24.3820 −0.952682
\(656\) −10.4721 −0.408868
\(657\) −25.4164 −0.991589
\(658\) −7.18034 −0.279919
\(659\) −41.3050 −1.60901 −0.804506 0.593944i \(-0.797570\pi\)
−0.804506 + 0.593944i \(0.797570\pi\)
\(660\) 0 0
\(661\) −6.94427 −0.270101 −0.135050 0.990839i \(-0.543120\pi\)
−0.135050 + 0.990839i \(0.543120\pi\)
\(662\) 16.4721 0.640208
\(663\) 0 0
\(664\) 3.85410 0.149568
\(665\) −2.38197 −0.0923687
\(666\) −27.7082 −1.07367
\(667\) −1.41641 −0.0548435
\(668\) −8.00000 −0.309529
\(669\) 0 0
\(670\) −30.8328 −1.19118
\(671\) 0 0
\(672\) 0 0
\(673\) −4.65248 −0.179340 −0.0896699 0.995972i \(-0.528581\pi\)
−0.0896699 + 0.995972i \(0.528581\pi\)
\(674\) −14.6525 −0.564392
\(675\) 0 0
\(676\) −6.88854 −0.264944
\(677\) −44.0689 −1.69370 −0.846852 0.531828i \(-0.821505\pi\)
−0.846852 + 0.531828i \(0.821505\pi\)
\(678\) 0 0
\(679\) 4.65248 0.178546
\(680\) −15.7639 −0.604519
\(681\) 0 0
\(682\) 0 0
\(683\) 16.8328 0.644090 0.322045 0.946724i \(-0.395630\pi\)
0.322045 + 0.946724i \(0.395630\pi\)
\(684\) 3.00000 0.114708
\(685\) 64.0476 2.44713
\(686\) −8.41641 −0.321340
\(687\) 0 0
\(688\) 1.61803 0.0616870
\(689\) −4.94427 −0.188362
\(690\) 0 0
\(691\) 27.5623 1.04852 0.524260 0.851558i \(-0.324342\pi\)
0.524260 + 0.851558i \(0.324342\pi\)
\(692\) 19.4164 0.738101
\(693\) 0 0
\(694\) 17.2148 0.653464
\(695\) −74.4853 −2.82539
\(696\) 0 0
\(697\) 42.8328 1.62241
\(698\) 31.2705 1.18361
\(699\) 0 0
\(700\) −6.09017 −0.230187
\(701\) −7.43769 −0.280918 −0.140459 0.990087i \(-0.544858\pi\)
−0.140459 + 0.990087i \(0.544858\pi\)
\(702\) 0 0
\(703\) 9.23607 0.348345
\(704\) 0 0
\(705\) 0 0
\(706\) −8.32624 −0.313362
\(707\) 0.854102 0.0321218
\(708\) 0 0
\(709\) −14.9787 −0.562537 −0.281269 0.959629i \(-0.590755\pi\)
−0.281269 + 0.959629i \(0.590755\pi\)
\(710\) 32.6525 1.22543
\(711\) −36.0000 −1.35011
\(712\) 14.1803 0.531431
\(713\) −6.54102 −0.244963
\(714\) 0 0
\(715\) 0 0
\(716\) 7.23607 0.270425
\(717\) 0 0
\(718\) 1.72949 0.0645440
\(719\) −51.8115 −1.93224 −0.966122 0.258086i \(-0.916908\pi\)
−0.966122 + 0.258086i \(0.916908\pi\)
\(720\) 11.5623 0.430902
\(721\) −4.58359 −0.170702
\(722\) −1.00000 −0.0372161
\(723\) 0 0
\(724\) −12.6525 −0.470226
\(725\) −12.1803 −0.452366
\(726\) 0 0
\(727\) −25.9098 −0.960942 −0.480471 0.877011i \(-0.659534\pi\)
−0.480471 + 0.877011i \(0.659534\pi\)
\(728\) −1.52786 −0.0566264
\(729\) −27.0000 −1.00000
\(730\) 32.6525 1.20852
\(731\) −6.61803 −0.244777
\(732\) 0 0
\(733\) −37.4508 −1.38328 −0.691639 0.722243i \(-0.743111\pi\)
−0.691639 + 0.722243i \(0.743111\pi\)
\(734\) −1.20163 −0.0443528
\(735\) 0 0
\(736\) −1.14590 −0.0422384
\(737\) 0 0
\(738\) −31.4164 −1.15645
\(739\) 22.0344 0.810550 0.405275 0.914195i \(-0.367176\pi\)
0.405275 + 0.914195i \(0.367176\pi\)
\(740\) 35.5967 1.30856
\(741\) 0 0
\(742\) 1.23607 0.0453775
\(743\) −29.7082 −1.08989 −0.544944 0.838472i \(-0.683449\pi\)
−0.544944 + 0.838472i \(0.683449\pi\)
\(744\) 0 0
\(745\) 51.7082 1.89444
\(746\) 25.5967 0.937164
\(747\) 11.5623 0.423043
\(748\) 0 0
\(749\) −5.70820 −0.208573
\(750\) 0 0
\(751\) −33.2361 −1.21280 −0.606401 0.795159i \(-0.707387\pi\)
−0.606401 + 0.795159i \(0.707387\pi\)
\(752\) −11.6180 −0.423666
\(753\) 0 0
\(754\) −3.05573 −0.111283
\(755\) −54.6525 −1.98901
\(756\) 0 0
\(757\) −47.3050 −1.71933 −0.859664 0.510860i \(-0.829327\pi\)
−0.859664 + 0.510860i \(0.829327\pi\)
\(758\) −1.52786 −0.0554945
\(759\) 0 0
\(760\) −3.85410 −0.139803
\(761\) −5.41641 −0.196345 −0.0981723 0.995169i \(-0.531300\pi\)
−0.0981723 + 0.995169i \(0.531300\pi\)
\(762\) 0 0
\(763\) 1.05573 0.0382199
\(764\) 9.56231 0.345952
\(765\) −47.2918 −1.70984
\(766\) −18.4721 −0.667425
\(767\) 24.7214 0.892637
\(768\) 0 0
\(769\) 31.7426 1.14467 0.572335 0.820020i \(-0.306038\pi\)
0.572335 + 0.820020i \(0.306038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.00000 −0.0719816
\(773\) 44.3607 1.59554 0.797771 0.602960i \(-0.206012\pi\)
0.797771 + 0.602960i \(0.206012\pi\)
\(774\) 4.85410 0.174477
\(775\) −56.2492 −2.02053
\(776\) 7.52786 0.270235
\(777\) 0 0
\(778\) −7.61803 −0.273120
\(779\) 10.4721 0.375203
\(780\) 0 0
\(781\) 0 0
\(782\) 4.68692 0.167604
\(783\) 0 0
\(784\) −6.61803 −0.236358
\(785\) −1.68692 −0.0602087
\(786\) 0 0
\(787\) 38.9443 1.38821 0.694107 0.719872i \(-0.255800\pi\)
0.694107 + 0.719872i \(0.255800\pi\)
\(788\) −7.52786 −0.268169
\(789\) 0 0
\(790\) 46.2492 1.64547
\(791\) 8.47214 0.301234
\(792\) 0 0
\(793\) 24.9443 0.885797
\(794\) −7.79837 −0.276754
\(795\) 0 0
\(796\) 4.61803 0.163682
\(797\) −13.4164 −0.475234 −0.237617 0.971359i \(-0.576366\pi\)
−0.237617 + 0.971359i \(0.576366\pi\)
\(798\) 0 0
\(799\) 47.5197 1.68113
\(800\) −9.85410 −0.348395
\(801\) 42.5410 1.50311
\(802\) 3.41641 0.120638
\(803\) 0 0
\(804\) 0 0
\(805\) 2.72949 0.0962019
\(806\) −14.1115 −0.497055
\(807\) 0 0
\(808\) 1.38197 0.0486174
\(809\) 46.2148 1.62483 0.812413 0.583083i \(-0.198154\pi\)
0.812413 + 0.583083i \(0.198154\pi\)
\(810\) 34.6869 1.21877
\(811\) −55.7771 −1.95860 −0.979299 0.202418i \(-0.935120\pi\)
−0.979299 + 0.202418i \(0.935120\pi\)
\(812\) 0.763932 0.0268088
\(813\) 0 0
\(814\) 0 0
\(815\) −96.7001 −3.38726
\(816\) 0 0
\(817\) −1.61803 −0.0566078
\(818\) 23.7082 0.828938
\(819\) −4.58359 −0.160164
\(820\) 40.3607 1.40946
\(821\) 7.97871 0.278459 0.139230 0.990260i \(-0.455537\pi\)
0.139230 + 0.990260i \(0.455537\pi\)
\(822\) 0 0
\(823\) −9.85410 −0.343492 −0.171746 0.985141i \(-0.554941\pi\)
−0.171746 + 0.985141i \(0.554941\pi\)
\(824\) −7.41641 −0.258363
\(825\) 0 0
\(826\) −6.18034 −0.215042
\(827\) 37.1246 1.29095 0.645475 0.763782i \(-0.276660\pi\)
0.645475 + 0.763782i \(0.276660\pi\)
\(828\) −3.43769 −0.119468
\(829\) 14.0689 0.488633 0.244316 0.969696i \(-0.421436\pi\)
0.244316 + 0.969696i \(0.421436\pi\)
\(830\) −14.8541 −0.515593
\(831\) 0 0
\(832\) −2.47214 −0.0857059
\(833\) 27.0689 0.937881
\(834\) 0 0
\(835\) 30.8328 1.06701
\(836\) 0 0
\(837\) 0 0
\(838\) −12.6738 −0.437808
\(839\) 25.1246 0.867398 0.433699 0.901058i \(-0.357208\pi\)
0.433699 + 0.901058i \(0.357208\pi\)
\(840\) 0 0
\(841\) −27.4721 −0.947315
\(842\) 24.7639 0.853421
\(843\) 0 0
\(844\) 17.1246 0.589453
\(845\) 26.5492 0.913319
\(846\) −34.8541 −1.19831
\(847\) 0 0
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) 40.3050 1.38245
\(851\) −10.5836 −0.362801
\(852\) 0 0
\(853\) 16.3820 0.560908 0.280454 0.959867i \(-0.409515\pi\)
0.280454 + 0.959867i \(0.409515\pi\)
\(854\) −6.23607 −0.213394
\(855\) −11.5623 −0.395423
\(856\) −9.23607 −0.315682
\(857\) −32.8328 −1.12155 −0.560774 0.827969i \(-0.689496\pi\)
−0.560774 + 0.827969i \(0.689496\pi\)
\(858\) 0 0
\(859\) −19.6869 −0.671709 −0.335854 0.941914i \(-0.609025\pi\)
−0.335854 + 0.941914i \(0.609025\pi\)
\(860\) −6.23607 −0.212648
\(861\) 0 0
\(862\) −27.8885 −0.949888
\(863\) 8.36068 0.284601 0.142300 0.989824i \(-0.454550\pi\)
0.142300 + 0.989824i \(0.454550\pi\)
\(864\) 0 0
\(865\) −74.8328 −2.54439
\(866\) 36.5410 1.24171
\(867\) 0 0
\(868\) 3.52786 0.119744
\(869\) 0 0
\(870\) 0 0
\(871\) 19.7771 0.670121
\(872\) 1.70820 0.0578471
\(873\) 22.5836 0.764339
\(874\) 1.14590 0.0387606
\(875\) 11.5623 0.390877
\(876\) 0 0
\(877\) 17.3475 0.585784 0.292892 0.956145i \(-0.405382\pi\)
0.292892 + 0.956145i \(0.405382\pi\)
\(878\) −36.3607 −1.22711
\(879\) 0 0
\(880\) 0 0
\(881\) −10.9443 −0.368722 −0.184361 0.982859i \(-0.559022\pi\)
−0.184361 + 0.982859i \(0.559022\pi\)
\(882\) −19.8541 −0.668522
\(883\) −34.6180 −1.16499 −0.582495 0.812834i \(-0.697923\pi\)
−0.582495 + 0.812834i \(0.697923\pi\)
\(884\) 10.1115 0.340085
\(885\) 0 0
\(886\) 2.61803 0.0879546
\(887\) −38.9443 −1.30762 −0.653810 0.756658i \(-0.726831\pi\)
−0.653810 + 0.756658i \(0.726831\pi\)
\(888\) 0 0
\(889\) −3.23607 −0.108534
\(890\) −54.6525 −1.83196
\(891\) 0 0
\(892\) 4.47214 0.149738
\(893\) 11.6180 0.388783
\(894\) 0 0
\(895\) −27.8885 −0.932211
\(896\) 0.618034 0.0206471
\(897\) 0 0
\(898\) 32.9443 1.09936
\(899\) 7.05573 0.235322
\(900\) −29.5623 −0.985410
\(901\) −8.18034 −0.272527
\(902\) 0 0
\(903\) 0 0
\(904\) 13.7082 0.455928
\(905\) 48.7639 1.62097
\(906\) 0 0
\(907\) 39.7082 1.31849 0.659245 0.751929i \(-0.270876\pi\)
0.659245 + 0.751929i \(0.270876\pi\)
\(908\) −11.5279 −0.382566
\(909\) 4.14590 0.137511
\(910\) 5.88854 0.195203
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −30.7984 −1.01872
\(915\) 0 0
\(916\) −0.562306 −0.0185791
\(917\) −3.90983 −0.129114
\(918\) 0 0
\(919\) 9.56231 0.315431 0.157716 0.987485i \(-0.449587\pi\)
0.157716 + 0.987485i \(0.449587\pi\)
\(920\) 4.41641 0.145605
\(921\) 0 0
\(922\) 25.3820 0.835911
\(923\) −20.9443 −0.689389
\(924\) 0 0
\(925\) −91.0132 −2.99249
\(926\) 17.8541 0.586722
\(927\) −22.2492 −0.730760
\(928\) 1.23607 0.0405759
\(929\) 34.7426 1.13987 0.569935 0.821690i \(-0.306969\pi\)
0.569935 + 0.821690i \(0.306969\pi\)
\(930\) 0 0
\(931\) 6.61803 0.216897
\(932\) 8.90983 0.291851
\(933\) 0 0
\(934\) −4.14590 −0.135658
\(935\) 0 0
\(936\) −7.41641 −0.242413
\(937\) 21.7984 0.712122 0.356061 0.934463i \(-0.384120\pi\)
0.356061 + 0.934463i \(0.384120\pi\)
\(938\) −4.94427 −0.161436
\(939\) 0 0
\(940\) 44.7771 1.46047
\(941\) 8.06888 0.263038 0.131519 0.991314i \(-0.458015\pi\)
0.131519 + 0.991314i \(0.458015\pi\)
\(942\) 0 0
\(943\) −12.0000 −0.390774
\(944\) −10.0000 −0.325472
\(945\) 0 0
\(946\) 0 0
\(947\) −50.0344 −1.62590 −0.812950 0.582333i \(-0.802140\pi\)
−0.812950 + 0.582333i \(0.802140\pi\)
\(948\) 0 0
\(949\) −20.9443 −0.679880
\(950\) 9.85410 0.319709
\(951\) 0 0
\(952\) −2.52786 −0.0819285
\(953\) 20.9443 0.678452 0.339226 0.940705i \(-0.389835\pi\)
0.339226 + 0.940705i \(0.389835\pi\)
\(954\) 6.00000 0.194257
\(955\) −36.8541 −1.19257
\(956\) −15.7984 −0.510956
\(957\) 0 0
\(958\) 16.5623 0.535104
\(959\) 10.2705 0.331652
\(960\) 0 0
\(961\) 1.58359 0.0510836
\(962\) −22.8328 −0.736160
\(963\) −27.7082 −0.892884
\(964\) −9.05573 −0.291665
\(965\) 7.70820 0.248136
\(966\) 0 0
\(967\) 0.201626 0.00648386 0.00324193 0.999995i \(-0.498968\pi\)
0.00324193 + 0.999995i \(0.498968\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −29.0132 −0.931556
\(971\) −25.5967 −0.821439 −0.410719 0.911762i \(-0.634722\pi\)
−0.410719 + 0.911762i \(0.634722\pi\)
\(972\) 0 0
\(973\) −11.9443 −0.382916
\(974\) −25.4164 −0.814394
\(975\) 0 0
\(976\) −10.0902 −0.322978
\(977\) −8.65248 −0.276817 −0.138409 0.990375i \(-0.544199\pi\)
−0.138409 + 0.990375i \(0.544199\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 25.5066 0.814778
\(981\) 5.12461 0.163616
\(982\) −35.5623 −1.13484
\(983\) 18.5410 0.591367 0.295683 0.955286i \(-0.404453\pi\)
0.295683 + 0.955286i \(0.404453\pi\)
\(984\) 0 0
\(985\) 29.0132 0.924436
\(986\) −5.05573 −0.161007
\(987\) 0 0
\(988\) 2.47214 0.0786491
\(989\) 1.85410 0.0589570
\(990\) 0 0
\(991\) −39.7082 −1.26137 −0.630686 0.776038i \(-0.717227\pi\)
−0.630686 + 0.776038i \(0.717227\pi\)
\(992\) 5.70820 0.181236
\(993\) 0 0
\(994\) 5.23607 0.166078
\(995\) −17.7984 −0.564246
\(996\) 0 0
\(997\) −5.96556 −0.188931 −0.0944656 0.995528i \(-0.530114\pi\)
−0.0944656 + 0.995528i \(0.530114\pi\)
\(998\) 23.2705 0.736615
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4598.2.a.z.1.1 2
11.2 odd 10 418.2.f.b.191.1 4
11.6 odd 10 418.2.f.b.267.1 yes 4
11.10 odd 2 4598.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.f.b.191.1 4 11.2 odd 10
418.2.f.b.267.1 yes 4 11.6 odd 10
4598.2.a.z.1.1 2 1.1 even 1 trivial
4598.2.a.bh.1.1 2 11.10 odd 2