Properties

Label 46.14.a.a
Level $46$
Weight $14$
Character orbit 46.a
Self dual yes
Analytic conductor $49.326$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [46,14,Mod(1,46)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("46.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 46.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.3262273179\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 3257825x^{3} + 1372618617x^{2} + 279354108456x - 130815431589168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 59 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 64 q^{2} + ( - \beta_1 + 138) q^{3} + 4096 q^{4} + ( - \beta_{4} + 7 \beta_1 - 14360) q^{5} + (64 \beta_1 - 8832) q^{6} + ( - 2 \beta_{4} + 3 \beta_{3} + \cdots + 6272) q^{7} - 262144 q^{8} + (19 \beta_{4} - 14 \beta_{3} + \cdots + 704547) q^{9}+ \cdots + ( - 98867847 \beta_{4} + \cdots - 2970699615747) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 320 q^{2} + 690 q^{3} + 20480 q^{4} - 71798 q^{5} - 44160 q^{6} + 31366 q^{7} - 1310720 q^{8} + 3522701 q^{9} + 4595072 q^{10} - 7592076 q^{11} + 2826240 q^{12} + 28315858 q^{13} - 2007424 q^{14}+ \cdots - 14853301668582 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 3257825x^{3} + 1372618617x^{2} + 279354108456x - 130815431589168 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -12481\nu^{4} - 12829265\nu^{3} + 32956482977\nu^{2} + 17271508397517\nu - 3307289103907668 ) / 4598290128456 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 259893 \nu^{4} - 582275233 \nu^{3} - 659872651633 \nu^{2} + \cdots - 66\!\cdots\!20 ) / 16860397137672 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3998666 \nu^{4} - 1423823965 \nu^{3} + 12709676152996 \nu^{2} + \cdots - 16\!\cdots\!06 ) / 12645297853254 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 23195195 \nu^{4} - 8660318164 \nu^{3} + 72151790122993 \nu^{2} + \cdots - 78\!\cdots\!20 ) / 25290595706508 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 11\beta_{4} - 28\beta_{3} + 13\beta_{2} - 381\beta _1 + 385 ) / 1888 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5815\beta_{4} + 20144\beta_{3} + 15655\beta_{2} - 293031\beta _1 + 1230145423 ) / 944 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 38119673\beta_{4} - 96700036\beta_{3} + 8974447\beta_{2} - 1563865983\beta _1 - 1551179111813 ) / 1888 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 6833834341 \beta_{4} + 20879125655 \beta_{3} + 11429988907 \beta_{2} - 145354014783 \beta _1 + 948897413820376 ) / 236 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
422.240
344.754
−1965.85
−303.975
1503.84
−64.0000 −1710.21 4096.00 −66208.2 109454. −138269. −262144. 1.33050e6 4.23733e6
1.2 −64.0000 −1136.86 4096.00 57154.9 72759.2 −17496.6 −262144. −301866. −3.65791e6
1.3 −64.0000 −115.417 4096.00 8488.20 7386.68 418547. −262144. −1.58100e6 −543245.
1.4 −64.0000 1281.56 4096.00 −32225.1 −82019.7 32545.6 −262144. 48065.7 2.06240e6
1.5 −64.0000 2370.93 4096.00 −39007.8 −151740. −263961. −262144. 4.02700e6 2.49650e6
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 46.14.a.a 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.14.a.a 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} - 690T_{3}^{4} - 5509108T_{3}^{3} + 924234162T_{3}^{2} + 6086476932219T_{3} + 681843043869048 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(46))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 64)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots + 681843043869048 \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots + 86\!\cdots\!24 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots - 25\!\cdots\!40 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 14\!\cdots\!74 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 60\!\cdots\!20 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 34\!\cdots\!12 \) Copy content Toggle raw display
$23$ \( (T + 148035889)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 10\!\cdots\!30 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 15\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 58\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 52\!\cdots\!18 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 13\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 27\!\cdots\!08 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 15\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 20\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 32\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 92\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 63\!\cdots\!46 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 51\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 86\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 94\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 32\!\cdots\!88 \) Copy content Toggle raw display
show more
show less