Properties

Label 46.3.d.a.15.2
Level $46$
Weight $3$
Character 46.15
Analytic conductor $1.253$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [46,3,Mod(5,46)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(46, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("46.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 46.d (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.25340921606\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(4\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 15.2
Character \(\chi\) \(=\) 46.15
Dual form 46.3.d.a.43.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.201264 + 1.39982i) q^{2} +(1.30738 + 2.86277i) q^{3} +(-1.91899 - 0.563465i) q^{4} +(0.389792 - 0.337757i) q^{5} +(-4.27048 + 1.25393i) q^{6} +(-2.12361 + 3.30440i) q^{7} +(1.17497 - 2.57283i) q^{8} +(-0.592439 + 0.683711i) q^{9} +(0.394348 + 0.613617i) q^{10} +(7.42324 - 1.06730i) q^{11} +(-0.895778 - 6.23027i) q^{12} +(8.61901 - 5.53910i) q^{13} +(-4.19816 - 3.63773i) q^{14} +(1.47653 + 0.674307i) q^{15} +(3.36501 + 2.16256i) q^{16} +(-7.18729 - 24.4776i) q^{17} +(-0.837835 - 0.966913i) q^{18} +(-1.85729 + 6.32534i) q^{19} +(-0.938321 + 0.428517i) q^{20} +(-12.2361 - 1.75929i) q^{21} +10.6060i q^{22} +(2.66286 - 22.8453i) q^{23} +8.90154 q^{24} +(-3.52001 + 24.4822i) q^{25} +(6.01905 + 13.1799i) q^{26} +(24.4453 + 7.17780i) q^{27} +(5.93709 - 5.14452i) q^{28} +(-42.5751 + 12.5012i) q^{29} +(-1.24108 + 1.93116i) q^{30} +(-17.1179 + 37.4830i) q^{31} +(-3.70445 + 4.27517i) q^{32} +(12.7604 + 19.8556i) q^{33} +(35.7108 - 5.13444i) q^{34} +(0.288318 + 2.00530i) q^{35} +(1.52213 - 0.978213i) q^{36} +(-37.8198 - 32.7711i) q^{37} +(-8.48053 - 3.87293i) q^{38} +(27.1255 + 17.4325i) q^{39} +(-0.410996 - 1.39972i) q^{40} +(-22.3446 - 25.7871i) q^{41} +(4.92536 - 16.7742i) q^{42} +(34.0315 - 15.5417i) q^{43} +(-14.8465 - 2.13460i) q^{44} +0.466606i q^{45} +(31.4434 + 8.32545i) q^{46} -22.6392 q^{47} +(-1.79156 + 12.4605i) q^{48} +(13.9460 + 30.5374i) q^{49} +(-33.5622 - 9.85476i) q^{50} +(60.6773 - 52.5772i) q^{51} +(-19.6609 + 5.77295i) q^{52} +(21.4358 - 33.3547i) q^{53} +(-14.9676 + 32.7744i) q^{54} +(2.53304 - 2.92328i) q^{55} +(6.00648 + 9.34626i) q^{56} +(-20.5362 + 2.95265i) q^{57} +(-8.93056 - 62.1134i) q^{58} +(22.5580 - 14.4971i) q^{59} +(-2.45349 - 2.12596i) q^{60} +(-26.8087 - 12.2431i) q^{61} +(-49.0242 - 31.5059i) q^{62} +(-1.00115 - 3.40959i) q^{63} +(-5.23889 - 6.04600i) q^{64} +(1.48875 - 5.07023i) q^{65} +(-30.3625 + 13.8661i) q^{66} +(-66.1101 - 9.50519i) q^{67} +51.0220i q^{68} +(68.8822 - 22.2444i) q^{69} -2.86508 q^{70} +(-7.12282 + 49.5403i) q^{71} +(1.06297 + 2.32758i) q^{72} +(94.8939 + 27.8634i) q^{73} +(53.4853 - 46.3453i) q^{74} +(-74.6889 + 21.9306i) q^{75} +(7.12822 - 11.0917i) q^{76} +(-12.2373 + 26.7959i) q^{77} +(-29.8617 + 34.4623i) q^{78} +(38.8314 + 60.4228i) q^{79} +(2.04208 - 0.293607i) q^{80} +(12.5698 + 87.4247i) q^{81} +(40.5944 - 26.0884i) q^{82} +(89.4100 + 77.4742i) q^{83} +(22.4896 + 10.2707i) q^{84} +(-11.0690 - 7.11365i) q^{85} +(14.9062 + 50.7659i) q^{86} +(-91.4498 - 105.539i) q^{87} +(5.97611 - 20.3528i) q^{88} +(56.8021 - 25.9407i) q^{89} +(-0.653163 - 0.0939107i) q^{90} +40.2436i q^{91} +(-17.9825 + 42.3394i) q^{92} -129.685 q^{93} +(4.55645 - 31.6908i) q^{94} +(1.41247 + 3.09288i) q^{95} +(-17.0819 - 5.01571i) q^{96} +(51.8369 - 44.9169i) q^{97} +(-45.5537 + 13.3758i) q^{98} +(-3.66809 + 5.70766i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 4 q^{3} - 8 q^{4} - 8 q^{6} + 24 q^{9} + 8 q^{12} + 4 q^{13} - 154 q^{15} - 16 q^{16} - 110 q^{17} - 160 q^{18} - 66 q^{19} - 44 q^{20} - 66 q^{21} - 8 q^{23} - 16 q^{24} + 264 q^{25} + 152 q^{26}+ \cdots - 1122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/46\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{17}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.201264 + 1.39982i −0.100632 + 0.699909i
\(3\) 1.30738 + 2.86277i 0.435794 + 0.954255i 0.992351 + 0.123446i \(0.0393947\pi\)
−0.556557 + 0.830809i \(0.687878\pi\)
\(4\) −1.91899 0.563465i −0.479746 0.140866i
\(5\) 0.389792 0.337757i 0.0779585 0.0675514i −0.615010 0.788519i \(-0.710848\pi\)
0.692968 + 0.720968i \(0.256303\pi\)
\(6\) −4.27048 + 1.25393i −0.711747 + 0.208988i
\(7\) −2.12361 + 3.30440i −0.303373 + 0.472057i −0.959150 0.282897i \(-0.908705\pi\)
0.655777 + 0.754954i \(0.272341\pi\)
\(8\) 1.17497 2.57283i 0.146871 0.321603i
\(9\) −0.592439 + 0.683711i −0.0658265 + 0.0759678i
\(10\) 0.394348 + 0.613617i 0.0394348 + 0.0613617i
\(11\) 7.42324 1.06730i 0.674840 0.0970274i 0.203630 0.979048i \(-0.434726\pi\)
0.471211 + 0.882021i \(0.343817\pi\)
\(12\) −0.895778 6.23027i −0.0746482 0.519189i
\(13\) 8.61901 5.53910i 0.663001 0.426085i −0.165395 0.986227i \(-0.552890\pi\)
0.828396 + 0.560143i \(0.189254\pi\)
\(14\) −4.19816 3.63773i −0.299869 0.259838i
\(15\) 1.47653 + 0.674307i 0.0984351 + 0.0449538i
\(16\) 3.36501 + 2.16256i 0.210313 + 0.135160i
\(17\) −7.18729 24.4776i −0.422782 1.43986i −0.845683 0.533686i \(-0.820806\pi\)
0.422901 0.906176i \(-0.361012\pi\)
\(18\) −0.837835 0.966913i −0.0465464 0.0537174i
\(19\) −1.85729 + 6.32534i −0.0977520 + 0.332913i −0.993820 0.111004i \(-0.964593\pi\)
0.896068 + 0.443917i \(0.146411\pi\)
\(20\) −0.938321 + 0.428517i −0.0469160 + 0.0214258i
\(21\) −12.2361 1.75929i −0.582672 0.0837755i
\(22\) 10.6060i 0.482091i
\(23\) 2.66286 22.8453i 0.115776 0.993275i
\(24\) 8.90154 0.370898
\(25\) −3.52001 + 24.4822i −0.140801 + 0.979289i
\(26\) 6.01905 + 13.1799i 0.231502 + 0.506918i
\(27\) 24.4453 + 7.17780i 0.905383 + 0.265844i
\(28\) 5.93709 5.14452i 0.212039 0.183733i
\(29\) −42.5751 + 12.5012i −1.46811 + 0.431075i −0.915483 0.402357i \(-0.868191\pi\)
−0.552623 + 0.833431i \(0.686373\pi\)
\(30\) −1.24108 + 1.93116i −0.0413693 + 0.0643719i
\(31\) −17.1179 + 37.4830i −0.552191 + 1.20913i 0.403561 + 0.914953i \(0.367772\pi\)
−0.955751 + 0.294176i \(0.904955\pi\)
\(32\) −3.70445 + 4.27517i −0.115764 + 0.133599i
\(33\) 12.7604 + 19.8556i 0.386680 + 0.601686i
\(34\) 35.7108 5.13444i 1.05032 0.151013i
\(35\) 0.288318 + 2.00530i 0.00823766 + 0.0572942i
\(36\) 1.52213 0.978213i 0.0422813 0.0271726i
\(37\) −37.8198 32.7711i −1.02216 0.885704i −0.0286631 0.999589i \(-0.509125\pi\)
−0.993494 + 0.113885i \(0.963670\pi\)
\(38\) −8.48053 3.87293i −0.223172 0.101919i
\(39\) 27.1255 + 17.4325i 0.695525 + 0.446987i
\(40\) −0.410996 1.39972i −0.0102749 0.0349931i
\(41\) −22.3446 25.7871i −0.544991 0.628953i 0.414718 0.909950i \(-0.363880\pi\)
−0.959709 + 0.280997i \(0.909335\pi\)
\(42\) 4.92536 16.7742i 0.117271 0.399387i
\(43\) 34.0315 15.5417i 0.791430 0.361434i 0.0216684 0.999765i \(-0.493102\pi\)
0.769762 + 0.638331i \(0.220375\pi\)
\(44\) −14.8465 2.13460i −0.337420 0.0485137i
\(45\) 0.466606i 0.0103690i
\(46\) 31.4434 + 8.32545i 0.683552 + 0.180988i
\(47\) −22.6392 −0.481685 −0.240843 0.970564i \(-0.577424\pi\)
−0.240843 + 0.970564i \(0.577424\pi\)
\(48\) −1.79156 + 12.4605i −0.0373241 + 0.259595i
\(49\) 13.9460 + 30.5374i 0.284612 + 0.623213i
\(50\) −33.5622 9.85476i −0.671245 0.197095i
\(51\) 60.6773 52.5772i 1.18975 1.03092i
\(52\) −19.6609 + 5.77295i −0.378093 + 0.111018i
\(53\) 21.4358 33.3547i 0.404449 0.629335i −0.577963 0.816063i \(-0.696152\pi\)
0.982412 + 0.186729i \(0.0597885\pi\)
\(54\) −14.9676 + 32.7744i −0.277177 + 0.606934i
\(55\) 2.53304 2.92328i 0.0460552 0.0531505i
\(56\) 6.00648 + 9.34626i 0.107259 + 0.166898i
\(57\) −20.5362 + 2.95265i −0.360283 + 0.0518009i
\(58\) −8.93056 62.1134i −0.153975 1.07092i
\(59\) 22.5580 14.4971i 0.382339 0.245714i −0.335327 0.942102i \(-0.608847\pi\)
0.717666 + 0.696388i \(0.245211\pi\)
\(60\) −2.45349 2.12596i −0.0408914 0.0354326i
\(61\) −26.8087 12.2431i −0.439488 0.200707i 0.183368 0.983044i \(-0.441300\pi\)
−0.622855 + 0.782337i \(0.714027\pi\)
\(62\) −49.0242 31.5059i −0.790713 0.508160i
\(63\) −1.00115 3.40959i −0.0158912 0.0541205i
\(64\) −5.23889 6.04600i −0.0818576 0.0944687i
\(65\) 1.48875 5.07023i 0.0229039 0.0780036i
\(66\) −30.3625 + 13.8661i −0.460038 + 0.210092i
\(67\) −66.1101 9.50519i −0.986717 0.141869i −0.369982 0.929039i \(-0.620636\pi\)
−0.616736 + 0.787170i \(0.711545\pi\)
\(68\) 51.0220i 0.750324i
\(69\) 68.8822 22.2444i 0.998293 0.322383i
\(70\) −2.86508 −0.0409297
\(71\) −7.12282 + 49.5403i −0.100321 + 0.697751i 0.876140 + 0.482057i \(0.160110\pi\)
−0.976461 + 0.215694i \(0.930799\pi\)
\(72\) 1.06297 + 2.32758i 0.0147635 + 0.0323275i
\(73\) 94.8939 + 27.8634i 1.29992 + 0.381690i 0.857206 0.514974i \(-0.172198\pi\)
0.442711 + 0.896664i \(0.354017\pi\)
\(74\) 53.4853 46.3453i 0.722774 0.626287i
\(75\) −74.6889 + 21.9306i −0.995852 + 0.292409i
\(76\) 7.12822 11.0917i 0.0937923 0.145944i
\(77\) −12.2373 + 26.7959i −0.158926 + 0.347999i
\(78\) −29.8617 + 34.4623i −0.382842 + 0.441824i
\(79\) 38.8314 + 60.4228i 0.491536 + 0.764845i 0.995075 0.0991274i \(-0.0316051\pi\)
−0.503538 + 0.863973i \(0.667969\pi\)
\(80\) 2.04208 0.293607i 0.0255260 0.00367008i
\(81\) 12.5698 + 87.4247i 0.155182 + 1.07932i
\(82\) 40.5944 26.0884i 0.495053 0.318151i
\(83\) 89.4100 + 77.4742i 1.07723 + 0.933424i 0.997986 0.0634310i \(-0.0202043\pi\)
0.0792429 + 0.996855i \(0.474750\pi\)
\(84\) 22.4896 + 10.2707i 0.267733 + 0.122270i
\(85\) −11.0690 7.11365i −0.130224 0.0836899i
\(86\) 14.9062 + 50.7659i 0.173328 + 0.590301i
\(87\) −91.4498 105.539i −1.05115 1.21309i
\(88\) 5.97611 20.3528i 0.0679104 0.231282i
\(89\) 56.8021 25.9407i 0.638226 0.291468i −0.0699001 0.997554i \(-0.522268\pi\)
0.708126 + 0.706086i \(0.249541\pi\)
\(90\) −0.653163 0.0939107i −0.00725737 0.00104345i
\(91\) 40.2436i 0.442237i
\(92\) −17.9825 + 42.3394i −0.195462 + 0.460211i
\(93\) −129.685 −1.39446
\(94\) 4.55645 31.6908i 0.0484728 0.337136i
\(95\) 1.41247 + 3.09288i 0.0148681 + 0.0325567i
\(96\) −17.0819 5.01571i −0.177937 0.0522470i
\(97\) 51.8369 44.9169i 0.534401 0.463061i −0.345365 0.938469i \(-0.612245\pi\)
0.879766 + 0.475407i \(0.157699\pi\)
\(98\) −45.5537 + 13.3758i −0.464834 + 0.136487i
\(99\) −3.66809 + 5.70766i −0.0370514 + 0.0576531i
\(100\) 20.5497 44.9976i 0.205497 0.449976i
\(101\) 27.9188 32.2200i 0.276424 0.319010i −0.600514 0.799615i \(-0.705037\pi\)
0.876938 + 0.480604i \(0.159583\pi\)
\(102\) 61.3864 + 95.5190i 0.601827 + 0.936461i
\(103\) −183.069 + 26.3213i −1.77736 + 0.255546i −0.951352 0.308105i \(-0.900305\pi\)
−0.826012 + 0.563652i \(0.809396\pi\)
\(104\) −4.12407 28.6835i −0.0396545 0.275803i
\(105\) −5.36375 + 3.44707i −0.0510833 + 0.0328293i
\(106\) 42.3763 + 36.7193i 0.399777 + 0.346409i
\(107\) −176.230 80.4817i −1.64701 0.752165i −0.647065 0.762435i \(-0.724004\pi\)
−0.999947 + 0.0102695i \(0.996731\pi\)
\(108\) −42.8658 27.5482i −0.396906 0.255076i
\(109\) −23.7111 80.7527i −0.217533 0.740851i −0.993872 0.110535i \(-0.964744\pi\)
0.776339 0.630316i \(-0.217075\pi\)
\(110\) 3.58225 + 4.13414i 0.0325659 + 0.0375831i
\(111\) 44.3709 151.114i 0.399738 1.36138i
\(112\) −14.2920 + 6.52692i −0.127607 + 0.0582761i
\(113\) 145.476 + 20.9162i 1.28740 + 0.185100i 0.751809 0.659381i \(-0.229181\pi\)
0.535587 + 0.844480i \(0.320091\pi\)
\(114\) 29.3412i 0.257379i
\(115\) −6.67821 9.80434i −0.0580714 0.0852551i
\(116\) 88.7449 0.765043
\(117\) −1.31909 + 9.17449i −0.0112743 + 0.0784144i
\(118\) 15.7533 + 34.4948i 0.133502 + 0.292329i
\(119\) 96.1470 + 28.2313i 0.807958 + 0.237238i
\(120\) 3.46975 3.00656i 0.0289146 0.0250547i
\(121\) −62.1332 + 18.2440i −0.513498 + 0.150777i
\(122\) 22.5338 35.0633i 0.184703 0.287404i
\(123\) 44.6094 97.6809i 0.362678 0.794154i
\(124\) 53.9694 62.2840i 0.435237 0.502290i
\(125\) 13.8681 + 21.5792i 0.110945 + 0.172634i
\(126\) 4.97430 0.715197i 0.0394786 0.00567617i
\(127\) 1.03446 + 7.19482i 0.00814535 + 0.0566522i 0.993489 0.113930i \(-0.0363441\pi\)
−0.985343 + 0.170583i \(0.945435\pi\)
\(128\) 9.51770 6.11665i 0.0743570 0.0477863i
\(129\) 88.9843 + 77.1054i 0.689801 + 0.597716i
\(130\) 6.79777 + 3.10444i 0.0522906 + 0.0238803i
\(131\) −44.9713 28.9013i −0.343292 0.220621i 0.357621 0.933867i \(-0.383588\pi\)
−0.700914 + 0.713246i \(0.747224\pi\)
\(132\) −13.2992 45.2928i −0.100751 0.343127i
\(133\) −16.9573 19.5698i −0.127499 0.147141i
\(134\) 26.6111 90.6291i 0.198590 0.676336i
\(135\) 11.9530 5.45873i 0.0885405 0.0404351i
\(136\) −71.4216 10.2689i −0.525159 0.0755065i
\(137\) 228.565i 1.66836i 0.551495 + 0.834178i \(0.314057\pi\)
−0.551495 + 0.834178i \(0.685943\pi\)
\(138\) 17.2747 + 100.900i 0.125179 + 0.731157i
\(139\) −84.5119 −0.607999 −0.303999 0.952672i \(-0.598322\pi\)
−0.303999 + 0.952672i \(0.598322\pi\)
\(140\) 0.576636 4.01059i 0.00411883 0.0286471i
\(141\) −29.5981 64.8107i −0.209915 0.459651i
\(142\) −67.9139 19.9413i −0.478267 0.140432i
\(143\) 58.0691 50.3172i 0.406078 0.351868i
\(144\) −3.47213 + 1.01951i −0.0241120 + 0.00707993i
\(145\) −12.3731 + 19.2529i −0.0853316 + 0.132779i
\(146\) −58.1024 + 127.226i −0.397961 + 0.871414i
\(147\) −69.1888 + 79.8482i −0.470672 + 0.543185i
\(148\) 54.1103 + 84.1973i 0.365610 + 0.568901i
\(149\) −72.3905 + 10.4082i −0.485842 + 0.0698536i −0.380884 0.924623i \(-0.624380\pi\)
−0.104959 + 0.994477i \(0.533471\pi\)
\(150\) −15.6668 108.965i −0.104445 0.726432i
\(151\) 21.0708 13.5414i 0.139542 0.0896781i −0.469007 0.883194i \(-0.655388\pi\)
0.608549 + 0.793516i \(0.291752\pi\)
\(152\) 14.0918 + 12.2106i 0.0927089 + 0.0803327i
\(153\) 20.9937 + 9.58748i 0.137213 + 0.0626633i
\(154\) −35.0465 22.5230i −0.227575 0.146253i
\(155\) 5.98771 + 20.3923i 0.0386304 + 0.131563i
\(156\) −42.2308 48.7370i −0.270710 0.312417i
\(157\) −22.5141 + 76.6759i −0.143402 + 0.488381i −0.999600 0.0282652i \(-0.991002\pi\)
0.856199 + 0.516647i \(0.172820\pi\)
\(158\) −92.3963 + 42.1960i −0.584787 + 0.267063i
\(159\) 123.512 + 17.7583i 0.776802 + 0.111687i
\(160\) 2.91763i 0.0182352i
\(161\) 69.8353 + 57.3137i 0.433760 + 0.355986i
\(162\) −124.909 −0.771040
\(163\) −30.6274 + 213.018i −0.187898 + 1.30686i 0.649539 + 0.760328i \(0.274962\pi\)
−0.837438 + 0.546533i \(0.815947\pi\)
\(164\) 28.3489 + 62.0754i 0.172859 + 0.378509i
\(165\) 11.6803 + 3.42965i 0.0707897 + 0.0207857i
\(166\) −126.445 + 109.565i −0.761716 + 0.660031i
\(167\) 238.208 69.9441i 1.42639 0.418827i 0.524731 0.851268i \(-0.324166\pi\)
0.901662 + 0.432441i \(0.142348\pi\)
\(168\) −18.9034 + 29.4143i −0.112520 + 0.175085i
\(169\) −26.5994 + 58.2446i −0.157393 + 0.344643i
\(170\) 12.1856 14.0629i 0.0716801 0.0827232i
\(171\) −3.22437 5.01722i −0.0188560 0.0293405i
\(172\) −74.0632 + 10.6487i −0.430600 + 0.0619109i
\(173\) −27.6904 192.591i −0.160060 1.11324i −0.898515 0.438942i \(-0.855353\pi\)
0.738455 0.674303i \(-0.235556\pi\)
\(174\) 166.141 106.772i 0.954831 0.613633i
\(175\) −73.4240 63.6222i −0.419566 0.363556i
\(176\) 27.2874 + 12.4617i 0.155042 + 0.0708054i
\(177\) 70.9938 + 45.6249i 0.401095 + 0.257768i
\(178\) 24.8800 + 84.7336i 0.139775 + 0.476031i
\(179\) 86.4011 + 99.7122i 0.482688 + 0.557052i 0.943897 0.330240i \(-0.107130\pi\)
−0.461209 + 0.887291i \(0.652584\pi\)
\(180\) 0.262916 0.895409i 0.00146064 0.00497450i
\(181\) 326.253 148.995i 1.80250 0.823176i 0.844994 0.534776i \(-0.179604\pi\)
0.957510 0.288400i \(-0.0931232\pi\)
\(182\) −56.3337 8.09957i −0.309526 0.0445031i
\(183\) 92.7536i 0.506850i
\(184\) −55.6483 33.6937i −0.302437 0.183118i
\(185\) −25.8105 −0.139516
\(186\) 26.1008 181.535i 0.140327 0.975995i
\(187\) −79.4780 174.033i −0.425016 0.930655i
\(188\) 43.4443 + 12.7564i 0.231087 + 0.0678532i
\(189\) −75.6307 + 65.5344i −0.400163 + 0.346743i
\(190\) −4.61375 + 1.35472i −0.0242829 + 0.00713011i
\(191\) −111.836 + 174.021i −0.585531 + 0.911104i 0.414469 + 0.910064i \(0.363967\pi\)
−0.999999 + 0.00104009i \(0.999669\pi\)
\(192\) 10.4591 22.9021i 0.0544742 0.119282i
\(193\) 133.418 153.972i 0.691283 0.797783i −0.296264 0.955106i \(-0.595741\pi\)
0.987547 + 0.157323i \(0.0502863\pi\)
\(194\) 52.4427 + 81.6024i 0.270323 + 0.420631i
\(195\) 16.4613 2.36677i 0.0844167 0.0121373i
\(196\) −9.55536 66.4590i −0.0487518 0.339077i
\(197\) −201.567 + 129.540i −1.02319 + 0.657561i −0.940773 0.339037i \(-0.889899\pi\)
−0.0824122 + 0.996598i \(0.526262\pi\)
\(198\) −7.25144 6.28341i −0.0366234 0.0317344i
\(199\) −59.7602 27.2916i −0.300302 0.137143i 0.259565 0.965726i \(-0.416421\pi\)
−0.559868 + 0.828582i \(0.689148\pi\)
\(200\) 58.8526 + 37.8223i 0.294263 + 0.189111i
\(201\) −59.2199 201.685i −0.294627 1.00341i
\(202\) 39.4832 + 45.5660i 0.195461 + 0.225574i
\(203\) 49.1040 167.233i 0.241892 0.823807i
\(204\) −146.064 + 66.7053i −0.716001 + 0.326987i
\(205\) −17.4195 2.50455i −0.0849733 0.0122173i
\(206\) 261.560i 1.26971i
\(207\) 14.0420 + 15.3551i 0.0678358 + 0.0741791i
\(208\) 40.9818 0.197028
\(209\) −7.03605 + 48.9368i −0.0336653 + 0.234147i
\(210\) −3.74575 8.20205i −0.0178369 0.0390574i
\(211\) −202.452 59.4452i −0.959486 0.281731i −0.235755 0.971813i \(-0.575756\pi\)
−0.723731 + 0.690082i \(0.757574\pi\)
\(212\) −59.9292 + 51.9289i −0.282685 + 0.244948i
\(213\) −151.135 + 44.3771i −0.709552 + 0.208343i
\(214\) 148.129 230.492i 0.692189 1.07707i
\(215\) 8.01591 17.5524i 0.0372833 0.0816391i
\(216\) 47.1898 54.4599i 0.218471 0.252129i
\(217\) −87.5071 136.164i −0.403259 0.627483i
\(218\) 117.811 16.9387i 0.540419 0.0777006i
\(219\) 44.2963 + 308.087i 0.202266 + 1.40679i
\(220\) −6.50803 + 4.18245i −0.0295819 + 0.0190112i
\(221\) −197.531 171.162i −0.893808 0.774489i
\(222\) 202.601 + 92.5249i 0.912619 + 0.416779i
\(223\) 249.680 + 160.460i 1.11964 + 0.719550i 0.963373 0.268165i \(-0.0864173\pi\)
0.156268 + 0.987715i \(0.450054\pi\)
\(224\) −6.26005 21.3198i −0.0279467 0.0951776i
\(225\) −14.6534 16.9109i −0.0651261 0.0751595i
\(226\) −58.5579 + 199.430i −0.259106 + 0.882433i
\(227\) 124.134 56.6900i 0.546845 0.249736i −0.122782 0.992434i \(-0.539181\pi\)
0.669627 + 0.742698i \(0.266454\pi\)
\(228\) 41.0723 + 5.90531i 0.180142 + 0.0259005i
\(229\) 36.2794i 0.158425i −0.996858 0.0792126i \(-0.974759\pi\)
0.996858 0.0792126i \(-0.0252406\pi\)
\(230\) 15.0684 7.37503i 0.0655147 0.0320653i
\(231\) −92.7092 −0.401339
\(232\) −17.8611 + 124.227i −0.0769876 + 0.535461i
\(233\) −48.8262 106.914i −0.209554 0.458860i 0.775446 0.631414i \(-0.217525\pi\)
−0.985000 + 0.172554i \(0.944798\pi\)
\(234\) −12.5771 3.69298i −0.0537484 0.0157820i
\(235\) −8.82459 + 7.64655i −0.0375514 + 0.0325385i
\(236\) −51.4571 + 15.1092i −0.218038 + 0.0640219i
\(237\) −122.209 + 190.161i −0.515649 + 0.802366i
\(238\) −58.8696 + 128.906i −0.247351 + 0.541624i
\(239\) −179.110 + 206.704i −0.749414 + 0.864870i −0.994511 0.104628i \(-0.966635\pi\)
0.245097 + 0.969499i \(0.421180\pi\)
\(240\) 3.51030 + 5.46214i 0.0146263 + 0.0227589i
\(241\) 373.137 53.6491i 1.54829 0.222610i 0.685461 0.728109i \(-0.259601\pi\)
0.862827 + 0.505499i \(0.168692\pi\)
\(242\) −13.0331 90.6471i −0.0538557 0.374575i
\(243\) −40.9467 + 26.3148i −0.168505 + 0.108292i
\(244\) 44.5470 + 38.6002i 0.182570 + 0.158198i
\(245\) 15.7503 + 7.19291i 0.0642868 + 0.0293588i
\(246\) 127.757 + 82.1047i 0.519339 + 0.333759i
\(247\) 19.0287 + 64.8059i 0.0770394 + 0.262372i
\(248\) 76.3242 + 88.0829i 0.307759 + 0.355173i
\(249\) −104.898 + 357.248i −0.421275 + 1.43473i
\(250\) −32.9981 + 15.0697i −0.131993 + 0.0602790i
\(251\) 71.2272 + 10.2409i 0.283774 + 0.0408005i 0.282732 0.959199i \(-0.408759\pi\)
0.00104182 + 0.999999i \(0.499668\pi\)
\(252\) 7.10707i 0.0282026i
\(253\) −4.61580 172.429i −0.0182443 0.681536i
\(254\) −10.2797 −0.0404711
\(255\) 5.89324 40.9884i 0.0231107 0.160739i
\(256\) 6.64664 + 14.5541i 0.0259634 + 0.0568520i
\(257\) −218.622 64.1931i −0.850668 0.249779i −0.172795 0.984958i \(-0.555280\pi\)
−0.677873 + 0.735179i \(0.737098\pi\)
\(258\) −125.843 + 109.043i −0.487763 + 0.422649i
\(259\) 188.603 55.3789i 0.728198 0.213818i
\(260\) −5.71380 + 8.89084i −0.0219761 + 0.0341955i
\(261\) 16.6759 36.5152i 0.0638925 0.139905i
\(262\) 49.5077 57.1349i 0.188961 0.218072i
\(263\) −187.521 291.788i −0.713007 1.10946i −0.988945 0.148285i \(-0.952625\pi\)
0.275937 0.961176i \(-0.411012\pi\)
\(264\) 66.0783 9.50063i 0.250297 0.0359872i
\(265\) −2.91029 20.2415i −0.0109822 0.0763831i
\(266\) 30.8070 19.7985i 0.115816 0.0744304i
\(267\) 148.524 + 128.697i 0.556270 + 0.482011i
\(268\) 121.508 + 55.4911i 0.453390 + 0.207056i
\(269\) −222.153 142.769i −0.825847 0.530740i 0.0581085 0.998310i \(-0.481493\pi\)
−0.883956 + 0.467570i \(0.845129\pi\)
\(270\) 5.23554 + 17.8306i 0.0193909 + 0.0660394i
\(271\) 210.039 + 242.398i 0.775053 + 0.894458i 0.996742 0.0806590i \(-0.0257025\pi\)
−0.221689 + 0.975117i \(0.571157\pi\)
\(272\) 28.7491 97.9106i 0.105695 0.359965i
\(273\) −115.208 + 52.6137i −0.422007 + 0.192724i
\(274\) −319.949 46.0018i −1.16770 0.167890i
\(275\) 185.494i 0.674525i
\(276\) −144.718 + 3.87401i −0.524340 + 0.0140363i
\(277\) 478.892 1.72885 0.864426 0.502761i \(-0.167682\pi\)
0.864426 + 0.502761i \(0.167682\pi\)
\(278\) 17.0092 118.301i 0.0611840 0.425544i
\(279\) −15.4862 33.9101i −0.0555061 0.121541i
\(280\) 5.49805 + 1.61437i 0.0196359 + 0.00576561i
\(281\) −188.074 + 162.967i −0.669301 + 0.579953i −0.921810 0.387642i \(-0.873290\pi\)
0.252509 + 0.967595i \(0.418744\pi\)
\(282\) 96.6803 28.3879i 0.342838 0.100666i
\(283\) 63.6081 98.9762i 0.224764 0.349739i −0.710496 0.703701i \(-0.751529\pi\)
0.935260 + 0.353962i \(0.115166\pi\)
\(284\) 41.5828 91.0537i 0.146418 0.320612i
\(285\) −7.00756 + 8.08715i −0.0245879 + 0.0283760i
\(286\) 58.7477 + 91.4133i 0.205412 + 0.319627i
\(287\) 132.662 19.0739i 0.462237 0.0664597i
\(288\) −0.728316 5.06555i −0.00252887 0.0175887i
\(289\) −304.376 + 195.611i −1.05320 + 0.676853i
\(290\) −24.4603 21.1950i −0.0843459 0.0730861i
\(291\) 196.357 + 89.6734i 0.674768 + 0.308156i
\(292\) −166.400 106.939i −0.569863 0.366229i
\(293\) −12.7186 43.3157i −0.0434083 0.147835i 0.934937 0.354813i \(-0.115455\pi\)
−0.978346 + 0.206978i \(0.933637\pi\)
\(294\) −97.8478 112.922i −0.332816 0.384090i
\(295\) 3.89642 13.2700i 0.0132082 0.0449830i
\(296\) −128.751 + 58.7988i −0.434971 + 0.198645i
\(297\) 189.125 + 27.1920i 0.636783 + 0.0915556i
\(298\) 103.428i 0.347075i
\(299\) −103.591 211.654i −0.346460 0.707873i
\(300\) 155.684 0.518947
\(301\) −20.9137 + 145.458i −0.0694808 + 0.483250i
\(302\) 14.7147 + 32.2207i 0.0487242 + 0.106691i
\(303\) 128.739 + 37.8012i 0.424881 + 0.124756i
\(304\) −19.9287 + 17.2684i −0.0655551 + 0.0568038i
\(305\) −14.5851 + 4.28256i −0.0478198 + 0.0140412i
\(306\) −17.6460 + 27.4577i −0.0576666 + 0.0897311i
\(307\) 191.399 419.106i 0.623450 1.36516i −0.289533 0.957168i \(-0.593500\pi\)
0.912983 0.407997i \(-0.133773\pi\)
\(308\) 38.5817 44.5257i 0.125265 0.144564i
\(309\) −314.692 489.671i −1.01842 1.58469i
\(310\) −29.7506 + 4.27749i −0.0959697 + 0.0137984i
\(311\) 12.0687 + 83.9398i 0.0388062 + 0.269903i 0.999982 0.00603451i \(-0.00192086\pi\)
−0.961176 + 0.275937i \(0.911012\pi\)
\(312\) 76.7225 49.3065i 0.245905 0.158034i
\(313\) −231.972 201.005i −0.741124 0.642187i 0.200176 0.979760i \(-0.435849\pi\)
−0.941299 + 0.337573i \(0.890394\pi\)
\(314\) −102.801 46.9477i −0.327392 0.149515i
\(315\) −1.54185 0.990888i −0.00489477 0.00314568i
\(316\) −40.4707 137.831i −0.128072 0.436173i
\(317\) 229.704 + 265.092i 0.724618 + 0.836254i 0.991854 0.127377i \(-0.0406559\pi\)
−0.267236 + 0.963631i \(0.586110\pi\)
\(318\) −49.7168 + 169.320i −0.156342 + 0.532452i
\(319\) −302.703 + 138.240i −0.948911 + 0.433353i
\(320\) −4.08416 0.587213i −0.0127630 0.00183504i
\(321\) 609.727i 1.89946i
\(322\) −94.2842 + 86.2216i −0.292808 + 0.267769i
\(323\) 168.178 0.520676
\(324\) 25.1395 174.849i 0.0775912 0.539658i
\(325\) 105.271 + 230.510i 0.323909 + 0.709262i
\(326\) −292.023 85.7457i −0.895776 0.263023i
\(327\) 200.177 173.454i 0.612161 0.530441i
\(328\) −92.5999 + 27.1898i −0.282317 + 0.0828957i
\(329\) 48.0768 74.8090i 0.146130 0.227383i
\(330\) −7.15171 + 15.6601i −0.0216718 + 0.0474547i
\(331\) 85.2737 98.4111i 0.257624 0.297314i −0.612173 0.790724i \(-0.709704\pi\)
0.869797 + 0.493410i \(0.164250\pi\)
\(332\) −127.923 199.051i −0.385309 0.599552i
\(333\) 44.8118 6.44297i 0.134570 0.0193483i
\(334\) 49.9665 + 347.525i 0.149600 + 1.04049i
\(335\) −28.9797 + 18.6241i −0.0865064 + 0.0555943i
\(336\) −37.3701 32.3814i −0.111221 0.0963731i
\(337\) 172.442 + 78.7518i 0.511698 + 0.233685i 0.654494 0.756067i \(-0.272882\pi\)
−0.142795 + 0.989752i \(0.545609\pi\)
\(338\) −76.1785 48.9569i −0.225380 0.144843i
\(339\) 130.314 + 443.808i 0.384407 + 1.30917i
\(340\) 17.2331 + 19.8880i 0.0506855 + 0.0584941i
\(341\) −87.0648 + 296.515i −0.255322 + 0.869546i
\(342\) 7.67215 3.50375i 0.0224332 0.0102449i
\(343\) −321.034 46.1578i −0.935960 0.134571i
\(344\) 105.818i 0.307611i
\(345\) 19.3366 31.9362i 0.0560480 0.0925686i
\(346\) 275.166 0.795278
\(347\) 76.1555 529.673i 0.219468 1.52644i −0.520539 0.853838i \(-0.674269\pi\)
0.740008 0.672598i \(-0.234822\pi\)
\(348\) 116.024 + 254.056i 0.333401 + 0.730046i
\(349\) 329.903 + 96.8684i 0.945282 + 0.277560i 0.717821 0.696227i \(-0.245139\pi\)
0.227461 + 0.973787i \(0.426958\pi\)
\(350\) 103.837 89.9754i 0.296678 0.257073i
\(351\) 250.453 73.5397i 0.713542 0.209515i
\(352\) −22.9362 + 35.6894i −0.0651595 + 0.101390i
\(353\) −15.1745 + 33.2275i −0.0429873 + 0.0941290i −0.929907 0.367794i \(-0.880113\pi\)
0.886920 + 0.461923i \(0.152840\pi\)
\(354\) −78.1551 + 90.1958i −0.220777 + 0.254790i
\(355\) 13.9562 + 21.7162i 0.0393131 + 0.0611725i
\(356\) −123.619 + 17.7737i −0.347245 + 0.0499263i
\(357\) 44.8812 + 312.155i 0.125718 + 0.874385i
\(358\) −156.968 + 100.878i −0.438459 + 0.281781i
\(359\) −16.7343 14.5003i −0.0466135 0.0403909i 0.631242 0.775586i \(-0.282545\pi\)
−0.677856 + 0.735195i \(0.737091\pi\)
\(360\) 1.20050 + 0.548248i 0.00333471 + 0.00152291i
\(361\) 267.132 + 171.675i 0.739978 + 0.475555i
\(362\) 142.903 + 486.683i 0.394759 + 1.34443i
\(363\) −133.460 154.021i −0.367659 0.424301i
\(364\) 22.6759 77.2269i 0.0622963 0.212162i
\(365\) 46.4000 21.1902i 0.127123 0.0580553i
\(366\) 129.838 + 18.6679i 0.354749 + 0.0510053i
\(367\) 316.786i 0.863176i 0.902071 + 0.431588i \(0.142047\pi\)
−0.902071 + 0.431588i \(0.857953\pi\)
\(368\) 58.3650 71.1163i 0.158601 0.193251i
\(369\) 30.8687 0.0836550
\(370\) 5.19472 36.1301i 0.0140398 0.0976488i
\(371\) 64.6962 + 141.665i 0.174383 + 0.381846i
\(372\) 248.863 + 73.0728i 0.668987 + 0.196432i
\(373\) −315.166 + 273.093i −0.844950 + 0.732153i −0.965458 0.260559i \(-0.916093\pi\)
0.120508 + 0.992712i \(0.461548\pi\)
\(374\) 259.610 76.2284i 0.694145 0.203819i
\(375\) −43.6453 + 67.9135i −0.116388 + 0.181103i
\(376\) −26.6004 + 58.2468i −0.0707458 + 0.154912i
\(377\) −297.710 + 343.575i −0.789681 + 0.911341i
\(378\) −76.5146 119.059i −0.202419 0.314971i
\(379\) −661.740 + 95.1439i −1.74602 + 0.251039i −0.940078 0.340960i \(-0.889248\pi\)
−0.805938 + 0.591999i \(0.798339\pi\)
\(380\) −0.967783 6.73108i −0.00254680 0.0177134i
\(381\) −19.2447 + 12.3678i −0.0505109 + 0.0324614i
\(382\) −221.089 191.575i −0.578767 0.501505i
\(383\) −395.078 180.426i −1.03154 0.471086i −0.173585 0.984819i \(-0.555535\pi\)
−0.857950 + 0.513733i \(0.828262\pi\)
\(384\) 29.9538 + 19.2501i 0.0780047 + 0.0501306i
\(385\) 4.28051 + 14.5781i 0.0111182 + 0.0378651i
\(386\) 188.681 + 217.750i 0.488811 + 0.564118i
\(387\) −9.53557 + 32.4752i −0.0246397 + 0.0839152i
\(388\) −124.783 + 56.9867i −0.321607 + 0.146873i
\(389\) 140.553 + 20.2084i 0.361318 + 0.0519497i 0.320583 0.947220i \(-0.396121\pi\)
0.0407347 + 0.999170i \(0.487030\pi\)
\(390\) 23.5191i 0.0603055i
\(391\) −578.339 + 99.0154i −1.47913 + 0.253236i
\(392\) 94.9537 0.242229
\(393\) 23.9430 166.527i 0.0609237 0.423734i
\(394\) −140.764 308.230i −0.357268 0.782309i
\(395\) 35.5444 + 10.4368i 0.0899858 + 0.0264222i
\(396\) 10.2551 8.88608i 0.0258967 0.0224396i
\(397\) 526.008 154.450i 1.32496 0.389043i 0.458678 0.888603i \(-0.348323\pi\)
0.866279 + 0.499560i \(0.166505\pi\)
\(398\) 50.2308 78.1606i 0.126208 0.196383i
\(399\) 33.8540 74.1300i 0.0848472 0.185790i
\(400\) −64.7893 + 74.7708i −0.161973 + 0.186927i
\(401\) −137.285 213.619i −0.342356 0.532716i 0.626795 0.779184i \(-0.284366\pi\)
−0.969151 + 0.246468i \(0.920730\pi\)
\(402\) 294.241 42.3054i 0.731942 0.105237i
\(403\) 60.0827 + 417.884i 0.149089 + 1.03693i
\(404\) −71.7307 + 46.0985i −0.177551 + 0.114105i
\(405\) 34.4279 + 29.8319i 0.0850072 + 0.0736591i
\(406\) 224.213 + 102.395i 0.552248 + 0.252203i
\(407\) −315.722 202.902i −0.775730 0.498532i
\(408\) −63.9779 217.889i −0.156809 0.534041i
\(409\) −391.356 451.648i −0.956860 1.10428i −0.994474 0.104983i \(-0.966521\pi\)
0.0376143 0.999292i \(-0.488024\pi\)
\(410\) 7.01183 23.8801i 0.0171020 0.0582442i
\(411\) −654.328 + 298.821i −1.59204 + 0.727059i
\(412\) 366.137 + 52.6426i 0.888682 + 0.127773i
\(413\) 105.327i 0.255029i
\(414\) −24.3205 + 16.5659i −0.0587451 + 0.0400142i
\(415\) 61.0188 0.147033
\(416\) −8.24813 + 57.3670i −0.0198272 + 0.137902i
\(417\) −110.489 241.938i −0.264962 0.580186i
\(418\) −67.0866 19.6984i −0.160494 0.0471254i
\(419\) 161.014 139.519i 0.384281 0.332982i −0.441202 0.897408i \(-0.645448\pi\)
0.825484 + 0.564426i \(0.190902\pi\)
\(420\) 12.2353 3.59260i 0.0291316 0.00855381i
\(421\) 233.721 363.677i 0.555156 0.863840i −0.444331 0.895863i \(-0.646559\pi\)
0.999487 + 0.0320229i \(0.0101949\pi\)
\(422\) 123.959 271.431i 0.293741 0.643202i
\(423\) 13.4123 15.4787i 0.0317077 0.0365926i
\(424\) −60.6296 94.3414i −0.142994 0.222503i
\(425\) 624.567 89.7991i 1.46957 0.211292i
\(426\) −31.7020 220.493i −0.0744179 0.517588i
\(427\) 97.3876 62.5872i 0.228074 0.146574i
\(428\) 292.835 + 253.743i 0.684194 + 0.592857i
\(429\) 219.965 + 100.455i 0.512739 + 0.234160i
\(430\) 22.9569 + 14.7535i 0.0533881 + 0.0343104i
\(431\) 144.423 + 491.861i 0.335089 + 1.14121i 0.938931 + 0.344105i \(0.111818\pi\)
−0.603842 + 0.797104i \(0.706364\pi\)
\(432\) 66.7365 + 77.0180i 0.154483 + 0.178282i
\(433\) −53.9146 + 183.616i −0.124514 + 0.424056i −0.998030 0.0627396i \(-0.980016\pi\)
0.873516 + 0.486796i \(0.161834\pi\)
\(434\) 208.217 95.0893i 0.479762 0.219100i
\(435\) −71.2929 10.2504i −0.163892 0.0235641i
\(436\) 168.324i 0.386064i
\(437\) 139.559 + 59.2738i 0.319357 + 0.135638i
\(438\) −440.182 −1.00498
\(439\) 106.087 737.854i 0.241657 1.68076i −0.402151 0.915573i \(-0.631737\pi\)
0.643808 0.765187i \(-0.277353\pi\)
\(440\) −4.54485 9.95183i −0.0103292 0.0226178i
\(441\) −29.1409 8.55654i −0.0660792 0.0194026i
\(442\) 279.352 242.060i 0.632017 0.547646i
\(443\) 415.164 121.903i 0.937166 0.275177i 0.222732 0.974880i \(-0.428503\pi\)
0.714434 + 0.699703i \(0.246684\pi\)
\(444\) −170.294 + 264.983i −0.383546 + 0.596809i
\(445\) 13.3794 29.2968i 0.0300661 0.0658355i
\(446\) −274.866 + 317.212i −0.616291 + 0.711238i
\(447\) −124.438 193.630i −0.278385 0.433176i
\(448\) 31.1038 4.47205i 0.0694280 0.00998224i
\(449\) 4.73273 + 32.9168i 0.0105406 + 0.0733115i 0.994413 0.105561i \(-0.0336640\pi\)
−0.983872 + 0.178873i \(0.942755\pi\)
\(450\) 26.6214 17.1085i 0.0591586 0.0380189i
\(451\) −193.392 167.575i −0.428807 0.371564i
\(452\) −267.380 122.108i −0.591549 0.270151i
\(453\) 66.3135 + 42.6171i 0.146387 + 0.0940775i
\(454\) 54.3721 + 185.174i 0.119762 + 0.407873i
\(455\) 13.5926 + 15.6866i 0.0298737 + 0.0344761i
\(456\) −16.5327 + 56.3053i −0.0362560 + 0.123476i
\(457\) 263.236 120.216i 0.576009 0.263055i −0.106039 0.994362i \(-0.533817\pi\)
0.682048 + 0.731307i \(0.261089\pi\)
\(458\) 50.7845 + 7.30171i 0.110883 + 0.0159426i
\(459\) 649.953i 1.41602i
\(460\) 7.29099 + 22.5773i 0.0158500 + 0.0490811i
\(461\) 20.1985 0.0438145 0.0219073 0.999760i \(-0.493026\pi\)
0.0219073 + 0.999760i \(0.493026\pi\)
\(462\) 18.6590 129.776i 0.0403874 0.280901i
\(463\) −16.6640 36.4890i −0.0359913 0.0788099i 0.890782 0.454430i \(-0.150157\pi\)
−0.926774 + 0.375620i \(0.877430\pi\)
\(464\) −170.300 50.0047i −0.367026 0.107769i
\(465\) −50.5501 + 43.8019i −0.108710 + 0.0941977i
\(466\) 159.488 46.8298i 0.342248 0.100493i
\(467\) −65.3042 + 101.615i −0.139838 + 0.217592i −0.904108 0.427305i \(-0.859463\pi\)
0.764270 + 0.644896i \(0.223100\pi\)
\(468\) 7.70082 16.8624i 0.0164547 0.0360309i
\(469\) 171.801 198.269i 0.366313 0.422748i
\(470\) −8.92772 13.8918i −0.0189951 0.0295570i
\(471\) −248.940 + 35.7921i −0.528534 + 0.0759918i
\(472\) −10.7937 75.0715i −0.0228679 0.159050i
\(473\) 236.036 151.691i 0.499020 0.320701i
\(474\) −241.594 209.343i −0.509693 0.441651i
\(475\) −148.321 67.7358i −0.312254 0.142602i
\(476\) −168.597 108.351i −0.354196 0.227628i
\(477\) 10.1056 + 34.4165i 0.0211857 + 0.0721520i
\(478\) −253.300 292.324i −0.529916 0.611556i
\(479\) −40.8630 + 139.167i −0.0853089 + 0.290536i −0.991087 0.133217i \(-0.957469\pi\)
0.905778 + 0.423753i \(0.139287\pi\)
\(480\) −8.35250 + 3.81446i −0.0174010 + 0.00794679i
\(481\) −507.492 72.9663i −1.05508 0.151697i
\(482\) 533.123i 1.10606i
\(483\) −72.7745 + 274.853i −0.150672 + 0.569054i
\(484\) 129.513 0.267588
\(485\) 5.03462 35.0166i 0.0103807 0.0721991i
\(486\) −28.5949 62.6142i −0.0588373 0.128836i
\(487\) −142.457 41.8291i −0.292519 0.0858914i 0.132180 0.991226i \(-0.457802\pi\)
−0.424700 + 0.905334i \(0.639620\pi\)
\(488\) −62.9990 + 54.5889i −0.129096 + 0.111863i
\(489\) −649.863 + 190.817i −1.32896 + 0.390219i
\(490\) −13.2387 + 20.5999i −0.0270178 + 0.0420405i
\(491\) −43.6846 + 95.6560i −0.0889707 + 0.194819i −0.948887 0.315617i \(-0.897789\pi\)
0.859916 + 0.510436i \(0.170516\pi\)
\(492\) −140.645 + 162.313i −0.285863 + 0.329903i
\(493\) 611.998 + 952.288i 1.24138 + 1.93162i
\(494\) −94.5463 + 13.5937i −0.191389 + 0.0275176i
\(495\) 0.498009 + 3.46373i 0.00100608 + 0.00699743i
\(496\) −138.661 + 89.1122i −0.279559 + 0.179662i
\(497\) −148.575 128.741i −0.298944 0.259036i
\(498\) −478.971 218.739i −0.961789 0.439234i
\(499\) 306.780 + 197.156i 0.614790 + 0.395102i 0.810651 0.585530i \(-0.199114\pi\)
−0.195861 + 0.980632i \(0.562750\pi\)
\(500\) −14.4536 49.2244i −0.0289072 0.0984488i
\(501\) 511.662 + 590.489i 1.02128 + 1.17862i
\(502\) −28.6709 + 97.6441i −0.0571133 + 0.194510i
\(503\) 89.5170 40.8810i 0.177966 0.0812744i −0.324440 0.945906i \(-0.605176\pi\)
0.502406 + 0.864632i \(0.332448\pi\)
\(504\) −9.94861 1.43039i −0.0197393 0.00283808i
\(505\) 21.9889i 0.0435424i
\(506\) 242.298 + 28.2423i 0.478849 + 0.0558148i
\(507\) −201.516 −0.397468
\(508\) 2.06892 14.3896i 0.00407268 0.0283261i
\(509\) 314.457 + 688.564i 0.617793 + 1.35278i 0.917114 + 0.398626i \(0.130513\pi\)
−0.299320 + 0.954153i \(0.596760\pi\)
\(510\) 56.1902 + 16.4989i 0.110177 + 0.0323508i
\(511\) −293.590 + 254.397i −0.574539 + 0.497841i
\(512\) −21.7108 + 6.37488i −0.0424040 + 0.0124509i
\(513\) −90.8041 + 141.294i −0.177006 + 0.275427i
\(514\) 133.859 293.111i 0.260427 0.570255i
\(515\) −62.4685 + 72.0925i −0.121298 + 0.139986i
\(516\) −127.313 198.104i −0.246732 0.383922i
\(517\) −168.056 + 24.1628i −0.325061 + 0.0467367i
\(518\) 39.5615 + 275.156i 0.0763735 + 0.531190i
\(519\) 515.142 331.062i 0.992566 0.637884i
\(520\) −11.2956 9.78768i −0.0217223 0.0188225i
\(521\) 743.235 + 339.424i 1.42655 + 0.651486i 0.971078 0.238762i \(-0.0767416\pi\)
0.455477 + 0.890248i \(0.349469\pi\)
\(522\) 47.7584 + 30.6925i 0.0914912 + 0.0587978i
\(523\) −39.4255 134.271i −0.0753833 0.256732i 0.913176 0.407566i \(-0.133622\pi\)
−0.988559 + 0.150834i \(0.951804\pi\)
\(524\) 70.0144 + 80.8009i 0.133615 + 0.154200i
\(525\) 86.1425 293.374i 0.164081 0.558808i
\(526\) 446.192 203.769i 0.848274 0.387394i
\(527\) 1040.53 + 149.605i 1.97443 + 0.283881i
\(528\) 94.4098i 0.178806i
\(529\) −514.818 121.668i −0.973192 0.229996i
\(530\) 28.9202 0.0545664
\(531\) −3.45237 + 24.0118i −0.00650165 + 0.0452199i
\(532\) 21.5140 + 47.1090i 0.0404398 + 0.0885507i
\(533\) −335.426 98.4898i −0.629316 0.184784i
\(534\) −210.045 + 182.005i −0.393342 + 0.340833i
\(535\) −95.8765 + 28.1519i −0.179208 + 0.0526203i
\(536\) −102.133 + 158.922i −0.190546 + 0.296495i
\(537\) −172.494 + 377.708i −0.321217 + 0.703367i
\(538\) 244.562 282.240i 0.454576 0.524609i
\(539\) 136.117 + 211.802i 0.252536 + 0.392954i
\(540\) −26.0134 + 3.74016i −0.0481729 + 0.00692622i
\(541\) −91.9586 639.586i −0.169979 1.18223i −0.878923 0.476964i \(-0.841737\pi\)
0.708944 0.705265i \(-0.249172\pi\)
\(542\) −381.587 + 245.231i −0.704035 + 0.452456i
\(543\) 853.075 + 739.194i 1.57104 + 1.36131i
\(544\) 131.271 + 59.9494i 0.241307 + 0.110201i
\(545\) −36.5172 23.4682i −0.0670041 0.0430609i
\(546\) −50.4625 171.860i −0.0924222 0.314761i
\(547\) −219.336 253.127i −0.400980 0.462755i 0.518969 0.854793i \(-0.326316\pi\)
−0.919949 + 0.392037i \(0.871770\pi\)
\(548\) 128.788 438.613i 0.235015 0.800388i
\(549\) 24.2533 11.0761i 0.0441772 0.0201751i
\(550\) −259.659 37.3333i −0.472107 0.0678787i
\(551\) 292.520i 0.530889i
\(552\) 23.7035 203.359i 0.0429412 0.368403i
\(553\) −282.124 −0.510170
\(554\) −96.3835 + 670.362i −0.173977 + 1.21004i
\(555\) −33.7442 73.8895i −0.0608004 0.133134i
\(556\) 162.177 + 47.6195i 0.291685 + 0.0856465i
\(557\) −193.217 + 167.424i −0.346889 + 0.300581i −0.810826 0.585287i \(-0.800982\pi\)
0.463937 + 0.885868i \(0.346436\pi\)
\(558\) 50.5848 14.8530i 0.0906537 0.0266183i
\(559\) 207.231 322.458i 0.370717 0.576847i
\(560\) −3.36638 + 7.37135i −0.00601140 + 0.0131631i
\(561\) 394.306 455.054i 0.702864 0.811148i
\(562\) −190.272 296.068i −0.338561 0.526812i
\(563\) −451.233 + 64.8775i −0.801479 + 0.115235i −0.530869 0.847454i \(-0.678135\pi\)
−0.270610 + 0.962689i \(0.587225\pi\)
\(564\) 20.2797 + 141.048i 0.0359569 + 0.250086i
\(565\) 63.7699 40.9825i 0.112867 0.0725353i
\(566\) 125.747 + 108.960i 0.222167 + 0.192509i
\(567\) −315.580 144.120i −0.556578 0.254181i
\(568\) 119.090 + 76.5342i 0.209665 + 0.134743i
\(569\) −314.918 1072.51i −0.553459 1.88491i −0.456748 0.889596i \(-0.650986\pi\)
−0.0967117 0.995312i \(-0.530832\pi\)
\(570\) −9.91018 11.4370i −0.0173863 0.0200648i
\(571\) −39.3458 + 133.999i −0.0689068 + 0.234675i −0.986745 0.162281i \(-0.948115\pi\)
0.917838 + 0.396955i \(0.129933\pi\)
\(572\) −139.786 + 63.8380i −0.244381 + 0.111605i
\(573\) −644.394 92.6498i −1.12460 0.161693i
\(574\) 189.542i 0.330212i
\(575\) 549.931 + 145.609i 0.956402 + 0.253232i
\(576\) 7.23743 0.0125650
\(577\) −128.359 + 892.755i −0.222459 + 1.54724i 0.506235 + 0.862396i \(0.331037\pi\)
−0.728694 + 0.684840i \(0.759872\pi\)
\(578\) −212.560 465.440i −0.367750 0.805260i
\(579\) 615.214 + 180.643i 1.06255 + 0.311992i
\(580\) 34.5921 29.9742i 0.0596416 0.0516797i
\(581\) −445.878 + 130.922i −0.767432 + 0.225338i
\(582\) −165.046 + 256.817i −0.283584 + 0.441266i
\(583\) 123.524 270.479i 0.211876 0.463943i
\(584\) 183.185 211.407i 0.313673 0.361999i
\(585\) 2.58458 + 4.02168i 0.00441808 + 0.00687466i
\(586\) 63.1939 9.08591i 0.107839 0.0155050i
\(587\) −108.289 753.165i −0.184478 1.28308i −0.846013 0.533162i \(-0.821004\pi\)
0.661535 0.749914i \(-0.269905\pi\)
\(588\) 177.764 114.242i 0.302320 0.194289i
\(589\) −205.300 177.893i −0.348557 0.302026i
\(590\) 17.7914 + 8.12505i 0.0301549 + 0.0137713i
\(591\) −634.367 407.683i −1.07338 0.689819i
\(592\) −56.3947 192.063i −0.0952614 0.324430i
\(593\) 17.8172 + 20.5622i 0.0300459 + 0.0346748i 0.770574 0.637351i \(-0.219970\pi\)
−0.740528 + 0.672026i \(0.765424\pi\)
\(594\) −76.1278 + 259.267i −0.128161 + 0.436477i
\(595\) 47.0127 21.4700i 0.0790129 0.0360840i
\(596\) 144.781 + 20.8164i 0.242921 + 0.0349268i
\(597\) 206.760i 0.346331i
\(598\) 317.126 102.411i 0.530312 0.171256i
\(599\) −128.190 −0.214007 −0.107004 0.994259i \(-0.534126\pi\)
−0.107004 + 0.994259i \(0.534126\pi\)
\(600\) −31.3335 + 217.930i −0.0522226 + 0.363216i
\(601\) −300.954 658.996i −0.500755 1.09650i −0.976223 0.216767i \(-0.930449\pi\)
0.475469 0.879733i \(-0.342279\pi\)
\(602\) −199.406 58.5509i −0.331239 0.0972606i
\(603\) 45.6650 39.5689i 0.0757296 0.0656201i
\(604\) −48.0647 + 14.1131i −0.0795774 + 0.0233660i
\(605\) −18.0570 + 28.0973i −0.0298463 + 0.0464418i
\(606\) −78.8253 + 172.603i −0.130075 + 0.284824i
\(607\) −53.8455 + 62.1411i −0.0887076 + 0.102374i −0.798368 0.602170i \(-0.794303\pi\)
0.709660 + 0.704544i \(0.248848\pi\)
\(608\) −20.1616 31.3721i −0.0331606 0.0515989i
\(609\) 542.946 78.0639i 0.891537 0.128184i
\(610\) −3.05937 21.2784i −0.00501535 0.0348825i
\(611\) −195.128 + 125.401i −0.319358 + 0.205239i
\(612\) −34.8843 30.2274i −0.0570005 0.0493912i
\(613\) 316.854 + 144.702i 0.516891 + 0.236056i 0.656741 0.754117i \(-0.271935\pi\)
−0.139850 + 0.990173i \(0.544662\pi\)
\(614\) 548.150 + 352.275i 0.892753 + 0.573737i
\(615\) −15.6040 53.1424i −0.0253724 0.0864104i
\(616\) 54.5628 + 62.9688i 0.0885760 + 0.102222i
\(617\) 191.517 652.245i 0.310400 1.05712i −0.645581 0.763692i \(-0.723385\pi\)
0.955980 0.293432i \(-0.0947973\pi\)
\(618\) 748.786 341.959i 1.21163 0.553332i
\(619\) −577.823 83.0784i −0.933479 0.134214i −0.341240 0.939976i \(-0.610847\pi\)
−0.592239 + 0.805762i \(0.701756\pi\)
\(620\) 42.5064i 0.0685587i
\(621\) 229.074 539.348i 0.368879 0.868516i
\(622\) −119.929 −0.192813
\(623\) −34.9072 + 242.785i −0.0560308 + 0.389703i
\(624\) 53.5788 + 117.321i 0.0858634 + 0.188015i
\(625\) −580.608 170.482i −0.928973 0.272771i
\(626\) 328.057 284.263i 0.524053 0.454095i
\(627\) −149.294 + 43.8365i −0.238108 + 0.0699147i
\(628\) 86.4084 134.454i 0.137593 0.214099i
\(629\) −530.337 + 1161.28i −0.843142 + 1.84622i
\(630\) 1.69738 1.95888i 0.00269426 0.00310934i
\(631\) 610.443 + 949.867i 0.967421 + 1.50534i 0.859474 + 0.511180i \(0.170791\pi\)
0.107948 + 0.994157i \(0.465572\pi\)
\(632\) 201.083 28.9114i 0.318170 0.0457459i
\(633\) −94.5039 657.289i −0.149295 1.03837i
\(634\) −417.312 + 268.190i −0.658222 + 0.423013i
\(635\) 2.83333 + 2.45509i 0.00446193 + 0.00386629i
\(636\) −227.011 103.672i −0.356935 0.163007i
\(637\) 289.351 + 185.954i 0.454240 + 0.291922i
\(638\) −132.587 451.551i −0.207817 0.707761i
\(639\) −29.6514 34.2195i −0.0464028 0.0535517i
\(640\) 1.64398 5.59889i 0.00256872 0.00874827i
\(641\) −751.953 + 343.405i −1.17309 + 0.535734i −0.904064 0.427398i \(-0.859430\pi\)
−0.269030 + 0.963132i \(0.586703\pi\)
\(642\) 853.507 + 122.716i 1.32945 + 0.191146i
\(643\) 1029.49i 1.60107i 0.599285 + 0.800536i \(0.295452\pi\)
−0.599285 + 0.800536i \(0.704548\pi\)
\(644\) −101.719 149.334i −0.157948 0.231885i
\(645\) 60.7283 0.0941524
\(646\) −33.8482 + 235.419i −0.0523965 + 0.364426i
\(647\) 95.4370 + 208.978i 0.147507 + 0.322995i 0.968934 0.247318i \(-0.0795492\pi\)
−0.821427 + 0.570313i \(0.806822\pi\)
\(648\) 239.698 + 70.3816i 0.369904 + 0.108614i
\(649\) 151.981 131.692i 0.234177 0.202915i
\(650\) −343.860 + 100.966i −0.529015 + 0.155333i
\(651\) 275.400 428.530i 0.423041 0.658265i
\(652\) 178.802 391.522i 0.274236 0.600493i
\(653\) 447.092 515.972i 0.684675 0.790157i −0.301922 0.953332i \(-0.597628\pi\)
0.986597 + 0.163176i \(0.0521738\pi\)
\(654\) 202.516 + 315.121i 0.309658 + 0.481837i
\(655\) −27.2911 + 3.92387i −0.0416658 + 0.00599063i
\(656\) −19.4238 135.095i −0.0296094 0.205938i
\(657\) −75.2693 + 48.3727i −0.114565 + 0.0736266i
\(658\) 95.0430 + 82.3552i 0.144442 + 0.125160i
\(659\) 94.0164 + 42.9358i 0.142665 + 0.0651530i 0.485468 0.874254i \(-0.338649\pi\)
−0.342803 + 0.939407i \(0.611376\pi\)
\(660\) −20.4819 13.1629i −0.0310331 0.0199438i
\(661\) −51.3946 175.034i −0.0777528 0.264802i 0.911438 0.411438i \(-0.134973\pi\)
−0.989190 + 0.146636i \(0.953155\pi\)
\(662\) 120.595 + 139.174i 0.182168 + 0.210233i
\(663\) 231.748 789.261i 0.349544 1.19044i
\(664\) 304.382 139.007i 0.458407 0.209347i
\(665\) −13.2197 1.90070i −0.0198792 0.00285820i
\(666\) 64.0252i 0.0961339i
\(667\) 172.222 + 1005.93i 0.258204 + 1.50814i
\(668\) −496.528 −0.743306
\(669\) −132.931 + 924.557i −0.198701 + 1.38200i
\(670\) −20.2378 44.3146i −0.0302057 0.0661412i
\(671\) −212.075 62.2708i −0.316058 0.0928030i
\(672\) 52.8493 45.7942i 0.0786448 0.0681461i
\(673\) −887.535 + 260.604i −1.31877 + 0.387227i −0.864050 0.503405i \(-0.832080\pi\)
−0.454724 + 0.890632i \(0.650262\pi\)
\(674\) −144.945 + 225.538i −0.215051 + 0.334626i
\(675\) −261.776 + 573.210i −0.387817 + 0.849201i
\(676\) 83.8628 96.7828i 0.124057 0.143170i
\(677\) −179.583 279.437i −0.265263 0.412757i 0.682915 0.730498i \(-0.260712\pi\)
−0.948178 + 0.317741i \(0.897076\pi\)
\(678\) −647.479 + 93.0934i −0.954984 + 0.137306i
\(679\) 38.3422 + 266.676i 0.0564687 + 0.392748i
\(680\) −31.3080 + 20.1204i −0.0460412 + 0.0295889i
\(681\) 324.581 + 281.251i 0.476623 + 0.412997i
\(682\) −397.545 181.553i −0.582910 0.266206i
\(683\) −309.873 199.143i −0.453694 0.291571i 0.293767 0.955877i \(-0.405091\pi\)
−0.747461 + 0.664306i \(0.768727\pi\)
\(684\) 3.36050 + 11.4448i 0.00491301 + 0.0167322i
\(685\) 77.1994 + 89.0928i 0.112700 + 0.130063i
\(686\) 129.225 440.100i 0.188375 0.641545i
\(687\) 103.859 47.4310i 0.151178 0.0690407i
\(688\) 148.126 + 21.2973i 0.215300 + 0.0309554i
\(689\) 406.220i 0.589579i
\(690\) 40.8131 + 33.4953i 0.0591494 + 0.0485439i
\(691\) 617.419 0.893515 0.446758 0.894655i \(-0.352579\pi\)
0.446758 + 0.894655i \(0.352579\pi\)
\(692\) −55.3809 + 385.183i −0.0800302 + 0.556622i
\(693\) −11.0708 24.2417i −0.0159752 0.0349808i
\(694\) 726.119 + 213.208i 1.04628 + 0.307216i
\(695\) −32.9421 + 28.5445i −0.0473987 + 0.0410712i
\(696\) −378.984 + 111.280i −0.544517 + 0.159885i
\(697\) −470.609 + 732.283i −0.675193 + 1.05062i
\(698\) −201.996 + 442.309i −0.289392 + 0.633681i
\(699\) 242.237 279.556i 0.346547 0.399937i
\(700\) 105.051 + 163.462i 0.150072 + 0.233517i
\(701\) 758.057 108.992i 1.08139 0.155481i 0.421491 0.906833i \(-0.361507\pi\)
0.659902 + 0.751352i \(0.270598\pi\)
\(702\) 52.5352 + 365.390i 0.0748364 + 0.520499i
\(703\) 277.530 178.358i 0.394780 0.253710i
\(704\) −45.3424 39.2894i −0.0644069 0.0558089i
\(705\) −33.4274 15.2658i −0.0474147 0.0216536i
\(706\) −43.4585 27.9291i −0.0615559 0.0395596i
\(707\) 47.1793 + 160.678i 0.0667317 + 0.227267i
\(708\) −110.528 127.556i −0.156113 0.180164i
\(709\) 36.4867 124.262i 0.0514623 0.175264i −0.929752 0.368187i \(-0.879979\pi\)
0.981214 + 0.192923i \(0.0617967\pi\)
\(710\) −33.2076 + 15.1654i −0.0467713 + 0.0213598i
\(711\) −64.3169 9.24737i −0.0904598 0.0130062i
\(712\) 176.622i 0.248064i
\(713\) 810.729 + 490.876i 1.13707 + 0.688466i
\(714\) −445.994 −0.624642
\(715\) 5.63992 39.2265i 0.00788800 0.0548623i
\(716\) −109.618 240.030i −0.153098 0.335238i
\(717\) −825.911 242.509i −1.15190 0.338228i
\(718\) 23.6658 20.5065i 0.0329607 0.0285607i
\(719\) −514.681 + 151.124i −0.715830 + 0.210187i −0.619312 0.785145i \(-0.712588\pi\)
−0.0965173 + 0.995331i \(0.530770\pi\)
\(720\) −1.00906 + 1.57013i −0.00140148 + 0.00218074i
\(721\) 301.790 660.828i 0.418572 0.916544i
\(722\) −294.078 + 339.385i −0.407311 + 0.470062i
\(723\) 641.418 + 998.066i 0.887162 + 1.38045i
\(724\) −710.029 + 102.087i −0.980703 + 0.141004i
\(725\) −156.192 1086.34i −0.215437 1.49840i
\(726\) 242.462 155.821i 0.333970 0.214630i
\(727\) 310.509 + 269.058i 0.427110 + 0.370093i 0.841727 0.539903i \(-0.181539\pi\)
−0.414617 + 0.909996i \(0.636085\pi\)
\(728\) 103.540 + 47.2850i 0.142225 + 0.0649520i
\(729\) 539.857 + 346.945i 0.740545 + 0.475919i
\(730\) 20.3238 + 69.2164i 0.0278408 + 0.0948170i
\(731\) −625.018 721.309i −0.855017 0.986742i
\(732\) −52.2634 + 177.993i −0.0713981 + 0.243160i
\(733\) 631.668 288.473i 0.861757 0.393551i 0.0650249 0.997884i \(-0.479287\pi\)
0.796732 + 0.604332i \(0.206560\pi\)
\(734\) −443.443 63.7574i −0.604145 0.0868630i
\(735\) 54.4932i 0.0741405i
\(736\) 87.8031 + 96.0136i 0.119298 + 0.130453i
\(737\) −500.896 −0.679642
\(738\) −6.21274 + 43.2106i −0.00841835 + 0.0585509i
\(739\) −22.6077 49.5039i −0.0305922 0.0669877i 0.893719 0.448627i \(-0.148087\pi\)
−0.924311 + 0.381639i \(0.875360\pi\)
\(740\) 49.5300 + 14.5433i 0.0669325 + 0.0196532i
\(741\) −160.646 + 139.201i −0.216797 + 0.187855i
\(742\) −211.326 + 62.0510i −0.284806 + 0.0836267i
\(743\) 201.898 314.160i 0.271734 0.422826i −0.678389 0.734703i \(-0.737321\pi\)
0.950122 + 0.311877i \(0.100958\pi\)
\(744\) −152.376 + 333.656i −0.204806 + 0.448463i
\(745\) −24.7018 + 28.5074i −0.0331568 + 0.0382650i
\(746\) −318.850 496.140i −0.427412 0.665066i
\(747\) −105.940 + 15.2319i −0.141820 + 0.0203907i
\(748\) 54.4559 + 378.749i 0.0728020 + 0.506349i
\(749\) 640.188 411.424i 0.854724 0.549298i
\(750\) −86.2823 74.7641i −0.115043 0.0996854i
\(751\) 642.096 + 293.236i 0.854988 + 0.390460i 0.794175 0.607689i \(-0.207903\pi\)
0.0608134 + 0.998149i \(0.480631\pi\)
\(752\) −76.1812 48.9587i −0.101305 0.0651047i
\(753\) 63.8038 + 217.296i 0.0847328 + 0.288573i
\(754\) −421.025 485.889i −0.558389 0.644415i
\(755\) 3.63955 12.3952i 0.00482059 0.0164174i
\(756\) 182.061 83.1443i 0.240821 0.109979i
\(757\) −1012.87 145.629i −1.33800 0.192376i −0.564115 0.825696i \(-0.690782\pi\)
−0.773890 + 0.633320i \(0.781692\pi\)
\(758\) 945.465i 1.24732i
\(759\) 487.588 238.644i 0.642408 0.314419i
\(760\) 9.61707 0.0126540
\(761\) 50.1193 348.587i 0.0658598 0.458065i −0.930029 0.367485i \(-0.880219\pi\)
0.995889 0.0905797i \(-0.0288720\pi\)
\(762\) −13.4394 29.4282i −0.0176370 0.0386197i
\(763\) 317.193 + 93.1362i 0.415718 + 0.122066i
\(764\) 312.667 270.928i 0.409250 0.354617i
\(765\) 11.4214 3.35363i 0.0149299 0.00438383i
\(766\) 332.079 516.724i 0.433523 0.674575i
\(767\) 114.126 249.902i 0.148796 0.325817i
\(768\) −32.9753 + 38.0556i −0.0429366 + 0.0495515i
\(769\) 457.255 + 711.502i 0.594609 + 0.925230i 0.999939 + 0.0110597i \(0.00352049\pi\)
−0.405329 + 0.914171i \(0.632843\pi\)
\(770\) −21.2682 + 3.05790i −0.0276210 + 0.00397130i
\(771\) −102.052 709.788i −0.132363 0.920607i
\(772\) −342.785 + 220.294i −0.444022 + 0.285355i
\(773\) −185.211 160.486i −0.239600 0.207615i 0.526781 0.850001i \(-0.323399\pi\)
−0.766381 + 0.642386i \(0.777944\pi\)
\(774\) −43.5402 19.8841i −0.0562535 0.0256901i
\(775\) −857.412 551.025i −1.10634 0.711000i
\(776\) −54.6567 186.144i −0.0704339 0.239876i
\(777\) 405.113 + 467.526i 0.521381 + 0.601706i
\(778\) −56.5763 + 192.681i −0.0727202 + 0.247662i
\(779\) 204.612 93.4433i 0.262660 0.119953i
\(780\) −32.9225 4.73354i −0.0422084 0.00606865i
\(781\) 375.352i 0.480604i
\(782\) −22.2051 829.498i −0.0283953 1.06074i
\(783\) −1130.49 −1.44380
\(784\) −19.1107 + 132.918i −0.0243759 + 0.169538i
\(785\) 17.1220 + 37.4920i 0.0218115 + 0.0477605i
\(786\) 228.289 + 67.0318i 0.290444 + 0.0852821i
\(787\) 967.124 838.018i 1.22887 1.06483i 0.233151 0.972441i \(-0.425096\pi\)
0.995723 0.0923851i \(-0.0294491\pi\)
\(788\) 459.796 135.008i 0.583498 0.171330i
\(789\) 590.160 918.307i 0.747985 1.16389i
\(790\) −21.7634 + 47.6552i −0.0275486 + 0.0603230i
\(791\) −378.049 + 436.292i −0.477939 + 0.551571i
\(792\) 10.3749 + 16.1437i 0.0130997 + 0.0203835i
\(793\) −298.881 + 42.9726i −0.376899 + 0.0541899i
\(794\) 110.336 + 767.401i 0.138962 + 0.966500i
\(795\) 54.1419 34.7949i 0.0681030 0.0437671i
\(796\) 99.3011 + 86.0449i 0.124750 + 0.108097i
\(797\) −1400.74 639.697i −1.75752 0.802631i −0.986068 0.166341i \(-0.946805\pi\)
−0.771449 0.636291i \(-0.780468\pi\)
\(798\) 96.9550 + 62.3092i 0.121498 + 0.0780817i
\(799\) 162.714 + 554.154i 0.203648 + 0.693560i
\(800\) −91.6258 105.742i −0.114532 0.132177i
\(801\) −15.9159 + 54.2045i −0.0198700 + 0.0676710i
\(802\) 326.658 149.180i 0.407305 0.186010i
\(803\) 734.159 + 105.556i 0.914271 + 0.131452i
\(804\) 420.398i 0.522883i
\(805\) 46.5794 1.24690i 0.0578626 0.00154894i
\(806\) −597.055 −0.740763
\(807\) 118.276 822.626i 0.146562 1.01936i
\(808\) −50.0928 109.688i −0.0619961 0.135752i
\(809\) 641.985 + 188.504i 0.793554 + 0.233009i 0.653292 0.757106i \(-0.273387\pi\)
0.140262 + 0.990114i \(0.455206\pi\)
\(810\) −48.6884 + 42.1887i −0.0601091 + 0.0520849i
\(811\) 542.031 159.155i 0.668348 0.196245i 0.0700810 0.997541i \(-0.477674\pi\)
0.598267 + 0.801296i \(0.295856\pi\)
\(812\) −188.460 + 293.249i −0.232093 + 0.361144i
\(813\) −419.328 + 918.200i −0.515779 + 1.12940i
\(814\) 347.570 401.117i 0.426990 0.492773i
\(815\) 60.0101 + 93.3775i 0.0736320 + 0.114574i
\(816\) 317.881 45.7044i 0.389560 0.0560103i
\(817\) 35.1000 + 244.126i 0.0429621 + 0.298808i
\(818\) 710.992 456.927i 0.869183 0.558590i
\(819\) −27.5150 23.8418i −0.0335958 0.0291109i
\(820\) 32.0166 + 14.6215i 0.0390446 + 0.0178311i
\(821\) −115.466 74.2057i −0.140641 0.0903845i 0.468428 0.883502i \(-0.344820\pi\)
−0.609069 + 0.793117i \(0.708457\pi\)
\(822\) −286.604 976.082i −0.348666 1.18745i
\(823\) −919.134 1060.74i −1.11681 1.28887i −0.953200 0.302341i \(-0.902232\pi\)
−0.163609 0.986525i \(-0.552314\pi\)
\(824\) −147.380 + 501.931i −0.178859 + 0.609139i
\(825\) −531.027 + 242.512i −0.643669 + 0.293954i
\(826\) −147.439 21.1985i −0.178497 0.0256640i
\(827\) 1386.97i 1.67710i 0.544821 + 0.838552i \(0.316598\pi\)
−0.544821 + 0.838552i \(0.683402\pi\)
\(828\) −18.2944 37.3784i −0.0220947 0.0451430i
\(829\) 265.743 0.320559 0.160279 0.987072i \(-0.448761\pi\)
0.160279 + 0.987072i \(0.448761\pi\)
\(830\) −12.2809 + 85.4153i −0.0147962 + 0.102910i
\(831\) 626.094 + 1370.96i 0.753423 + 1.64977i
\(832\) −78.6434 23.0918i −0.0945233 0.0277546i
\(833\) 647.251 560.846i 0.777012 0.673285i
\(834\) 360.906 105.972i 0.432742 0.127064i
\(835\) 69.2274 107.720i 0.0829071 0.129006i
\(836\) 41.0763 89.9445i 0.0491343 0.107589i
\(837\) −687.499 + 793.416i −0.821384 + 0.947928i
\(838\) 162.896 + 253.470i 0.194386 + 0.302471i
\(839\) −234.494 + 33.7151i −0.279492 + 0.0401849i −0.280635 0.959814i \(-0.590545\pi\)
0.00114335 + 0.999999i \(0.499636\pi\)
\(840\) 2.56647 + 17.8502i 0.00305533 + 0.0212503i
\(841\) 948.863 609.797i 1.12826 0.725086i
\(842\) 462.042 + 400.362i 0.548743 + 0.475489i
\(843\) −712.420 325.351i −0.845100 0.385944i
\(844\) 355.007 + 228.149i 0.420624 + 0.270319i
\(845\) 9.30428 + 31.6875i 0.0110110 + 0.0375000i
\(846\) 18.9679 + 21.8901i 0.0224207 + 0.0258749i
\(847\) 71.6614 244.056i 0.0846061 0.288142i
\(848\) 144.263 65.8829i 0.170122 0.0776921i
\(849\) 366.506 + 52.6956i 0.431691 + 0.0620678i
\(850\) 892.354i 1.04983i
\(851\) −849.374 + 776.741i −0.998090 + 0.912740i
\(852\) 315.030 0.369754
\(853\) −162.294 + 1128.78i −0.190263 + 1.32331i 0.641049 + 0.767500i \(0.278500\pi\)
−0.831312 + 0.555807i \(0.812409\pi\)
\(854\) 68.0102 + 148.922i 0.0796372 + 0.174381i
\(855\) −2.95144 0.866621i −0.00345198 0.00101359i
\(856\) −414.131 + 358.847i −0.483798 + 0.419213i
\(857\) −1096.58 + 321.986i −1.27956 + 0.375713i −0.849741 0.527201i \(-0.823241\pi\)
−0.429821 + 0.902914i \(0.641423\pi\)
\(858\) −184.889 + 287.693i −0.215489 + 0.335307i
\(859\) 483.368 1058.43i 0.562710 1.23216i −0.387879 0.921710i \(-0.626792\pi\)
0.950589 0.310453i \(-0.100481\pi\)
\(860\) −25.2726 + 29.1661i −0.0293867 + 0.0339141i
\(861\) 228.044 + 354.844i 0.264860 + 0.412130i
\(862\) −717.584 + 103.173i −0.832464 + 0.119690i
\(863\) −6.72587 46.7795i −0.00779359 0.0542056i 0.985554 0.169364i \(-0.0541714\pi\)
−0.993347 + 0.115159i \(0.963262\pi\)
\(864\) −121.243 + 77.9181i −0.140327 + 0.0901829i
\(865\) −75.8426 65.7180i −0.0876793 0.0759746i
\(866\) −246.179 112.426i −0.284271 0.129822i
\(867\) −957.923 615.620i −1.10487 0.710057i
\(868\) 91.2014 + 310.604i 0.105071 + 0.357838i
\(869\) 352.744 + 407.088i 0.405919 + 0.468456i
\(870\) 28.6973 97.7341i 0.0329854 0.112338i
\(871\) −622.454 + 284.265i −0.714643 + 0.326366i
\(872\) −235.623 33.8774i −0.270210 0.0388503i
\(873\) 62.0520i 0.0710790i
\(874\) −111.061 + 183.427i −0.127072 + 0.209871i
\(875\) −100.757 −0.115151
\(876\) 88.5925 616.175i 0.101133 0.703396i
\(877\) −100.725 220.556i −0.114851 0.251490i 0.843473 0.537172i \(-0.180507\pi\)
−0.958325 + 0.285682i \(0.907780\pi\)
\(878\) 1011.51 + 297.006i 1.15206 + 0.338276i
\(879\) 107.375 93.0405i 0.122155 0.105848i
\(880\) 14.8455 4.35902i 0.0168699 0.00495344i
\(881\) −641.093 + 997.559i −0.727687 + 1.13230i 0.258394 + 0.966040i \(0.416807\pi\)
−0.986081 + 0.166264i \(0.946830\pi\)
\(882\) 17.8426 39.0699i 0.0202297 0.0442969i
\(883\) −33.1093 + 38.2102i −0.0374964 + 0.0432732i −0.774188 0.632956i \(-0.781842\pi\)
0.736692 + 0.676229i \(0.236387\pi\)
\(884\) 282.616 + 439.760i 0.319702 + 0.497466i
\(885\) 43.0830 6.19440i 0.0486813 0.00699932i
\(886\) 87.0850 + 605.690i 0.0982901 + 0.683623i
\(887\) −852.441 + 547.831i −0.961038 + 0.617622i −0.924285 0.381703i \(-0.875338\pi\)
−0.0367531 + 0.999324i \(0.511701\pi\)
\(888\) −336.655 291.713i −0.379116 0.328505i
\(889\) −25.9714 11.8607i −0.0292142 0.0133417i
\(890\) 38.3174 + 24.6251i 0.0430533 + 0.0276687i
\(891\) 186.617 + 635.559i 0.209447 + 0.713309i
\(892\) −388.719 448.606i −0.435784 0.502921i
\(893\) 42.0475 143.201i 0.0470857 0.160359i
\(894\) 296.091 135.220i 0.331198 0.151253i
\(895\) 67.3570 + 9.68448i 0.0752592 + 0.0108206i
\(896\) 44.4397i 0.0495979i
\(897\) 470.483 573.271i 0.524507 0.639098i
\(898\) −47.0301 −0.0523721
\(899\) 260.215 1809.84i 0.289449 2.01316i
\(900\) 18.5909 + 40.7084i 0.0206566 + 0.0452316i
\(901\) −970.511 284.968i −1.07715 0.316279i
\(902\) 273.498 236.987i 0.303212 0.262735i
\(903\) −443.755 + 130.298i −0.491423 + 0.144295i
\(904\) 224.744 349.708i 0.248610 0.386845i
\(905\) 76.8470 168.271i 0.0849138 0.185935i
\(906\) −73.0027 + 84.2496i −0.0805769 + 0.0929907i
\(907\) −667.307 1038.35i −0.735730 1.14482i −0.984351 0.176217i \(-0.943614\pi\)
0.248621 0.968601i \(-0.420023\pi\)
\(908\) −270.154 + 38.8423i −0.297526 + 0.0427778i
\(909\) 5.48899 + 38.1768i 0.00603850 + 0.0419987i
\(910\) −24.6941 + 15.8700i −0.0271364 + 0.0174395i
\(911\) 438.589 + 380.039i 0.481436 + 0.417167i 0.861472 0.507805i \(-0.169543\pi\)
−0.380036 + 0.924972i \(0.624088\pi\)
\(912\) −75.4898 34.4750i −0.0827739 0.0378016i
\(913\) 746.401 + 479.683i 0.817525 + 0.525392i
\(914\) 115.301 + 392.678i 0.126150 + 0.429626i
\(915\) −31.3282 36.1547i −0.0342385 0.0395133i
\(916\) −20.4422 + 69.6196i −0.0223168 + 0.0760039i
\(917\) 191.003 87.2281i 0.208291 0.0951234i
\(918\) 909.817 + 130.812i 0.991086 + 0.142497i
\(919\) 28.6129i 0.0311348i 0.999879 + 0.0155674i \(0.00495545\pi\)
−0.999879 + 0.0155674i \(0.995045\pi\)
\(920\) −33.0716 + 5.66207i −0.0359474 + 0.00615443i
\(921\) 1450.03 1.57441
\(922\) −4.06522 + 28.2743i −0.00440914 + 0.0306662i
\(923\) 213.017 + 466.443i 0.230788 + 0.505355i
\(924\) 177.908 + 52.2384i 0.192541 + 0.0565351i
\(925\) 935.435 810.559i 1.01128 0.876280i
\(926\) 54.4318 15.9826i 0.0587816 0.0172598i
\(927\) 90.4607 140.760i 0.0975844 0.151844i
\(928\) 104.273 228.325i 0.112363 0.246040i
\(929\) −273.617 + 315.770i −0.294528 + 0.339903i −0.883656 0.468136i \(-0.844926\pi\)
0.589128 + 0.808039i \(0.299471\pi\)
\(930\) −51.1409 79.5767i −0.0549902 0.0855664i
\(931\) −219.061 + 31.4963i −0.235297 + 0.0338306i
\(932\) 33.4542 + 232.679i 0.0358951 + 0.249656i
\(933\) −224.522 + 144.291i −0.240645 + 0.154653i
\(934\) −129.100 111.866i −0.138222 0.119770i
\(935\) −89.7606 40.9923i −0.0960007 0.0438420i
\(936\) 22.0545 + 14.1736i 0.0235625 + 0.0151427i
\(937\) 147.708 + 503.049i 0.157640 + 0.536872i 0.999998 0.00204649i \(-0.000651418\pi\)
−0.842358 + 0.538918i \(0.818833\pi\)
\(938\) 242.963 + 280.395i 0.259023 + 0.298928i
\(939\) 272.154 926.870i 0.289834 0.987082i
\(940\) 21.2428 9.70127i 0.0225988 0.0103205i
\(941\) 14.3478 + 2.06290i 0.0152474 + 0.00219224i 0.149934 0.988696i \(-0.452094\pi\)
−0.134687 + 0.990888i \(0.543003\pi\)
\(942\) 355.674i 0.377573i
\(943\) −648.614 + 441.803i −0.687820 + 0.468508i
\(944\) 107.259 0.113622
\(945\) −7.34558 + 51.0896i −0.00777310 + 0.0540631i
\(946\) 164.835 + 360.938i 0.174244 + 0.381542i
\(947\) 295.396 + 86.7360i 0.311928 + 0.0915903i 0.433950 0.900937i \(-0.357120\pi\)
−0.122022 + 0.992527i \(0.538938\pi\)
\(948\) 341.666 296.055i 0.360407 0.312295i
\(949\) 972.230 285.473i 1.02448 0.300814i
\(950\) 124.669 193.989i 0.131231 0.204199i
\(951\) −458.587 + 1004.17i −0.482216 + 1.05591i
\(952\) 185.604 214.199i 0.194962 0.224999i
\(953\) 379.938 + 591.196i 0.398676 + 0.620352i 0.981322 0.192374i \(-0.0616188\pi\)
−0.582646 + 0.812726i \(0.697982\pi\)
\(954\) −50.2108 + 7.21922i −0.0526318 + 0.00756731i
\(955\) 15.1838 + 105.606i 0.0158992 + 0.110582i
\(956\) 460.180 295.740i 0.481360 0.309351i
\(957\) −791.496 685.835i −0.827059 0.716651i
\(958\) −186.584 85.2099i −0.194764 0.0889456i
\(959\) −755.270 485.383i −0.787560 0.506134i
\(960\) −3.65850 12.4597i −0.00381093 0.0129789i
\(961\) −482.631 556.986i −0.502217 0.579590i
\(962\) 204.279 695.711i 0.212348 0.723192i
\(963\) 159.432 72.8101i 0.165557 0.0756076i
\(964\) −746.275 107.298i −0.774144 0.111305i
\(965\) 105.080i 0.108891i
\(966\) −370.098 157.189i −0.383124 0.162722i
\(967\) 407.406 0.421310 0.210655 0.977561i \(-0.432440\pi\)
0.210655 + 0.977561i \(0.432440\pi\)
\(968\) −26.0662 + 181.294i −0.0269279 + 0.187287i
\(969\) 219.873 + 481.455i 0.226907 + 0.496858i
\(970\) 48.0036 + 14.0951i 0.0494882 + 0.0145311i
\(971\) −877.446 + 760.311i −0.903652 + 0.783019i −0.976767 0.214305i \(-0.931251\pi\)
0.0731152 + 0.997324i \(0.476706\pi\)
\(972\) 93.4036 27.4258i 0.0960942 0.0282158i
\(973\) 179.470 279.261i 0.184450 0.287010i
\(974\) 87.2246 190.995i 0.0895530 0.196094i
\(975\) −522.268 + 602.730i −0.535660 + 0.618184i
\(976\) −63.7352 99.1739i −0.0653025 0.101613i
\(977\) 1543.96 221.988i 1.58031 0.227214i 0.704438 0.709765i \(-0.251199\pi\)
0.875868 + 0.482552i \(0.160290\pi\)
\(978\) −136.316 948.096i −0.139382 0.969423i
\(979\) 393.969 253.189i 0.402420 0.258620i
\(980\) −26.1716 22.6778i −0.0267057 0.0231406i
\(981\) 69.2589 + 31.6295i 0.0706003 + 0.0322421i
\(982\) −125.109 80.4026i −0.127402 0.0818764i
\(983\) −231.859 789.638i −0.235868 0.803294i −0.989316 0.145786i \(-0.953429\pi\)
0.753448 0.657508i \(-0.228389\pi\)
\(984\) −198.901 229.545i −0.202136 0.233277i
\(985\) −34.8166 + 118.574i −0.0353468 + 0.120380i
\(986\) −1456.20 + 665.026i −1.47688 + 0.674469i
\(987\) 277.016 + 39.8288i 0.280664 + 0.0403534i
\(988\) 135.084i 0.136724i
\(989\) −264.433 818.846i −0.267375 0.827954i
\(990\) −4.94882 −0.00499881
\(991\) 180.575 1255.92i 0.182215 1.26733i −0.669297 0.742995i \(-0.733405\pi\)
0.851512 0.524336i \(-0.175686\pi\)
\(992\) −96.8335 212.036i −0.0976144 0.213746i
\(993\) 393.213 + 115.458i 0.395985 + 0.116272i
\(994\) 210.117 182.067i 0.211385 0.183166i
\(995\) −32.5120 + 9.54638i −0.0326753 + 0.00959435i
\(996\) 402.594 626.448i 0.404211 0.628964i
\(997\) 214.364 469.393i 0.215009 0.470805i −0.771140 0.636666i \(-0.780313\pi\)
0.986149 + 0.165861i \(0.0530403\pi\)
\(998\) −337.726 + 389.757i −0.338403 + 0.390538i
\(999\) −689.294 1072.56i −0.689984 1.07364i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 46.3.d.a.15.2 40
3.2 odd 2 414.3.l.a.199.4 40
4.3 odd 2 368.3.p.b.337.1 40
23.7 odd 22 1058.3.b.e.1057.33 40
23.16 even 11 1058.3.b.e.1057.28 40
23.20 odd 22 inner 46.3.d.a.43.2 yes 40
69.20 even 22 414.3.l.a.181.4 40
92.43 even 22 368.3.p.b.273.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.3.d.a.15.2 40 1.1 even 1 trivial
46.3.d.a.43.2 yes 40 23.20 odd 22 inner
368.3.p.b.273.1 40 92.43 even 22
368.3.p.b.337.1 40 4.3 odd 2
414.3.l.a.181.4 40 69.20 even 22
414.3.l.a.199.4 40 3.2 odd 2
1058.3.b.e.1057.28 40 23.16 even 11
1058.3.b.e.1057.33 40 23.7 odd 22