Defining parameters
Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 460.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 92 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(460, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 48 | 28 |
Cusp forms | 68 | 48 | 20 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(460, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
460.2.e.a | $16$ | $3.673$ | 16.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+\beta _{8}q^{3}+(-\beta _{2}+\beta _{8})q^{4}+\cdots\) |
460.2.e.b | $32$ | $3.673$ | None | \(4\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(460, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(460, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 2}\)