Properties

Label 4600.2.e.a
Level 46004600
Weight 22
Character orbit 4600.e
Analytic conductor 36.73136.731
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4600,2,Mod(4049,4600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4600.4049"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4600=235223 4600 = 2^{3} \cdot 5^{2} \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4600.e (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 36.731184929836.7311849298
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq3+2iq76q95iq13+6iq176q196q21+iq239iq279q29+3q31+8iq37+15q39+3q418iq437iq47+3q49+6iq97+O(q100) q + 3 i q^{3} + 2 i q^{7} - 6 q^{9} - 5 i q^{13} + 6 i q^{17} - 6 q^{19} - 6 q^{21} + i q^{23} - 9 i q^{27} - 9 q^{29} + 3 q^{31} + 8 i q^{37} + 15 q^{39} + 3 q^{41} - 8 i q^{43} - 7 i q^{47} + 3 q^{49} + \cdots - 6 i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q12q912q1912q2118q29+6q31+30q39+6q41+6q4936q518q5920q616q69+14q71+12q79+18q8132q89+20q91+O(q100) 2 q - 12 q^{9} - 12 q^{19} - 12 q^{21} - 18 q^{29} + 6 q^{31} + 30 q^{39} + 6 q^{41} + 6 q^{49} - 36 q^{51} - 8 q^{59} - 20 q^{61} - 6 q^{69} + 14 q^{71} + 12 q^{79} + 18 q^{81} - 32 q^{89} + 20 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4600Z)×\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times.

nn 11511151 12011201 23012301 25772577
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
4049.1
1.00000i
1.00000i
0 3.00000i 0 0 0 2.00000i 0 −6.00000 0
4049.2 0 3.00000i 0 0 0 2.00000i 0 −6.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4600.2.e.a 2
5.b even 2 1 inner 4600.2.e.a 2
5.c odd 4 1 184.2.a.d 1
5.c odd 4 1 4600.2.a.a 1
15.e even 4 1 1656.2.a.c 1
20.e even 4 1 368.2.a.a 1
20.e even 4 1 9200.2.a.bj 1
35.f even 4 1 9016.2.a.b 1
40.i odd 4 1 1472.2.a.a 1
40.k even 4 1 1472.2.a.m 1
60.l odd 4 1 3312.2.a.i 1
115.e even 4 1 4232.2.a.j 1
460.k odd 4 1 8464.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.2.a.d 1 5.c odd 4 1
368.2.a.a 1 20.e even 4 1
1472.2.a.a 1 40.i odd 4 1
1472.2.a.m 1 40.k even 4 1
1656.2.a.c 1 15.e even 4 1
3312.2.a.i 1 60.l odd 4 1
4232.2.a.j 1 115.e even 4 1
4600.2.a.a 1 5.c odd 4 1
4600.2.e.a 2 1.a even 1 1 trivial
4600.2.e.a 2 5.b even 2 1 inner
8464.2.a.b 1 460.k odd 4 1
9016.2.a.b 1 35.f even 4 1
9200.2.a.bj 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4600,[χ])S_{2}^{\mathrm{new}}(4600, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T132+25 T_{13}^{2} + 25 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+25 T^{2} + 25 Copy content Toggle raw display
1717 T2+36 T^{2} + 36 Copy content Toggle raw display
1919 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
2323 T2+1 T^{2} + 1 Copy content Toggle raw display
2929 (T+9)2 (T + 9)^{2} Copy content Toggle raw display
3131 (T3)2 (T - 3)^{2} Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 (T3)2 (T - 3)^{2} Copy content Toggle raw display
4343 T2+64 T^{2} + 64 Copy content Toggle raw display
4747 T2+49 T^{2} + 49 Copy content Toggle raw display
5353 T2+4 T^{2} + 4 Copy content Toggle raw display
5959 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
6161 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
6767 T2+64 T^{2} + 64 Copy content Toggle raw display
7171 (T7)2 (T - 7)^{2} Copy content Toggle raw display
7373 T2+81 T^{2} + 81 Copy content Toggle raw display
7979 (T6)2 (T - 6)^{2} Copy content Toggle raw display
8383 T2+196 T^{2} + 196 Copy content Toggle raw display
8989 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
9797 T2+36 T^{2} + 36 Copy content Toggle raw display
show more
show less