Properties

Label 4600.2.e.a
Level $4600$
Weight $2$
Character orbit 4600.e
Analytic conductor $36.731$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4600,2,Mod(4049,4600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4600.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7311849298\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 i q^{3} + 2 i q^{7} - 6 q^{9} - 5 i q^{13} + 6 i q^{17} - 6 q^{19} - 6 q^{21} + i q^{23} - 9 i q^{27} - 9 q^{29} + 3 q^{31} + 8 i q^{37} + 15 q^{39} + 3 q^{41} - 8 i q^{43} - 7 i q^{47} + 3 q^{49} + \cdots - 6 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{9} - 12 q^{19} - 12 q^{21} - 18 q^{29} + 6 q^{31} + 30 q^{39} + 6 q^{41} + 6 q^{49} - 36 q^{51} - 8 q^{59} - 20 q^{61} - 6 q^{69} + 14 q^{71} + 12 q^{79} + 18 q^{81} - 32 q^{89} + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).

\(n\) \(1151\) \(1201\) \(2301\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4049.1
1.00000i
1.00000i
0 3.00000i 0 0 0 2.00000i 0 −6.00000 0
4049.2 0 3.00000i 0 0 0 2.00000i 0 −6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4600.2.e.a 2
5.b even 2 1 inner 4600.2.e.a 2
5.c odd 4 1 184.2.a.d 1
5.c odd 4 1 4600.2.a.a 1
15.e even 4 1 1656.2.a.c 1
20.e even 4 1 368.2.a.a 1
20.e even 4 1 9200.2.a.bj 1
35.f even 4 1 9016.2.a.b 1
40.i odd 4 1 1472.2.a.a 1
40.k even 4 1 1472.2.a.m 1
60.l odd 4 1 3312.2.a.i 1
115.e even 4 1 4232.2.a.j 1
460.k odd 4 1 8464.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.2.a.d 1 5.c odd 4 1
368.2.a.a 1 20.e even 4 1
1472.2.a.a 1 40.i odd 4 1
1472.2.a.m 1 40.k even 4 1
1656.2.a.c 1 15.e even 4 1
3312.2.a.i 1 60.l odd 4 1
4232.2.a.j 1 115.e even 4 1
4600.2.a.a 1 5.c odd 4 1
4600.2.e.a 2 1.a even 1 1 trivial
4600.2.e.a 2 5.b even 2 1 inner
8464.2.a.b 1 460.k odd 4 1
9016.2.a.b 1 35.f even 4 1
9200.2.a.bj 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4600, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 25 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T + 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T - 3)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T - 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 49 \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( (T - 7)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 81 \) Copy content Toggle raw display
$79$ \( (T - 6)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 196 \) Copy content Toggle raw display
$89$ \( (T + 16)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less