Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4600,2,Mod(4049,4600)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4600.4049");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4600.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(36.7311849298\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 920) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 4049.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4600.4049 |
Dual form | 4600.2.e.g.4049.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).
\(n\) | \(1151\) | \(1201\) | \(2301\) | \(2577\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000i | 0.577350i | 0.957427 | + | 0.288675i | \(0.0932147\pi\) | ||||
−0.957427 | + | 0.288675i | \(0.906785\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000i | 0.755929i | 0.925820 | + | 0.377964i | \(0.123376\pi\) | ||||
−0.925820 | + | 0.377964i | \(0.876624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 2.00000 | 0.666667 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.00000i | 0.277350i | 0.990338 | + | 0.138675i | \(0.0442844\pi\) | ||||
−0.990338 | + | 0.138675i | \(0.955716\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 4.00000i | 0.970143i | 0.874475 | + | 0.485071i | \(0.161206\pi\) | ||||
−0.874475 | + | 0.485071i | \(0.838794\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | −2.00000 | −0.436436 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 1.00000i | 0.208514i | ||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 5.00000i | 0.962250i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 3.00000 | 0.557086 | 0.278543 | − | 0.960424i | \(-0.410149\pi\) | ||||
0.278543 | + | 0.960424i | \(0.410149\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −1.00000 | −0.179605 | −0.0898027 | − | 0.995960i | \(-0.528624\pi\) | ||||
−0.0898027 | + | 0.995960i | \(0.528624\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 8.00000i | 1.31519i | 0.753371 | + | 0.657596i | \(0.228427\pi\) | ||||
−0.753371 | + | 0.657596i | \(0.771573\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −1.00000 | −0.160128 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −5.00000 | −0.780869 | −0.390434 | − | 0.920631i | \(-0.627675\pi\) | ||||
−0.390434 | + | 0.920631i | \(0.627675\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 6.00000i | − 0.914991i | −0.889212 | − | 0.457496i | \(-0.848747\pi\) | ||||
0.889212 | − | 0.457496i | \(-0.151253\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 9.00000i | − 1.31278i | −0.754420 | − | 0.656392i | \(-0.772082\pi\) | ||||
0.754420 | − | 0.656392i | \(-0.227918\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −4.00000 | −0.560112 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000i | 0.274721i | 0.990521 | + | 0.137361i | \(0.0438619\pi\) | ||||
−0.990521 | + | 0.137361i | \(0.956138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 4.00000i | 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 4.00000i | 0.503953i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 4.00000i | − 0.488678i | −0.969690 | − | 0.244339i | \(-0.921429\pi\) | ||||
0.969690 | − | 0.244339i | \(-0.0785709\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −1.00000 | −0.120386 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 3.00000 | 0.356034 | 0.178017 | − | 0.984027i | \(-0.443032\pi\) | ||||
0.178017 | + | 0.984027i | \(0.443032\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 7.00000i | 0.819288i | 0.912245 | + | 0.409644i | \(0.134347\pi\) | ||||
−0.912245 | + | 0.409644i | \(0.865653\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 8.00000i | 0.878114i | 0.898459 | + | 0.439057i | \(0.144687\pi\) | ||||
−0.898459 | + | 0.439057i | \(0.855313\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 3.00000i | 0.321634i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 14.0000 | 1.48400 | 0.741999 | − | 0.670402i | \(-0.233878\pi\) | ||||
0.741999 | + | 0.670402i | \(0.233878\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −2.00000 | −0.209657 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | − 1.00000i | − 0.103695i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.0000i | 1.42148i | 0.703452 | + | 0.710742i | \(0.251641\pi\) | ||||
−0.703452 | + | 0.710742i | \(0.748359\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 2.00000 | 0.199007 | 0.0995037 | − | 0.995037i | \(-0.468274\pi\) | ||||
0.0995037 | + | 0.995037i | \(0.468274\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000i | 0.788263i | 0.919054 | + | 0.394132i | \(0.128955\pi\) | ||||
−0.919054 | + | 0.394132i | \(0.871045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 4.00000i | − 0.386695i | −0.981130 | − | 0.193347i | \(-0.938066\pi\) | ||||
0.981130 | − | 0.193347i | \(-0.0619344\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −2.00000 | −0.191565 | −0.0957826 | − | 0.995402i | \(-0.530535\pi\) | ||||
−0.0957826 | + | 0.995402i | \(0.530535\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −8.00000 | −0.759326 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 6.00000i | − 0.564433i | −0.959351 | − | 0.282216i | \(-0.908930\pi\) | ||||
0.959351 | − | 0.282216i | \(-0.0910696\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 2.00000i | 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −8.00000 | −0.733359 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | − 5.00000i | − 0.450835i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 7.00000i | − 0.621150i | −0.950549 | − | 0.310575i | \(-0.899478\pi\) | ||||
0.950549 | − | 0.310575i | \(-0.100522\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 6.00000 | 0.528271 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 3.00000 | 0.262111 | 0.131056 | − | 0.991375i | \(-0.458163\pi\) | ||||
0.131056 | + | 0.991375i | \(0.458163\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 8.00000i | 0.693688i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.0000i | 1.02523i | 0.858619 | + | 0.512615i | \(0.171323\pi\) | ||||
−0.858619 | + | 0.512615i | \(0.828677\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −1.00000 | −0.0848189 | −0.0424094 | − | 0.999100i | \(-0.513503\pi\) | ||||
−0.0424094 | + | 0.999100i | \(0.513503\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 9.00000 | 0.757937 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 3.00000i | 0.247436i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −18.0000 | −1.47462 | −0.737309 | − | 0.675556i | \(-0.763904\pi\) | ||||
−0.737309 | + | 0.675556i | \(0.763904\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −13.0000 | −1.05792 | −0.528962 | − | 0.848645i | \(-0.677419\pi\) | ||||
−0.528962 | + | 0.848645i | \(0.677419\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 8.00000i | 0.646762i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 2.00000i | 0.159617i | 0.996810 | + | 0.0798087i | \(0.0254309\pi\) | ||||
−0.996810 | + | 0.0798087i | \(0.974569\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −2.00000 | −0.158610 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −2.00000 | −0.157622 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 11.0000i | 0.861586i | 0.902451 | + | 0.430793i | \(0.141766\pi\) | ||||
−0.902451 | + | 0.430793i | \(0.858234\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 24.0000i | − 1.85718i | −0.371113 | − | 0.928588i | \(-0.621024\pi\) | ||||
0.371113 | − | 0.928588i | \(-0.378976\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 12.0000 | 0.923077 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 8.00000 | 0.611775 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 14.0000i | 1.06440i | 0.846619 | + | 0.532200i | \(0.178635\pi\) | ||||
−0.846619 | + | 0.532200i | \(0.821365\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −9.00000 | −0.672692 | −0.336346 | − | 0.941739i | \(-0.609191\pi\) | ||||
−0.336346 | + | 0.941739i | \(0.609191\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −12.0000 | −0.891953 | −0.445976 | − | 0.895045i | \(-0.647144\pi\) | ||||
−0.445976 | + | 0.895045i | \(0.647144\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −10.0000 | −0.727393 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −10.0000 | −0.723575 | −0.361787 | − | 0.932261i | \(-0.617833\pi\) | ||||
−0.361787 | + | 0.932261i | \(0.617833\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 9.00000i | − 0.647834i | −0.946085 | − | 0.323917i | \(-0.895000\pi\) | ||||
0.946085 | − | 0.323917i | \(-0.105000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 13.0000i | 0.926212i | 0.886303 | + | 0.463106i | \(0.153265\pi\) | ||||
−0.886303 | + | 0.463106i | \(0.846735\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 20.0000 | 1.41776 | 0.708881 | − | 0.705328i | \(-0.249200\pi\) | ||||
0.708881 | + | 0.705328i | \(0.249200\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 4.00000 | 0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 6.00000i | 0.421117i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 2.00000i | 0.139010i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −8.00000 | −0.550743 | −0.275371 | − | 0.961338i | \(-0.588801\pi\) | ||||
−0.275371 | + | 0.961338i | \(0.588801\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 3.00000i | 0.205557i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 2.00000i | − 0.135769i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −7.00000 | −0.473016 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −4.00000 | −0.269069 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.0000i | 1.07144i | 0.844396 | + | 0.535720i | \(0.179960\pi\) | ||||
−0.844396 | + | 0.535720i | \(0.820040\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 10.0000i | − 0.663723i | −0.943328 | − | 0.331862i | \(-0.892323\pi\) | ||||
0.943328 | − | 0.331862i | \(-0.107677\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10.0000 | −0.660819 | −0.330409 | − | 0.943838i | \(-0.607187\pi\) | ||||
−0.330409 | + | 0.943838i | \(0.607187\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 21.0000i | 1.37576i | 0.725826 | + | 0.687878i | \(0.241458\pi\) | ||||
−0.725826 | + | 0.687878i | \(0.758542\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | − 4.00000i | − 0.259828i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 21.0000 | 1.35838 | 0.679189 | − | 0.733964i | \(-0.262332\pi\) | ||||
0.679189 | + | 0.733964i | \(0.262332\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 22.0000 | 1.41714 | 0.708572 | − | 0.705638i | \(-0.249340\pi\) | ||||
0.708572 | + | 0.705638i | \(0.249340\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 16.0000i | 1.02640i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 4.00000i | 0.254514i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −8.00000 | −0.506979 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 3.00000i | 0.187135i | 0.995613 | + | 0.0935674i | \(0.0298271\pi\) | ||||
−0.995613 | + | 0.0935674i | \(0.970173\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −16.0000 | −0.994192 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 16.0000i | 0.986602i | 0.869859 | + | 0.493301i | \(0.164210\pi\) | ||||
−0.869859 | + | 0.493301i | \(0.835790\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 14.0000i | 0.856786i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −25.0000 | −1.52428 | −0.762138 | − | 0.647414i | \(-0.775850\pi\) | ||||
−0.762138 | + | 0.647414i | \(0.775850\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −28.0000 | −1.70088 | −0.850439 | − | 0.526073i | \(-0.823664\pi\) | ||||
−0.850439 | + | 0.526073i | \(0.823664\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | − 2.00000i | − 0.121046i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 3.00000i | − 0.180253i | −0.995930 | − | 0.0901263i | \(-0.971273\pi\) | ||||
0.995930 | − | 0.0901263i | \(-0.0287271\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −2.00000 | −0.119737 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 6.00000 | 0.357930 | 0.178965 | − | 0.983855i | \(-0.442725\pi\) | ||||
0.178965 | + | 0.983855i | \(0.442725\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 10.0000i | − 0.594438i | −0.954809 | − | 0.297219i | \(-0.903941\pi\) | ||||
0.954809 | − | 0.297219i | \(-0.0960592\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 10.0000i | − 0.590281i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 1.00000 | 0.0588235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −14.0000 | −0.820695 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 16.0000i | − 0.934730i | −0.884064 | − | 0.467365i | \(-0.845203\pi\) | ||||
0.884064 | − | 0.467365i | \(-0.154797\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −1.00000 | −0.0578315 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 12.0000 | 0.691669 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 2.00000i | 0.114897i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4.00000i | 0.228292i | 0.993464 | + | 0.114146i | \(0.0364132\pi\) | ||||
−0.993464 | + | 0.114146i | \(0.963587\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −8.00000 | −0.455104 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −9.00000 | −0.510343 | −0.255172 | − | 0.966896i | \(-0.582132\pi\) | ||||
−0.255172 | + | 0.966896i | \(0.582132\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 4.00000i | − 0.226093i | −0.993590 | − | 0.113047i | \(-0.963939\pi\) | ||||
0.993590 | − | 0.113047i | \(-0.0360610\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 26.0000i | − 1.46031i | −0.683284 | − | 0.730153i | \(-0.739449\pi\) | ||||
0.683284 | − | 0.730153i | \(-0.260551\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 4.00000 | 0.223258 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 16.0000i | 0.890264i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 2.00000i | − 0.110600i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 18.0000 | 0.992372 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −19.0000 | −1.04433 | −0.522167 | − | 0.852843i | \(-0.674876\pi\) | ||||
−0.522167 | + | 0.852843i | \(0.674876\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 16.0000i | 0.876795i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 10.0000i | 0.544735i | 0.962193 | + | 0.272367i | \(0.0878066\pi\) | ||||
−0.962193 | + | 0.272367i | \(0.912193\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 6.00000 | 0.325875 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000i | 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 4.00000i | − 0.214731i | −0.994220 | − | 0.107366i | \(-0.965758\pi\) | ||||
0.994220 | − | 0.107366i | \(-0.0342415\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 15.0000 | 0.802932 | 0.401466 | − | 0.915874i | \(-0.368501\pi\) | ||||
0.401466 | + | 0.915874i | \(0.368501\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | −5.00000 | −0.266880 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 3.00000i | 0.159674i | 0.996808 | + | 0.0798369i | \(0.0254400\pi\) | ||||
−0.996808 | + | 0.0798369i | \(0.974560\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 8.00000i | − 0.423405i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −4.00000 | −0.211112 | −0.105556 | − | 0.994413i | \(-0.533662\pi\) | ||||
−0.105556 | + | 0.994413i | \(0.533662\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 11.0000i | − 0.577350i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 36.0000i | 1.87918i | 0.342296 | + | 0.939592i | \(0.388796\pi\) | ||||
−0.342296 | + | 0.939592i | \(0.611204\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −10.0000 | −0.520579 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −4.00000 | −0.207670 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 6.00000i | 0.310668i | 0.987862 | + | 0.155334i | \(0.0496454\pi\) | ||||
−0.987862 | + | 0.155334i | \(0.950355\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 3.00000i | 0.154508i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.0000 | 0.821865 | 0.410932 | − | 0.911666i | \(-0.365203\pi\) | ||||
0.410932 | + | 0.911666i | \(0.365203\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 7.00000 | 0.358621 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 2.00000i | 0.102195i | 0.998694 | + | 0.0510976i | \(0.0162720\pi\) | ||||
−0.998694 | + | 0.0510976i | \(0.983728\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 12.0000i | − 0.609994i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 24.0000 | 1.21685 | 0.608424 | − | 0.793612i | \(-0.291802\pi\) | ||||
0.608424 | + | 0.793612i | \(0.291802\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −4.00000 | −0.202289 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 3.00000i | 0.151330i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 7.00000i | 0.351320i | 0.984451 | + | 0.175660i | \(0.0562059\pi\) | ||||
−0.984451 | + | 0.175660i | \(0.943794\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | −8.00000 | −0.400501 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 2.00000 | 0.0998752 | 0.0499376 | − | 0.998752i | \(-0.484098\pi\) | ||||
0.0499376 | + | 0.998752i | \(0.484098\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 1.00000i | − 0.0498135i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 19.0000 | 0.939490 | 0.469745 | − | 0.882802i | \(-0.344346\pi\) | ||||
0.469745 | + | 0.882802i | \(0.344346\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −12.0000 | −0.591916 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | − 1.00000i | − 0.0489702i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 6.00000 | 0.293119 | 0.146560 | − | 0.989202i | \(-0.453180\pi\) | ||||
0.146560 | + | 0.989202i | \(0.453180\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −6.00000 | −0.292422 | −0.146211 | − | 0.989253i | \(-0.546708\pi\) | ||||
−0.146211 | + | 0.989253i | \(0.546708\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 18.0000i | − 0.875190i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −18.0000 | −0.867029 | −0.433515 | − | 0.901146i | \(-0.642727\pi\) | ||||
−0.433515 | + | 0.901146i | \(0.642727\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2.00000i | 0.0961139i | 0.998845 | + | 0.0480569i | \(0.0153029\pi\) | ||||
−0.998845 | + | 0.0480569i | \(0.984697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 4.00000i | 0.191346i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 19.0000 | 0.906821 | 0.453410 | − | 0.891302i | \(-0.350207\pi\) | ||||
0.453410 | + | 0.891302i | \(0.350207\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 6.00000 | 0.285714 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 5.00000i | 0.237557i | 0.992921 | + | 0.118779i | \(0.0378979\pi\) | ||||
−0.992921 | + | 0.118779i | \(0.962102\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 18.0000i | − 0.851371i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 18.0000 | 0.849473 | 0.424736 | − | 0.905317i | \(-0.360367\pi\) | ||||
0.424736 | + | 0.905317i | \(0.360367\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 13.0000i | − 0.610793i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 40.0000i | 1.87112i | 0.353166 | + | 0.935561i | \(0.385105\pi\) | ||||
−0.353166 | + | 0.935561i | \(0.614895\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −20.0000 | −0.933520 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −3.00000 | −0.139724 | −0.0698620 | − | 0.997557i | \(-0.522256\pi\) | ||||
−0.0698620 | + | 0.997557i | \(0.522256\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 20.0000i | − 0.929479i | −0.885448 | − | 0.464739i | \(-0.846148\pi\) | ||||
0.885448 | − | 0.464739i | \(-0.153852\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 18.0000i | − 0.832941i | −0.909149 | − | 0.416470i | \(-0.863267\pi\) | ||||
0.909149 | − | 0.416470i | \(-0.136733\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 8.00000 | 0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −2.00000 | −0.0921551 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 4.00000i | 0.183147i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 4.00000 | 0.182765 | 0.0913823 | − | 0.995816i | \(-0.470871\pi\) | ||||
0.0913823 | + | 0.995816i | \(0.470871\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | − 2.00000i | − 0.0910032i | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 5.00000i | 0.226572i | 0.993562 | + | 0.113286i | \(0.0361376\pi\) | ||||
−0.993562 | + | 0.113286i | \(0.963862\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −11.0000 | −0.497437 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −27.0000 | −1.21849 | −0.609246 | − | 0.792981i | \(-0.708528\pi\) | ||||
−0.609246 | + | 0.792981i | \(0.708528\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 12.0000i | 0.540453i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 6.00000i | 0.269137i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −19.0000 | −0.850557 | −0.425278 | − | 0.905063i | \(-0.639824\pi\) | ||||
−0.425278 | + | 0.905063i | \(0.639824\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 24.0000 | 1.07224 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 30.0000i | − 1.33763i | −0.743427 | − | 0.668817i | \(-0.766801\pi\) | ||||
0.743427 | − | 0.668817i | \(-0.233199\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 12.0000i | 0.532939i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 19.0000 | 0.842160 | 0.421080 | − | 0.907023i | \(-0.361651\pi\) | ||||
0.421080 | + | 0.907023i | \(0.361651\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −14.0000 | −0.619324 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 20.0000i | 0.883022i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | −14.0000 | −0.614532 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −28.0000 | −1.22670 | −0.613351 | − | 0.789810i | \(-0.710179\pi\) | ||||
−0.613351 | + | 0.789810i | \(0.710179\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 38.0000i | − 1.66162i | −0.556553 | − | 0.830812i | \(-0.687876\pi\) | ||||
0.556553 | − | 0.830812i | \(-0.312124\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 4.00000i | − 0.174243i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −1.00000 | −0.0434783 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 5.00000i | − 0.216574i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 9.00000i | − 0.388379i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 17.0000 | 0.730887 | 0.365444 | − | 0.930834i | \(-0.380917\pi\) | ||||
0.365444 | + | 0.930834i | \(0.380917\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 12.0000i | − 0.514969i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 1.00000i | 0.0427569i | 0.999771 | + | 0.0213785i | \(0.00680549\pi\) | ||||
−0.999771 | + | 0.0213785i | \(0.993195\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 12.0000 | 0.511217 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 8.00000i | − 0.340195i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 34.0000i | − 1.44063i | −0.693649 | − | 0.720313i | \(-0.743998\pi\) | ||||
0.693649 | − | 0.720313i | \(-0.256002\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 6.00000 | 0.253773 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 24.0000i | − 1.01148i | −0.862686 | − | 0.505740i | \(-0.831220\pi\) | ||||
0.862686 | − | 0.505740i | \(-0.168780\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 2.00000i | 0.0839921i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 38.0000 | 1.59304 | 0.796521 | − | 0.604610i | \(-0.206671\pi\) | ||||
0.796521 | + | 0.604610i | \(0.206671\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 24.0000 | 1.00437 | 0.502184 | − | 0.864761i | \(-0.332530\pi\) | ||||
0.502184 | + | 0.864761i | \(0.332530\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | − 10.0000i | − 0.417756i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 23.0000i | − 0.957503i | −0.877951 | − | 0.478751i | \(-0.841090\pi\) | ||||
0.877951 | − | 0.478751i | \(-0.158910\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 9.00000 | 0.374027 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −16.0000 | −0.663792 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 29.0000i | − 1.19696i | −0.801138 | − | 0.598479i | \(-0.795772\pi\) | ||||
0.801138 | − | 0.598479i | \(-0.204228\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −4.00000 | −0.164817 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −13.0000 | −0.534749 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 26.0000i | 1.06769i | 0.845582 | + | 0.533846i | \(0.179254\pi\) | ||||
−0.845582 | + | 0.533846i | \(0.820746\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 20.0000i | 0.818546i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 45.0000 | 1.83559 | 0.917794 | − | 0.397057i | \(-0.129968\pi\) | ||||
0.917794 | + | 0.397057i | \(0.129968\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 8.00000i | − 0.325785i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 40.0000i | 1.62355i | 0.583970 | + | 0.811775i | \(0.301498\pi\) | ||||
−0.583970 | + | 0.811775i | \(0.698502\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | −6.00000 | −0.243132 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 9.00000 | 0.364101 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 4.00000i | − 0.161558i | −0.996732 | − | 0.0807792i | \(-0.974259\pi\) | ||||
0.996732 | − | 0.0807792i | \(-0.0257409\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 28.0000i | 1.12724i | 0.826035 | + | 0.563619i | \(0.190591\pi\) | ||||
−0.826035 | + | 0.563619i | \(0.809409\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −4.00000 | −0.160774 | −0.0803868 | − | 0.996764i | \(-0.525616\pi\) | ||||
−0.0803868 | + | 0.996764i | \(0.525616\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −5.00000 | −0.200643 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 28.0000i | 1.12180i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −32.0000 | −1.27592 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 26.0000 | 1.03504 | 0.517522 | − | 0.855670i | \(-0.326855\pi\) | ||||
0.517522 | + | 0.855670i | \(0.326855\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | − 8.00000i | − 0.317971i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 3.00000i | 0.118864i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 6.00000 | 0.237356 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 6.00000 | 0.236986 | 0.118493 | − | 0.992955i | \(-0.462194\pi\) | ||||
0.118493 | + | 0.992955i | \(0.462194\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 2.00000i | − 0.0788723i | −0.999222 | − | 0.0394362i | \(-0.987444\pi\) | ||||
0.999222 | − | 0.0394362i | \(-0.0125562\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 21.0000i | − 0.825595i | −0.910823 | − | 0.412798i | \(-0.864552\pi\) | ||||
0.910823 | − | 0.412798i | \(-0.135448\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 2.00000 | 0.0783862 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 35.0000i | − 1.36966i | −0.728705 | − | 0.684828i | \(-0.759877\pi\) | ||||
0.728705 | − | 0.684828i | \(-0.240123\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 14.0000i | 0.546192i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 36.0000 | 1.40236 | 0.701180 | − | 0.712984i | \(-0.252657\pi\) | ||||
0.701180 | + | 0.712984i | \(0.252657\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −2.00000 | −0.0777910 | −0.0388955 | − | 0.999243i | \(-0.512384\pi\) | ||||
−0.0388955 | + | 0.999243i | \(0.512384\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 4.00000i | − 0.155347i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 3.00000i | 0.116160i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −16.0000 | −0.618596 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 43.0000i | − 1.65753i | −0.559598 | − | 0.828764i | \(-0.689045\pi\) | ||||
0.559598 | − | 0.828764i | \(-0.310955\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 26.0000i | − 0.999261i | −0.866239 | − | 0.499631i | \(-0.833469\pi\) | ||||
0.866239 | − | 0.499631i | \(-0.166531\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −28.0000 | −1.07454 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 10.0000 | 0.383201 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 9.00000i | − 0.344375i | −0.985064 | − | 0.172188i | \(-0.944916\pi\) | ||||
0.985064 | − | 0.172188i | \(-0.0550836\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 10.0000i | − 0.381524i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −2.00000 | −0.0761939 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 32.0000 | 1.21734 | 0.608669 | − | 0.793424i | \(-0.291704\pi\) | ||||
0.608669 | + | 0.793424i | \(0.291704\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 20.0000i | − 0.757554i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −21.0000 | −0.794293 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 18.0000 | 0.679851 | 0.339925 | − | 0.940452i | \(-0.389598\pi\) | ||||
0.339925 | + | 0.940452i | \(0.389598\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 32.0000i | 1.20690i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 4.00000i | 0.150435i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −22.0000 | −0.826227 | −0.413114 | − | 0.910679i | \(-0.635559\pi\) | ||||
−0.413114 | + | 0.910679i | \(0.635559\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −8.00000 | −0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 1.00000i | − 0.0374503i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 21.0000i | 0.784259i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −36.0000 | −1.34257 | −0.671287 | − | 0.741198i | \(-0.734258\pi\) | ||||
−0.671287 | + | 0.741198i | \(0.734258\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −16.0000 | −0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 22.0000i | 0.818189i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 26.0000i | 0.964287i | 0.876092 | + | 0.482143i | \(0.160142\pi\) | ||||
−0.876092 | + | 0.482143i | \(0.839858\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 28.0000i | − 1.03420i | −0.855924 | − | 0.517102i | \(-0.827011\pi\) | ||||
0.855924 | − | 0.517102i | \(-0.172989\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −37.0000 | −1.36107 | −0.680534 | − | 0.732717i | \(-0.738252\pi\) | ||||
−0.680534 | + | 0.732717i | \(0.738252\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | −4.00000 | −0.146944 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 8.00000i | − 0.293492i | −0.989174 | − | 0.146746i | \(-0.953120\pi\) | ||||
0.989174 | − | 0.146746i | \(-0.0468799\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 16.0000i | 0.585409i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 8.00000 | 0.292314 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 2.00000 | 0.0729810 | 0.0364905 | − | 0.999334i | \(-0.488382\pi\) | ||||
0.0364905 | + | 0.999334i | \(0.488382\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 12.0000i | − 0.437304i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 40.0000i | 1.45382i | 0.686730 | + | 0.726912i | \(0.259045\pi\) | ||||
−0.686730 | + | 0.726912i | \(0.740955\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 5.00000 | 0.181250 | 0.0906249 | − | 0.995885i | \(-0.471114\pi\) | ||||
0.0906249 | + | 0.995885i | \(0.471114\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 4.00000i | − 0.144810i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 10.0000 | 0.360609 | 0.180305 | − | 0.983611i | \(-0.442292\pi\) | ||||
0.180305 | + | 0.983611i | \(0.442292\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −3.00000 | −0.108042 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 18.0000i | 0.647415i | 0.946157 | + | 0.323708i | \(0.104929\pi\) | ||||
−0.946157 | + | 0.323708i | \(0.895071\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | − 16.0000i | − 0.573997i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −20.0000 | −0.716574 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 15.0000i | 0.536056i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 32.0000i | − 1.14068i | −0.821410 | − | 0.570338i | \(-0.806812\pi\) | ||||
0.821410 | − | 0.570338i | \(-0.193188\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −16.0000 | −0.569615 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 12.0000 | 0.426671 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 24.0000i | 0.850124i | 0.905164 | + | 0.425062i | \(0.139748\pi\) | ||||
−0.905164 | + | 0.425062i | \(0.860252\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 36.0000 | 1.27359 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 28.0000 | 0.989331 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 25.0000i | − 0.880042i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 46.0000 | 1.61727 | 0.808637 | − | 0.588308i | \(-0.200206\pi\) | ||||
0.808637 | + | 0.588308i | \(0.200206\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 39.0000 | 1.36948 | 0.684738 | − | 0.728790i | \(-0.259917\pi\) | ||||
0.684738 | + | 0.728790i | \(0.259917\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 28.0000i | − 0.982003i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 24.0000i | − 0.839654i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −4.00000 | −0.139771 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 34.0000 | 1.18661 | 0.593304 | − | 0.804978i | \(-0.297823\pi\) | ||||
0.593304 | + | 0.804978i | \(0.297823\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 3.00000i | − 0.104573i | −0.998632 | − | 0.0522867i | \(-0.983349\pi\) | ||||
0.998632 | − | 0.0522867i | \(-0.0166510\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 28.0000i | − 0.973655i | −0.873498 | − | 0.486828i | \(-0.838154\pi\) | ||||
0.873498 | − | 0.486828i | \(-0.161846\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −14.0000 | −0.486240 | −0.243120 | − | 0.969996i | \(-0.578171\pi\) | ||||
−0.243120 | + | 0.969996i | \(0.578171\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 3.00000 | 0.104069 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 12.0000i | 0.415775i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | − 5.00000i | − 0.172825i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 18.0000 | 0.621429 | 0.310715 | − | 0.950503i | \(-0.399432\pi\) | ||||
0.310715 | + | 0.950503i | \(0.399432\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −20.0000 | −0.689655 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 6.00000i | 0.206651i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 22.0000i | − 0.755929i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 10.0000 | 0.343199 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8.00000 | −0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 14.0000i | 0.479351i | 0.970853 | + | 0.239675i | \(0.0770410\pi\) | ||||
−0.970853 | + | 0.239675i | \(0.922959\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 7.00000i | 0.239115i | 0.992827 | + | 0.119558i | \(0.0381477\pi\) | ||||
−0.992827 | + | 0.119558i | \(0.961852\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 45.0000 | 1.53538 | 0.767690 | − | 0.640821i | \(-0.221406\pi\) | ||||
0.767690 | + | 0.640821i | \(0.221406\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 10.0000 | 0.340799 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 11.0000i | 0.374444i | 0.982318 | + | 0.187222i | \(0.0599484\pi\) | ||||
−0.982318 | + | 0.187222i | \(0.940052\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 1.00000i | 0.0339618i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 4.00000 | 0.135535 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 28.0000i | 0.947656i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 2.00000i | − 0.0675352i | −0.999430 | − | 0.0337676i | \(-0.989249\pi\) | ||||
0.999430 | − | 0.0337676i | \(-0.0107506\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 16.0000 | 0.539667 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 56.0000 | 1.88669 | 0.943344 | − | 0.331816i | \(-0.107661\pi\) | ||||
0.943344 | + | 0.331816i | \(0.107661\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 4.00000i | 0.134611i | 0.997732 | + | 0.0673054i | \(0.0214402\pi\) | ||||
−0.997732 | + | 0.0673054i | \(0.978560\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 3.00000i | 0.100730i | 0.998731 | + | 0.0503651i | \(0.0160385\pi\) | ||||
−0.998731 | + | 0.0503651i | \(0.983962\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 14.0000 | 0.469545 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 36.0000i | − 1.20469i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 1.00000i | − 0.0333890i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −3.00000 | −0.100056 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −8.00000 | −0.266519 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 12.0000i | 0.399335i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 28.0000i | 0.929725i | 0.885383 | + | 0.464862i | \(0.153896\pi\) | ||||
−0.885383 | + | 0.464862i | \(0.846104\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 4.00000 | 0.132672 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 8.00000 | 0.265052 | 0.132526 | − | 0.991180i | \(-0.457691\pi\) | ||||
0.132526 | + | 0.991180i | \(0.457691\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 6.00000i | 0.198137i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −46.0000 | −1.51740 | −0.758700 | − | 0.651440i | \(-0.774165\pi\) | ||||
−0.758700 | + | 0.651440i | \(0.774165\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −4.00000 | −0.131804 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 3.00000i | 0.0987462i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 16.0000i | 0.525509i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 45.0000 | 1.47640 | 0.738201 | − | 0.674581i | \(-0.235676\pi\) | ||||
0.738201 | + | 0.674581i | \(0.235676\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 12.0000 | 0.393284 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | − 9.00000i | − 0.294647i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 36.0000i | − 1.17607i | −0.808836 | − | 0.588034i | \(-0.799902\pi\) | ||||
0.808836 | − | 0.588034i | \(-0.200098\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 4.00000 | 0.130535 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 48.0000 | 1.56476 | 0.782378 | − | 0.622804i | \(-0.214007\pi\) | ||||
0.782378 | + | 0.622804i | \(0.214007\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 5.00000i | − 0.162822i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 45.0000i | − 1.46230i | −0.682215 | − | 0.731152i | \(-0.738983\pi\) | ||||
0.682215 | − | 0.731152i | \(-0.261017\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −7.00000 | −0.227230 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 26.0000 | 0.843108 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 6.00000i | − 0.194359i | −0.995267 | − | 0.0971795i | \(-0.969018\pi\) | ||||
0.995267 | − | 0.0971795i | \(-0.0309821\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −24.0000 | −0.775000 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.0000 | −0.967742 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 8.00000i | − 0.257796i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 23.0000i | − 0.739630i | −0.929105 | − | 0.369815i | \(-0.879421\pi\) | ||||
0.929105 | − | 0.369815i | \(-0.120579\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | −16.0000 | −0.513994 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 50.0000 | 1.60458 | 0.802288 | − | 0.596937i | \(-0.203616\pi\) | ||||
0.802288 | + | 0.596937i | \(0.203616\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 2.00000i | − 0.0641171i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −4.00000 | −0.127710 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 30.0000i | − 0.956851i | −0.878128 | − | 0.478426i | \(-0.841208\pi\) | ||||
0.878128 | − | 0.478426i | \(-0.158792\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 18.0000i | 0.572946i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 6.00000 | 0.190789 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 8.00000 | 0.254128 | 0.127064 | − | 0.991894i | \(-0.459445\pi\) | ||||
0.127064 | + | 0.991894i | \(0.459445\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 19.0000i | − 0.602947i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 10.0000i | − 0.316703i | −0.987383 | − | 0.158352i | \(-0.949382\pi\) | ||||
0.987383 | − | 0.158352i | \(-0.0506179\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −40.0000 | −1.26554 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 4600.2.e.g.4049.2 | 2 | ||
5.2 | odd | 4 | 920.2.a.d.1.1 | ✓ | 1 | ||
5.3 | odd | 4 | 4600.2.a.f.1.1 | 1 | |||
5.4 | even | 2 | inner | 4600.2.e.g.4049.1 | 2 | ||
15.2 | even | 4 | 8280.2.a.o.1.1 | 1 | |||
20.3 | even | 4 | 9200.2.a.z.1.1 | 1 | |||
20.7 | even | 4 | 1840.2.a.b.1.1 | 1 | |||
40.27 | even | 4 | 7360.2.a.u.1.1 | 1 | |||
40.37 | odd | 4 | 7360.2.a.j.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
920.2.a.d.1.1 | ✓ | 1 | 5.2 | odd | 4 | ||
1840.2.a.b.1.1 | 1 | 20.7 | even | 4 | |||
4600.2.a.f.1.1 | 1 | 5.3 | odd | 4 | |||
4600.2.e.g.4049.1 | 2 | 5.4 | even | 2 | inner | ||
4600.2.e.g.4049.2 | 2 | 1.1 | even | 1 | trivial | ||
7360.2.a.j.1.1 | 1 | 40.37 | odd | 4 | |||
7360.2.a.u.1.1 | 1 | 40.27 | even | 4 | |||
8280.2.a.o.1.1 | 1 | 15.2 | even | 4 | |||
9200.2.a.z.1.1 | 1 | 20.3 | even | 4 |