Defining parameters
Level: | \( N \) | \(=\) | \( 4608 = 2^{9} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4608.r (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(1536\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4608, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1600 | 384 | 1216 |
Cusp forms | 1472 | 384 | 1088 |
Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{new}}(4608, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4608, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4608, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1152, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2304, [\chi])\)\(^{\oplus 2}\)