Properties

Label 462.2.i.e.331.2
Level $462$
Weight $2$
Character 462.331
Analytic conductor $3.689$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [462,2,Mod(67,462)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(462, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("462.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 462 = 2 \cdot 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 462.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.68908857338\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 331.2
Root \(-1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 462.331
Dual form 462.2.i.e.67.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.32288 - 2.29129i) q^{5} +1.00000 q^{6} +(1.32288 - 2.29129i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.32288 - 2.29129i) q^{10} +(-0.500000 - 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{12} -4.00000 q^{13} +(-1.32288 - 2.29129i) q^{14} +2.64575 q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{17} +(0.500000 + 0.866025i) q^{18} +(2.64575 - 4.58258i) q^{19} -2.64575 q^{20} +2.64575 q^{21} -1.00000 q^{22} +(-1.32288 + 2.29129i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-1.00000 - 1.73205i) q^{25} +(-2.00000 + 3.46410i) q^{26} -1.00000 q^{27} -2.64575 q^{28} +2.00000 q^{29} +(1.32288 - 2.29129i) q^{30} +(2.00000 + 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{32} +(0.500000 - 0.866025i) q^{33} +3.00000 q^{34} +(-3.50000 - 6.06218i) q^{35} +1.00000 q^{36} +(4.64575 - 8.04668i) q^{37} +(-2.64575 - 4.58258i) q^{38} +(-2.00000 - 3.46410i) q^{39} +(-1.32288 + 2.29129i) q^{40} +9.00000 q^{41} +(1.32288 - 2.29129i) q^{42} -1.29150 q^{43} +(-0.500000 + 0.866025i) q^{44} +(1.32288 + 2.29129i) q^{45} +(1.32288 + 2.29129i) q^{46} +(-5.96863 + 10.3380i) q^{47} -1.00000 q^{48} +(-3.50000 - 6.06218i) q^{49} -2.00000 q^{50} +(-1.50000 + 2.59808i) q^{51} +(2.00000 + 3.46410i) q^{52} +(-2.00000 - 3.46410i) q^{53} +(-0.500000 + 0.866025i) q^{54} -2.64575 q^{55} +(-1.32288 + 2.29129i) q^{56} +5.29150 q^{57} +(1.00000 - 1.73205i) q^{58} +(7.29150 + 12.6293i) q^{59} +(-1.32288 - 2.29129i) q^{60} +(1.96863 - 3.40976i) q^{61} +4.00000 q^{62} +(1.32288 + 2.29129i) q^{63} +1.00000 q^{64} +(-5.29150 + 9.16515i) q^{65} +(-0.500000 - 0.866025i) q^{66} +(6.79150 + 11.7632i) q^{67} +(1.50000 - 2.59808i) q^{68} -2.64575 q^{69} -7.00000 q^{70} -13.2915 q^{71} +(0.500000 - 0.866025i) q^{72} +(2.35425 + 4.07768i) q^{73} +(-4.64575 - 8.04668i) q^{74} +(1.00000 - 1.73205i) q^{75} -5.29150 q^{76} -2.64575 q^{77} -4.00000 q^{78} +(-2.67712 + 4.63692i) q^{79} +(1.32288 + 2.29129i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(4.50000 - 7.79423i) q^{82} -5.58301 q^{83} +(-1.32288 - 2.29129i) q^{84} +7.93725 q^{85} +(-0.645751 + 1.11847i) q^{86} +(1.00000 + 1.73205i) q^{87} +(0.500000 + 0.866025i) q^{88} +(-6.64575 + 11.5108i) q^{89} +2.64575 q^{90} +(-5.29150 + 9.16515i) q^{91} +2.64575 q^{92} +(-2.00000 + 3.46410i) q^{93} +(5.96863 + 10.3380i) q^{94} +(-7.00000 - 12.1244i) q^{95} +(-0.500000 + 0.866025i) q^{96} +9.58301 q^{97} -7.00000 q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} - 4 q^{8} - 2 q^{9} - 2 q^{11} + 2 q^{12} - 16 q^{13} - 2 q^{16} + 6 q^{17} + 2 q^{18} - 4 q^{22} - 2 q^{24} - 4 q^{25} - 8 q^{26} - 4 q^{27} + 8 q^{29} + 8 q^{31}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/462\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.32288 2.29129i 0.591608 1.02470i −0.402408 0.915460i \(-0.631827\pi\)
0.994016 0.109235i \(-0.0348400\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.32288 2.29129i 0.500000 0.866025i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.32288 2.29129i −0.418330 0.724569i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −1.32288 2.29129i −0.353553 0.612372i
\(15\) 2.64575 0.683130
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) 2.64575 4.58258i 0.606977 1.05131i −0.384759 0.923017i \(-0.625715\pi\)
0.991736 0.128298i \(-0.0409513\pi\)
\(20\) −2.64575 −0.591608
\(21\) 2.64575 0.577350
\(22\) −1.00000 −0.213201
\(23\) −1.32288 + 2.29129i −0.275839 + 0.477767i −0.970346 0.241719i \(-0.922289\pi\)
0.694508 + 0.719485i \(0.255622\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) −1.00000 1.73205i −0.200000 0.346410i
\(26\) −2.00000 + 3.46410i −0.392232 + 0.679366i
\(27\) −1.00000 −0.192450
\(28\) −2.64575 −0.500000
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 1.32288 2.29129i 0.241523 0.418330i
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 3.00000 0.514496
\(35\) −3.50000 6.06218i −0.591608 1.02470i
\(36\) 1.00000 0.166667
\(37\) 4.64575 8.04668i 0.763757 1.32287i −0.177145 0.984185i \(-0.556686\pi\)
0.940901 0.338681i \(-0.109981\pi\)
\(38\) −2.64575 4.58258i −0.429198 0.743392i
\(39\) −2.00000 3.46410i −0.320256 0.554700i
\(40\) −1.32288 + 2.29129i −0.209165 + 0.362284i
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 1.32288 2.29129i 0.204124 0.353553i
\(43\) −1.29150 −0.196952 −0.0984762 0.995139i \(-0.531397\pi\)
−0.0984762 + 0.995139i \(0.531397\pi\)
\(44\) −0.500000 + 0.866025i −0.0753778 + 0.130558i
\(45\) 1.32288 + 2.29129i 0.197203 + 0.341565i
\(46\) 1.32288 + 2.29129i 0.195047 + 0.337832i
\(47\) −5.96863 + 10.3380i −0.870614 + 1.50795i −0.00925075 + 0.999957i \(0.502945\pi\)
−0.861363 + 0.507990i \(0.830389\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) −2.00000 −0.282843
\(51\) −1.50000 + 2.59808i −0.210042 + 0.363803i
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −2.00000 3.46410i −0.274721 0.475831i 0.695344 0.718677i \(-0.255252\pi\)
−0.970065 + 0.242846i \(0.921919\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) −2.64575 −0.356753
\(56\) −1.32288 + 2.29129i −0.176777 + 0.306186i
\(57\) 5.29150 0.700877
\(58\) 1.00000 1.73205i 0.131306 0.227429i
\(59\) 7.29150 + 12.6293i 0.949273 + 1.64419i 0.746961 + 0.664867i \(0.231512\pi\)
0.202311 + 0.979321i \(0.435155\pi\)
\(60\) −1.32288 2.29129i −0.170783 0.295804i
\(61\) 1.96863 3.40976i 0.252057 0.436575i −0.712035 0.702144i \(-0.752226\pi\)
0.964092 + 0.265569i \(0.0855597\pi\)
\(62\) 4.00000 0.508001
\(63\) 1.32288 + 2.29129i 0.166667 + 0.288675i
\(64\) 1.00000 0.125000
\(65\) −5.29150 + 9.16515i −0.656330 + 1.13680i
\(66\) −0.500000 0.866025i −0.0615457 0.106600i
\(67\) 6.79150 + 11.7632i 0.829714 + 1.43711i 0.898263 + 0.439459i \(0.144830\pi\)
−0.0685485 + 0.997648i \(0.521837\pi\)
\(68\) 1.50000 2.59808i 0.181902 0.315063i
\(69\) −2.64575 −0.318511
\(70\) −7.00000 −0.836660
\(71\) −13.2915 −1.57741 −0.788706 0.614771i \(-0.789248\pi\)
−0.788706 + 0.614771i \(0.789248\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 2.35425 + 4.07768i 0.275544 + 0.477256i 0.970272 0.242016i \(-0.0778087\pi\)
−0.694728 + 0.719272i \(0.744475\pi\)
\(74\) −4.64575 8.04668i −0.540058 0.935407i
\(75\) 1.00000 1.73205i 0.115470 0.200000i
\(76\) −5.29150 −0.606977
\(77\) −2.64575 −0.301511
\(78\) −4.00000 −0.452911
\(79\) −2.67712 + 4.63692i −0.301200 + 0.521694i −0.976408 0.215934i \(-0.930721\pi\)
0.675208 + 0.737627i \(0.264054\pi\)
\(80\) 1.32288 + 2.29129i 0.147902 + 0.256174i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 4.50000 7.79423i 0.496942 0.860729i
\(83\) −5.58301 −0.612814 −0.306407 0.951901i \(-0.599127\pi\)
−0.306407 + 0.951901i \(0.599127\pi\)
\(84\) −1.32288 2.29129i −0.144338 0.250000i
\(85\) 7.93725 0.860916
\(86\) −0.645751 + 1.11847i −0.0696332 + 0.120608i
\(87\) 1.00000 + 1.73205i 0.107211 + 0.185695i
\(88\) 0.500000 + 0.866025i 0.0533002 + 0.0923186i
\(89\) −6.64575 + 11.5108i −0.704448 + 1.22014i 0.262442 + 0.964948i \(0.415472\pi\)
−0.966890 + 0.255192i \(0.917861\pi\)
\(90\) 2.64575 0.278887
\(91\) −5.29150 + 9.16515i −0.554700 + 0.960769i
\(92\) 2.64575 0.275839
\(93\) −2.00000 + 3.46410i −0.207390 + 0.359211i
\(94\) 5.96863 + 10.3380i 0.615617 + 1.06628i
\(95\) −7.00000 12.1244i −0.718185 1.24393i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 9.58301 0.973007 0.486503 0.873679i \(-0.338272\pi\)
0.486503 + 0.873679i \(0.338272\pi\)
\(98\) −7.00000 −0.707107
\(99\) 1.00000 0.100504
\(100\) −1.00000 + 1.73205i −0.100000 + 0.173205i
\(101\) 1.64575 + 2.85052i 0.163758 + 0.283638i 0.936214 0.351431i \(-0.114305\pi\)
−0.772455 + 0.635069i \(0.780972\pi\)
\(102\) 1.50000 + 2.59808i 0.148522 + 0.257248i
\(103\) 5.00000 8.66025i 0.492665 0.853320i −0.507300 0.861770i \(-0.669356\pi\)
0.999964 + 0.00844953i \(0.00268960\pi\)
\(104\) 4.00000 0.392232
\(105\) 3.50000 6.06218i 0.341565 0.591608i
\(106\) −4.00000 −0.388514
\(107\) −4.50000 + 7.79423i −0.435031 + 0.753497i −0.997298 0.0734594i \(-0.976596\pi\)
0.562267 + 0.826956i \(0.309929\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) −5.96863 10.3380i −0.571691 0.990197i −0.996393 0.0848642i \(-0.972954\pi\)
0.424702 0.905333i \(-0.360379\pi\)
\(110\) −1.32288 + 2.29129i −0.126131 + 0.218466i
\(111\) 9.29150 0.881910
\(112\) 1.32288 + 2.29129i 0.125000 + 0.216506i
\(113\) −8.58301 −0.807421 −0.403711 0.914887i \(-0.632280\pi\)
−0.403711 + 0.914887i \(0.632280\pi\)
\(114\) 2.64575 4.58258i 0.247797 0.429198i
\(115\) 3.50000 + 6.06218i 0.326377 + 0.565301i
\(116\) −1.00000 1.73205i −0.0928477 0.160817i
\(117\) 2.00000 3.46410i 0.184900 0.320256i
\(118\) 14.5830 1.34247
\(119\) 7.93725 0.727607
\(120\) −2.64575 −0.241523
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −1.96863 3.40976i −0.178231 0.308705i
\(123\) 4.50000 + 7.79423i 0.405751 + 0.702782i
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) 7.93725 0.709930
\(126\) 2.64575 0.235702
\(127\) −2.64575 −0.234772 −0.117386 0.993086i \(-0.537452\pi\)
−0.117386 + 0.993086i \(0.537452\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −0.645751 1.11847i −0.0568552 0.0984762i
\(130\) 5.29150 + 9.16515i 0.464095 + 0.803837i
\(131\) −1.29150 + 2.23695i −0.112839 + 0.195443i −0.916914 0.399085i \(-0.869328\pi\)
0.804075 + 0.594528i \(0.202661\pi\)
\(132\) −1.00000 −0.0870388
\(133\) −7.00000 12.1244i −0.606977 1.05131i
\(134\) 13.5830 1.17339
\(135\) −1.32288 + 2.29129i −0.113855 + 0.197203i
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) 1.35425 + 2.34563i 0.115701 + 0.200400i 0.918060 0.396442i \(-0.129755\pi\)
−0.802359 + 0.596842i \(0.796422\pi\)
\(138\) −1.32288 + 2.29129i −0.112611 + 0.195047i
\(139\) 8.58301 0.728001 0.364001 0.931399i \(-0.381411\pi\)
0.364001 + 0.931399i \(0.381411\pi\)
\(140\) −3.50000 + 6.06218i −0.295804 + 0.512348i
\(141\) −11.9373 −1.00530
\(142\) −6.64575 + 11.5108i −0.557699 + 0.965963i
\(143\) 2.00000 + 3.46410i 0.167248 + 0.289683i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 2.64575 4.58258i 0.219718 0.380562i
\(146\) 4.70850 0.389678
\(147\) 3.50000 6.06218i 0.288675 0.500000i
\(148\) −9.29150 −0.763757
\(149\) 5.93725 10.2836i 0.486399 0.842467i −0.513479 0.858102i \(-0.671644\pi\)
0.999878 + 0.0156348i \(0.00497690\pi\)
\(150\) −1.00000 1.73205i −0.0816497 0.141421i
\(151\) −8.67712 15.0292i −0.706134 1.22306i −0.966281 0.257491i \(-0.917104\pi\)
0.260146 0.965569i \(-0.416229\pi\)
\(152\) −2.64575 + 4.58258i −0.214599 + 0.371696i
\(153\) −3.00000 −0.242536
\(154\) −1.32288 + 2.29129i −0.106600 + 0.184637i
\(155\) 10.5830 0.850047
\(156\) −2.00000 + 3.46410i −0.160128 + 0.277350i
\(157\) 5.64575 + 9.77873i 0.450580 + 0.780427i 0.998422 0.0561543i \(-0.0178839\pi\)
−0.547842 + 0.836582i \(0.684551\pi\)
\(158\) 2.67712 + 4.63692i 0.212981 + 0.368893i
\(159\) 2.00000 3.46410i 0.158610 0.274721i
\(160\) 2.64575 0.209165
\(161\) 3.50000 + 6.06218i 0.275839 + 0.477767i
\(162\) −1.00000 −0.0785674
\(163\) −7.79150 + 13.4953i −0.610278 + 1.05703i 0.380916 + 0.924610i \(0.375609\pi\)
−0.991193 + 0.132422i \(0.957725\pi\)
\(164\) −4.50000 7.79423i −0.351391 0.608627i
\(165\) −1.32288 2.29129i −0.102986 0.178377i
\(166\) −2.79150 + 4.83502i −0.216663 + 0.375271i
\(167\) 19.2915 1.49282 0.746411 0.665486i \(-0.231776\pi\)
0.746411 + 0.665486i \(0.231776\pi\)
\(168\) −2.64575 −0.204124
\(169\) 3.00000 0.230769
\(170\) 3.96863 6.87386i 0.304380 0.527201i
\(171\) 2.64575 + 4.58258i 0.202326 + 0.350438i
\(172\) 0.645751 + 1.11847i 0.0492381 + 0.0852828i
\(173\) −2.00000 + 3.46410i −0.152057 + 0.263371i −0.931984 0.362500i \(-0.881923\pi\)
0.779926 + 0.625871i \(0.215256\pi\)
\(174\) 2.00000 0.151620
\(175\) −5.29150 −0.400000
\(176\) 1.00000 0.0753778
\(177\) −7.29150 + 12.6293i −0.548063 + 0.949273i
\(178\) 6.64575 + 11.5108i 0.498120 + 0.862769i
\(179\) −7.64575 13.2428i −0.571470 0.989816i −0.996415 0.0845964i \(-0.973040\pi\)
0.424945 0.905219i \(-0.360293\pi\)
\(180\) 1.32288 2.29129i 0.0986013 0.170783i
\(181\) 5.29150 0.393314 0.196657 0.980472i \(-0.436991\pi\)
0.196657 + 0.980472i \(0.436991\pi\)
\(182\) 5.29150 + 9.16515i 0.392232 + 0.679366i
\(183\) 3.93725 0.291050
\(184\) 1.32288 2.29129i 0.0975237 0.168916i
\(185\) −12.2915 21.2895i −0.903689 1.56524i
\(186\) 2.00000 + 3.46410i 0.146647 + 0.254000i
\(187\) 1.50000 2.59808i 0.109691 0.189990i
\(188\) 11.9373 0.870614
\(189\) −1.32288 + 2.29129i −0.0962250 + 0.166667i
\(190\) −14.0000 −1.01567
\(191\) −8.64575 + 14.9749i −0.625585 + 1.08354i 0.362843 + 0.931850i \(0.381806\pi\)
−0.988428 + 0.151694i \(0.951527\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) −7.93725 13.7477i −0.571336 0.989583i −0.996429 0.0844334i \(-0.973092\pi\)
0.425093 0.905150i \(-0.360241\pi\)
\(194\) 4.79150 8.29913i 0.344010 0.595843i
\(195\) −10.5830 −0.757865
\(196\) −3.50000 + 6.06218i −0.250000 + 0.433013i
\(197\) −9.87451 −0.703530 −0.351765 0.936088i \(-0.614418\pi\)
−0.351765 + 0.936088i \(0.614418\pi\)
\(198\) 0.500000 0.866025i 0.0355335 0.0615457i
\(199\) −11.5830 20.0624i −0.821097 1.42218i −0.904866 0.425697i \(-0.860029\pi\)
0.0837682 0.996485i \(-0.473304\pi\)
\(200\) 1.00000 + 1.73205i 0.0707107 + 0.122474i
\(201\) −6.79150 + 11.7632i −0.479036 + 0.829714i
\(202\) 3.29150 0.231589
\(203\) 2.64575 4.58258i 0.185695 0.321634i
\(204\) 3.00000 0.210042
\(205\) 11.9059 20.6216i 0.831543 1.44027i
\(206\) −5.00000 8.66025i −0.348367 0.603388i
\(207\) −1.32288 2.29129i −0.0919462 0.159256i
\(208\) 2.00000 3.46410i 0.138675 0.240192i
\(209\) −5.29150 −0.366021
\(210\) −3.50000 6.06218i −0.241523 0.418330i
\(211\) 10.7085 0.737203 0.368602 0.929587i \(-0.379837\pi\)
0.368602 + 0.929587i \(0.379837\pi\)
\(212\) −2.00000 + 3.46410i −0.137361 + 0.237915i
\(213\) −6.64575 11.5108i −0.455359 0.788706i
\(214\) 4.50000 + 7.79423i 0.307614 + 0.532803i
\(215\) −1.70850 + 2.95920i −0.116519 + 0.201816i
\(216\) 1.00000 0.0680414
\(217\) 10.5830 0.718421
\(218\) −11.9373 −0.808493
\(219\) −2.35425 + 4.07768i −0.159085 + 0.275544i
\(220\) 1.32288 + 2.29129i 0.0891883 + 0.154479i
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) 4.64575 8.04668i 0.311802 0.540058i
\(223\) −24.4575 −1.63780 −0.818898 0.573939i \(-0.805415\pi\)
−0.818898 + 0.573939i \(0.805415\pi\)
\(224\) 2.64575 0.176777
\(225\) 2.00000 0.133333
\(226\) −4.29150 + 7.43310i −0.285467 + 0.494442i
\(227\) −11.7915 20.4235i −0.782630 1.35555i −0.930405 0.366533i \(-0.880545\pi\)
0.147775 0.989021i \(-0.452789\pi\)
\(228\) −2.64575 4.58258i −0.175219 0.303488i
\(229\) −8.64575 + 14.9749i −0.571327 + 0.989568i 0.425103 + 0.905145i \(0.360238\pi\)
−0.996430 + 0.0844228i \(0.973095\pi\)
\(230\) 7.00000 0.461566
\(231\) −1.32288 2.29129i −0.0870388 0.150756i
\(232\) −2.00000 −0.131306
\(233\) 11.0830 19.1963i 0.726072 1.25759i −0.232460 0.972606i \(-0.574677\pi\)
0.958531 0.284987i \(-0.0919894\pi\)
\(234\) −2.00000 3.46410i −0.130744 0.226455i
\(235\) 15.7915 + 27.3517i 1.03012 + 1.78423i
\(236\) 7.29150 12.6293i 0.474636 0.822094i
\(237\) −5.35425 −0.347796
\(238\) 3.96863 6.87386i 0.257248 0.445566i
\(239\) 13.2915 0.859756 0.429878 0.902887i \(-0.358557\pi\)
0.429878 + 0.902887i \(0.358557\pi\)
\(240\) −1.32288 + 2.29129i −0.0853913 + 0.147902i
\(241\) −7.58301 13.1342i −0.488464 0.846045i 0.511448 0.859314i \(-0.329109\pi\)
−0.999912 + 0.0132694i \(0.995776\pi\)
\(242\) 0.500000 + 0.866025i 0.0321412 + 0.0556702i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −3.93725 −0.252057
\(245\) −18.5203 −1.18322
\(246\) 9.00000 0.573819
\(247\) −10.5830 + 18.3303i −0.673380 + 1.16633i
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) −2.79150 4.83502i −0.176904 0.306407i
\(250\) 3.96863 6.87386i 0.250998 0.434741i
\(251\) 12.7085 0.802153 0.401077 0.916045i \(-0.368636\pi\)
0.401077 + 0.916045i \(0.368636\pi\)
\(252\) 1.32288 2.29129i 0.0833333 0.144338i
\(253\) 2.64575 0.166337
\(254\) −1.32288 + 2.29129i −0.0830046 + 0.143768i
\(255\) 3.96863 + 6.87386i 0.248525 + 0.430458i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 0.645751 1.11847i 0.0402809 0.0697685i −0.845182 0.534478i \(-0.820508\pi\)
0.885463 + 0.464710i \(0.153841\pi\)
\(258\) −1.29150 −0.0804054
\(259\) −12.2915 21.2895i −0.763757 1.32287i
\(260\) 10.5830 0.656330
\(261\) −1.00000 + 1.73205i −0.0618984 + 0.107211i
\(262\) 1.29150 + 2.23695i 0.0797893 + 0.138199i
\(263\) 4.93725 + 8.55157i 0.304444 + 0.527313i 0.977137 0.212609i \(-0.0681960\pi\)
−0.672693 + 0.739921i \(0.734863\pi\)
\(264\) −0.500000 + 0.866025i −0.0307729 + 0.0533002i
\(265\) −10.5830 −0.650109
\(266\) −14.0000 −0.858395
\(267\) −13.2915 −0.813427
\(268\) 6.79150 11.7632i 0.414857 0.718553i
\(269\) 2.67712 + 4.63692i 0.163227 + 0.282718i 0.936024 0.351935i \(-0.114476\pi\)
−0.772797 + 0.634653i \(0.781143\pi\)
\(270\) 1.32288 + 2.29129i 0.0805076 + 0.139443i
\(271\) 0.645751 1.11847i 0.0392266 0.0679425i −0.845746 0.533586i \(-0.820844\pi\)
0.884972 + 0.465644i \(0.154177\pi\)
\(272\) −3.00000 −0.181902
\(273\) −10.5830 −0.640513
\(274\) 2.70850 0.163626
\(275\) −1.00000 + 1.73205i −0.0603023 + 0.104447i
\(276\) 1.32288 + 2.29129i 0.0796278 + 0.137919i
\(277\) −12.5830 21.7944i −0.756040 1.30950i −0.944856 0.327486i \(-0.893798\pi\)
0.188816 0.982012i \(-0.439535\pi\)
\(278\) 4.29150 7.43310i 0.257387 0.445808i
\(279\) −4.00000 −0.239474
\(280\) 3.50000 + 6.06218i 0.209165 + 0.362284i
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) −5.96863 + 10.3380i −0.355427 + 0.615617i
\(283\) 11.2288 + 19.4488i 0.667480 + 1.15611i 0.978606 + 0.205741i \(0.0659605\pi\)
−0.311126 + 0.950369i \(0.600706\pi\)
\(284\) 6.64575 + 11.5108i 0.394353 + 0.683039i
\(285\) 7.00000 12.1244i 0.414644 0.718185i
\(286\) 4.00000 0.236525
\(287\) 11.9059 20.6216i 0.702782 1.21725i
\(288\) −1.00000 −0.0589256
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −2.64575 4.58258i −0.155364 0.269098i
\(291\) 4.79150 + 8.29913i 0.280883 + 0.486503i
\(292\) 2.35425 4.07768i 0.137772 0.238628i
\(293\) 6.58301 0.384583 0.192292 0.981338i \(-0.438408\pi\)
0.192292 + 0.981338i \(0.438408\pi\)
\(294\) −3.50000 6.06218i −0.204124 0.353553i
\(295\) 38.5830 2.24639
\(296\) −4.64575 + 8.04668i −0.270029 + 0.467704i
\(297\) 0.500000 + 0.866025i 0.0290129 + 0.0502519i
\(298\) −5.93725 10.2836i −0.343936 0.595714i
\(299\) 5.29150 9.16515i 0.306015 0.530034i
\(300\) −2.00000 −0.115470
\(301\) −1.70850 + 2.95920i −0.0984762 + 0.170566i
\(302\) −17.3542 −0.998625
\(303\) −1.64575 + 2.85052i −0.0945459 + 0.163758i
\(304\) 2.64575 + 4.58258i 0.151744 + 0.262829i
\(305\) −5.20850 9.02138i −0.298238 0.516563i
\(306\) −1.50000 + 2.59808i −0.0857493 + 0.148522i
\(307\) −32.5830 −1.85961 −0.929805 0.368052i \(-0.880025\pi\)
−0.929805 + 0.368052i \(0.880025\pi\)
\(308\) 1.32288 + 2.29129i 0.0753778 + 0.130558i
\(309\) 10.0000 0.568880
\(310\) 5.29150 9.16515i 0.300537 0.520546i
\(311\) 7.26013 + 12.5749i 0.411684 + 0.713058i 0.995074 0.0991343i \(-0.0316074\pi\)
−0.583390 + 0.812192i \(0.698274\pi\)
\(312\) 2.00000 + 3.46410i 0.113228 + 0.196116i
\(313\) −0.291503 + 0.504897i −0.0164767 + 0.0285385i −0.874146 0.485663i \(-0.838578\pi\)
0.857669 + 0.514201i \(0.171912\pi\)
\(314\) 11.2915 0.637216
\(315\) 7.00000 0.394405
\(316\) 5.35425 0.301200
\(317\) 8.61438 14.9205i 0.483832 0.838021i −0.515996 0.856591i \(-0.672578\pi\)
0.999828 + 0.0185700i \(0.00591136\pi\)
\(318\) −2.00000 3.46410i −0.112154 0.194257i
\(319\) −1.00000 1.73205i −0.0559893 0.0969762i
\(320\) 1.32288 2.29129i 0.0739510 0.128087i
\(321\) −9.00000 −0.502331
\(322\) 7.00000 0.390095
\(323\) 15.8745 0.883281
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 4.00000 + 6.92820i 0.221880 + 0.384308i
\(326\) 7.79150 + 13.4953i 0.431531 + 0.747434i
\(327\) 5.96863 10.3380i 0.330066 0.571691i
\(328\) −9.00000 −0.496942
\(329\) 15.7915 + 27.3517i 0.870614 + 1.50795i
\(330\) −2.64575 −0.145644
\(331\) −6.50000 + 11.2583i −0.357272 + 0.618814i −0.987504 0.157593i \(-0.949627\pi\)
0.630232 + 0.776407i \(0.282960\pi\)
\(332\) 2.79150 + 4.83502i 0.153204 + 0.265356i
\(333\) 4.64575 + 8.04668i 0.254586 + 0.440955i
\(334\) 9.64575 16.7069i 0.527792 0.914163i
\(335\) 35.9373 1.96346
\(336\) −1.32288 + 2.29129i −0.0721688 + 0.125000i
\(337\) 17.2915 0.941928 0.470964 0.882152i \(-0.343906\pi\)
0.470964 + 0.882152i \(0.343906\pi\)
\(338\) 1.50000 2.59808i 0.0815892 0.141317i
\(339\) −4.29150 7.43310i −0.233082 0.403711i
\(340\) −3.96863 6.87386i −0.215229 0.372788i
\(341\) 2.00000 3.46410i 0.108306 0.187592i
\(342\) 5.29150 0.286132
\(343\) −18.5203 −1.00000
\(344\) 1.29150 0.0696332
\(345\) −3.50000 + 6.06218i −0.188434 + 0.326377i
\(346\) 2.00000 + 3.46410i 0.107521 + 0.186231i
\(347\) −4.20850 7.28933i −0.225924 0.391312i 0.730672 0.682728i \(-0.239207\pi\)
−0.956596 + 0.291417i \(0.905873\pi\)
\(348\) 1.00000 1.73205i 0.0536056 0.0928477i
\(349\) 13.2288 0.708119 0.354060 0.935223i \(-0.384801\pi\)
0.354060 + 0.935223i \(0.384801\pi\)
\(350\) −2.64575 + 4.58258i −0.141421 + 0.244949i
\(351\) 4.00000 0.213504
\(352\) 0.500000 0.866025i 0.0266501 0.0461593i
\(353\) 6.35425 + 11.0059i 0.338203 + 0.585784i 0.984095 0.177645i \(-0.0568478\pi\)
−0.645892 + 0.763429i \(0.723514\pi\)
\(354\) 7.29150 + 12.6293i 0.387539 + 0.671237i
\(355\) −17.5830 + 30.4547i −0.933209 + 1.61637i
\(356\) 13.2915 0.704448
\(357\) 3.96863 + 6.87386i 0.210042 + 0.363803i
\(358\) −15.2915 −0.808181
\(359\) 0.291503 0.504897i 0.0153849 0.0266475i −0.858230 0.513265i \(-0.828436\pi\)
0.873615 + 0.486617i \(0.161769\pi\)
\(360\) −1.32288 2.29129i −0.0697217 0.120761i
\(361\) −4.50000 7.79423i −0.236842 0.410223i
\(362\) 2.64575 4.58258i 0.139058 0.240855i
\(363\) −1.00000 −0.0524864
\(364\) 10.5830 0.554700
\(365\) 12.4575 0.652056
\(366\) 1.96863 3.40976i 0.102902 0.178231i
\(367\) −10.6458 18.4390i −0.555704 0.962507i −0.997848 0.0655633i \(-0.979116\pi\)
0.442145 0.896944i \(-0.354218\pi\)
\(368\) −1.32288 2.29129i −0.0689597 0.119442i
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) −24.5830 −1.27801
\(371\) −10.5830 −0.549442
\(372\) 4.00000 0.207390
\(373\) −15.9059 + 27.5498i −0.823575 + 1.42647i 0.0794280 + 0.996841i \(0.474691\pi\)
−0.903003 + 0.429634i \(0.858643\pi\)
\(374\) −1.50000 2.59808i −0.0775632 0.134343i
\(375\) 3.96863 + 6.87386i 0.204939 + 0.354965i
\(376\) 5.96863 10.3380i 0.307808 0.533140i
\(377\) −8.00000 −0.412021
\(378\) 1.32288 + 2.29129i 0.0680414 + 0.117851i
\(379\) −6.41699 −0.329619 −0.164809 0.986325i \(-0.552701\pi\)
−0.164809 + 0.986325i \(0.552701\pi\)
\(380\) −7.00000 + 12.1244i −0.359092 + 0.621966i
\(381\) −1.32288 2.29129i −0.0677730 0.117386i
\(382\) 8.64575 + 14.9749i 0.442355 + 0.766182i
\(383\) −14.6458 + 25.3672i −0.748363 + 1.29620i 0.200244 + 0.979746i \(0.435826\pi\)
−0.948607 + 0.316457i \(0.897507\pi\)
\(384\) 1.00000 0.0510310
\(385\) −3.50000 + 6.06218i −0.178377 + 0.308957i
\(386\) −15.8745 −0.807991
\(387\) 0.645751 1.11847i 0.0328254 0.0568552i
\(388\) −4.79150 8.29913i −0.243252 0.421324i
\(389\) −8.03137 13.9107i −0.407207 0.705303i 0.587369 0.809319i \(-0.300164\pi\)
−0.994576 + 0.104017i \(0.966830\pi\)
\(390\) −5.29150 + 9.16515i −0.267946 + 0.464095i
\(391\) −7.93725 −0.401404
\(392\) 3.50000 + 6.06218i 0.176777 + 0.306186i
\(393\) −2.58301 −0.130295
\(394\) −4.93725 + 8.55157i −0.248735 + 0.430822i
\(395\) 7.08301 + 12.2681i 0.356385 + 0.617276i
\(396\) −0.500000 0.866025i −0.0251259 0.0435194i
\(397\) −3.00000 + 5.19615i −0.150566 + 0.260787i −0.931436 0.363906i \(-0.881443\pi\)
0.780870 + 0.624694i \(0.214776\pi\)
\(398\) −23.1660 −1.16121
\(399\) 7.00000 12.1244i 0.350438 0.606977i
\(400\) 2.00000 0.100000
\(401\) 2.06275 3.57278i 0.103009 0.178416i −0.809914 0.586548i \(-0.800486\pi\)
0.912923 + 0.408132i \(0.133820\pi\)
\(402\) 6.79150 + 11.7632i 0.338729 + 0.586696i
\(403\) −8.00000 13.8564i −0.398508 0.690237i
\(404\) 1.64575 2.85052i 0.0818792 0.141819i
\(405\) −2.64575 −0.131468
\(406\) −2.64575 4.58258i −0.131306 0.227429i
\(407\) −9.29150 −0.460563
\(408\) 1.50000 2.59808i 0.0742611 0.128624i
\(409\) −2.06275 3.57278i −0.101996 0.176663i 0.810511 0.585724i \(-0.199190\pi\)
−0.912507 + 0.409061i \(0.865856\pi\)
\(410\) −11.9059 20.6216i −0.587990 1.01843i
\(411\) −1.35425 + 2.34563i −0.0668002 + 0.115701i
\(412\) −10.0000 −0.492665
\(413\) 38.5830 1.89855
\(414\) −2.64575 −0.130032
\(415\) −7.38562 + 12.7923i −0.362546 + 0.627948i
\(416\) −2.00000 3.46410i −0.0980581 0.169842i
\(417\) 4.29150 + 7.43310i 0.210156 + 0.364001i
\(418\) −2.64575 + 4.58258i −0.129408 + 0.224141i
\(419\) 21.8745 1.06864 0.534320 0.845282i \(-0.320568\pi\)
0.534320 + 0.845282i \(0.320568\pi\)
\(420\) −7.00000 −0.341565
\(421\) 37.8745 1.84589 0.922945 0.384931i \(-0.125775\pi\)
0.922945 + 0.384931i \(0.125775\pi\)
\(422\) 5.35425 9.27383i 0.260641 0.451443i
\(423\) −5.96863 10.3380i −0.290205 0.502649i
\(424\) 2.00000 + 3.46410i 0.0971286 + 0.168232i
\(425\) 3.00000 5.19615i 0.145521 0.252050i
\(426\) −13.2915 −0.643975
\(427\) −5.20850 9.02138i −0.252057 0.436575i
\(428\) 9.00000 0.435031
\(429\) −2.00000 + 3.46410i −0.0965609 + 0.167248i
\(430\) 1.70850 + 2.95920i 0.0823911 + 0.142706i
\(431\) 3.35425 + 5.80973i 0.161568 + 0.279845i 0.935431 0.353508i \(-0.115011\pi\)
−0.773863 + 0.633353i \(0.781678\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −19.5830 −0.941099 −0.470550 0.882374i \(-0.655944\pi\)
−0.470550 + 0.882374i \(0.655944\pi\)
\(434\) 5.29150 9.16515i 0.254000 0.439941i
\(435\) 5.29150 0.253708
\(436\) −5.96863 + 10.3380i −0.285845 + 0.495099i
\(437\) 7.00000 + 12.1244i 0.334855 + 0.579987i
\(438\) 2.35425 + 4.07768i 0.112490 + 0.194839i
\(439\) 7.32288 12.6836i 0.349502 0.605355i −0.636659 0.771145i \(-0.719684\pi\)
0.986161 + 0.165790i \(0.0530175\pi\)
\(440\) 2.64575 0.126131
\(441\) 7.00000 0.333333
\(442\) −12.0000 −0.570782
\(443\) −5.58301 + 9.67005i −0.265257 + 0.459438i −0.967631 0.252370i \(-0.918790\pi\)
0.702374 + 0.711808i \(0.252123\pi\)
\(444\) −4.64575 8.04668i −0.220478 0.381878i
\(445\) 17.5830 + 30.4547i 0.833514 + 1.44369i
\(446\) −12.2288 + 21.1808i −0.579048 + 1.00294i
\(447\) 11.8745 0.561645
\(448\) 1.32288 2.29129i 0.0625000 0.108253i
\(449\) −22.4575 −1.05984 −0.529918 0.848049i \(-0.677777\pi\)
−0.529918 + 0.848049i \(0.677777\pi\)
\(450\) 1.00000 1.73205i 0.0471405 0.0816497i
\(451\) −4.50000 7.79423i −0.211897 0.367016i
\(452\) 4.29150 + 7.43310i 0.201855 + 0.349624i
\(453\) 8.67712 15.0292i 0.407687 0.706134i
\(454\) −23.5830 −1.10681
\(455\) 14.0000 + 24.2487i 0.656330 + 1.13680i
\(456\) −5.29150 −0.247797
\(457\) 9.70850 16.8156i 0.454144 0.786601i −0.544494 0.838765i \(-0.683278\pi\)
0.998639 + 0.0521635i \(0.0166117\pi\)
\(458\) 8.64575 + 14.9749i 0.403989 + 0.699730i
\(459\) −1.50000 2.59808i −0.0700140 0.121268i
\(460\) 3.50000 6.06218i 0.163188 0.282650i
\(461\) −3.41699 −0.159145 −0.0795727 0.996829i \(-0.525356\pi\)
−0.0795727 + 0.996829i \(0.525356\pi\)
\(462\) −2.64575 −0.123091
\(463\) −35.0405 −1.62847 −0.814235 0.580535i \(-0.802844\pi\)
−0.814235 + 0.580535i \(0.802844\pi\)
\(464\) −1.00000 + 1.73205i −0.0464238 + 0.0804084i
\(465\) 5.29150 + 9.16515i 0.245388 + 0.425024i
\(466\) −11.0830 19.1963i −0.513410 0.889253i
\(467\) −4.00000 + 6.92820i −0.185098 + 0.320599i −0.943610 0.331061i \(-0.892594\pi\)
0.758512 + 0.651660i \(0.225927\pi\)
\(468\) −4.00000 −0.184900
\(469\) 35.9373 1.65943
\(470\) 31.5830 1.45682
\(471\) −5.64575 + 9.77873i −0.260142 + 0.450580i
\(472\) −7.29150 12.6293i −0.335619 0.581308i
\(473\) 0.645751 + 1.11847i 0.0296917 + 0.0514275i
\(474\) −2.67712 + 4.63692i −0.122964 + 0.212981i
\(475\) −10.5830 −0.485582
\(476\) −3.96863 6.87386i −0.181902 0.315063i
\(477\) 4.00000 0.183147
\(478\) 6.64575 11.5108i 0.303970 0.526491i
\(479\) 1.06275 + 1.84073i 0.0485581 + 0.0841051i 0.889283 0.457358i \(-0.151204\pi\)
−0.840725 + 0.541463i \(0.817871\pi\)
\(480\) 1.32288 + 2.29129i 0.0603807 + 0.104583i
\(481\) −18.5830 + 32.1867i −0.847312 + 1.46759i
\(482\) −15.1660 −0.690793
\(483\) −3.50000 + 6.06218i −0.159256 + 0.275839i
\(484\) 1.00000 0.0454545
\(485\) 12.6771 21.9574i 0.575639 0.997035i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) 4.93725 + 8.55157i 0.223728 + 0.387509i 0.955937 0.293571i \(-0.0948438\pi\)
−0.732209 + 0.681080i \(0.761510\pi\)
\(488\) −1.96863 + 3.40976i −0.0891156 + 0.154353i
\(489\) −15.5830 −0.704688
\(490\) −9.26013 + 16.0390i −0.418330 + 0.724569i
\(491\) −1.00000 −0.0451294 −0.0225647 0.999745i \(-0.507183\pi\)
−0.0225647 + 0.999745i \(0.507183\pi\)
\(492\) 4.50000 7.79423i 0.202876 0.351391i
\(493\) 3.00000 + 5.19615i 0.135113 + 0.234023i
\(494\) 10.5830 + 18.3303i 0.476152 + 0.824719i
\(495\) 1.32288 2.29129i 0.0594588 0.102986i
\(496\) −4.00000 −0.179605
\(497\) −17.5830 + 30.4547i −0.788706 + 1.36608i
\(498\) −5.58301 −0.250180
\(499\) −1.29150 + 2.23695i −0.0578156 + 0.100140i −0.893485 0.449094i \(-0.851747\pi\)
0.835669 + 0.549233i \(0.185080\pi\)
\(500\) −3.96863 6.87386i −0.177482 0.307409i
\(501\) 9.64575 + 16.7069i 0.430940 + 0.746411i
\(502\) 6.35425 11.0059i 0.283604 0.491217i
\(503\) 9.29150 0.414288 0.207144 0.978311i \(-0.433583\pi\)
0.207144 + 0.978311i \(0.433583\pi\)
\(504\) −1.32288 2.29129i −0.0589256 0.102062i
\(505\) 8.70850 0.387523
\(506\) 1.32288 2.29129i 0.0588090 0.101860i
\(507\) 1.50000 + 2.59808i 0.0666173 + 0.115385i
\(508\) 1.32288 + 2.29129i 0.0586931 + 0.101659i
\(509\) 8.58301 14.8662i 0.380435 0.658933i −0.610689 0.791870i \(-0.709108\pi\)
0.991124 + 0.132937i \(0.0424409\pi\)
\(510\) 7.93725 0.351468
\(511\) 12.4575 0.551088
\(512\) −1.00000 −0.0441942
\(513\) −2.64575 + 4.58258i −0.116813 + 0.202326i
\(514\) −0.645751 1.11847i −0.0284829 0.0493338i
\(515\) −13.2288 22.9129i −0.582929 1.00966i
\(516\) −0.645751 + 1.11847i −0.0284276 + 0.0492381i
\(517\) 11.9373 0.525000
\(518\) −24.5830 −1.08012
\(519\) −4.00000 −0.175581
\(520\) 5.29150 9.16515i 0.232048 0.401918i
\(521\) −21.0000 36.3731i −0.920027 1.59353i −0.799370 0.600839i \(-0.794833\pi\)
−0.120656 0.992694i \(-0.538500\pi\)
\(522\) 1.00000 + 1.73205i 0.0437688 + 0.0758098i
\(523\) −6.64575 + 11.5108i −0.290598 + 0.503331i −0.973951 0.226757i \(-0.927188\pi\)
0.683353 + 0.730088i \(0.260521\pi\)
\(524\) 2.58301 0.112839
\(525\) −2.64575 4.58258i −0.115470 0.200000i
\(526\) 9.87451 0.430549
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0.500000 + 0.866025i 0.0217597 + 0.0376889i
\(529\) 8.00000 + 13.8564i 0.347826 + 0.602452i
\(530\) −5.29150 + 9.16515i −0.229848 + 0.398109i
\(531\) −14.5830 −0.632849
\(532\) −7.00000 + 12.1244i −0.303488 + 0.525657i
\(533\) −36.0000 −1.55933
\(534\) −6.64575 + 11.5108i −0.287590 + 0.498120i
\(535\) 11.9059 + 20.6216i 0.514736 + 0.891549i
\(536\) −6.79150 11.7632i −0.293348 0.508094i
\(537\) 7.64575 13.2428i 0.329939 0.571470i
\(538\) 5.35425 0.230838
\(539\) −3.50000 + 6.06218i −0.150756 + 0.261116i
\(540\) 2.64575 0.113855
\(541\) 21.9059 37.9421i 0.941807 1.63126i 0.179787 0.983706i \(-0.442459\pi\)
0.762021 0.647553i \(-0.224207\pi\)
\(542\) −0.645751 1.11847i −0.0277374 0.0480426i
\(543\) 2.64575 + 4.58258i 0.113540 + 0.196657i
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) −31.5830 −1.35287
\(546\) −5.29150 + 9.16515i −0.226455 + 0.392232i
\(547\) 25.2915 1.08139 0.540693 0.841220i \(-0.318162\pi\)
0.540693 + 0.841220i \(0.318162\pi\)
\(548\) 1.35425 2.34563i 0.0578506 0.100200i
\(549\) 1.96863 + 3.40976i 0.0840190 + 0.145525i
\(550\) 1.00000 + 1.73205i 0.0426401 + 0.0738549i
\(551\) 5.29150 9.16515i 0.225426 0.390449i
\(552\) 2.64575 0.112611
\(553\) 7.08301 + 12.2681i 0.301200 + 0.521694i
\(554\) −25.1660 −1.06920
\(555\) 12.2915 21.2895i 0.521745 0.903689i
\(556\) −4.29150 7.43310i −0.182000 0.315234i
\(557\) 4.35425 + 7.54178i 0.184495 + 0.319555i 0.943406 0.331639i \(-0.107602\pi\)
−0.758911 + 0.651194i \(0.774268\pi\)
\(558\) −2.00000 + 3.46410i −0.0846668 + 0.146647i
\(559\) 5.16601 0.218499
\(560\) 7.00000 0.295804
\(561\) 3.00000 0.126660
\(562\) −1.50000 + 2.59808i −0.0632737 + 0.109593i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 5.96863 + 10.3380i 0.251325 + 0.435307i
\(565\) −11.3542 + 19.6661i −0.477677 + 0.827361i
\(566\) 22.4575 0.943960
\(567\) −2.64575 −0.111111
\(568\) 13.2915 0.557699
\(569\) −13.5830 + 23.5265i −0.569429 + 0.986280i 0.427193 + 0.904160i \(0.359502\pi\)
−0.996622 + 0.0821200i \(0.973831\pi\)
\(570\) −7.00000 12.1244i −0.293198 0.507833i
\(571\) −16.8745 29.2275i −0.706176 1.22313i −0.966265 0.257548i \(-0.917085\pi\)
0.260089 0.965585i \(-0.416248\pi\)
\(572\) 2.00000 3.46410i 0.0836242 0.144841i
\(573\) −17.2915 −0.722363
\(574\) −11.9059 20.6216i −0.496942 0.860729i
\(575\) 5.29150 0.220671
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 20.3745 + 35.2897i 0.848202 + 1.46913i 0.882811 + 0.469728i \(0.155648\pi\)
−0.0346094 + 0.999401i \(0.511019\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 7.93725 13.7477i 0.329861 0.571336i
\(580\) −5.29150 −0.219718
\(581\) −7.38562 + 12.7923i −0.306407 + 0.530713i
\(582\) 9.58301 0.397228
\(583\) −2.00000 + 3.46410i −0.0828315 + 0.143468i
\(584\) −2.35425 4.07768i −0.0974195 0.168736i
\(585\) −5.29150 9.16515i −0.218777 0.378932i
\(586\) 3.29150 5.70105i 0.135971 0.235508i
\(587\) −21.8745 −0.902858 −0.451429 0.892307i \(-0.649086\pi\)
−0.451429 + 0.892307i \(0.649086\pi\)
\(588\) −7.00000 −0.288675
\(589\) 21.1660 0.872130
\(590\) 19.2915 33.4139i 0.794219 1.37563i
\(591\) −4.93725 8.55157i −0.203091 0.351765i
\(592\) 4.64575 + 8.04668i 0.190939 + 0.330716i
\(593\) −18.8745 + 32.6916i −0.775083 + 1.34248i 0.159665 + 0.987171i \(0.448959\pi\)
−0.934748 + 0.355312i \(0.884375\pi\)
\(594\) 1.00000 0.0410305
\(595\) 10.5000 18.1865i 0.430458 0.745575i
\(596\) −11.8745 −0.486399
\(597\) 11.5830 20.0624i 0.474061 0.821097i
\(598\) −5.29150 9.16515i −0.216386 0.374791i
\(599\) −17.3229 30.0041i −0.707794 1.22593i −0.965674 0.259757i \(-0.916357\pi\)
0.257880 0.966177i \(-0.416976\pi\)
\(600\) −1.00000 + 1.73205i −0.0408248 + 0.0707107i
\(601\) −17.4170 −0.710454 −0.355227 0.934780i \(-0.615596\pi\)
−0.355227 + 0.934780i \(0.615596\pi\)
\(602\) 1.70850 + 2.95920i 0.0696332 + 0.120608i
\(603\) −13.5830 −0.553143
\(604\) −8.67712 + 15.0292i −0.353067 + 0.611530i
\(605\) 1.32288 + 2.29129i 0.0537825 + 0.0931541i
\(606\) 1.64575 + 2.85052i 0.0668541 + 0.115795i
\(607\) −22.5516 + 39.0606i −0.915343 + 1.58542i −0.108943 + 0.994048i \(0.534747\pi\)
−0.806399 + 0.591372i \(0.798587\pi\)
\(608\) 5.29150 0.214599
\(609\) 5.29150 0.214423
\(610\) −10.4170 −0.421772
\(611\) 23.8745 41.3519i 0.965859 1.67292i
\(612\) 1.50000 + 2.59808i 0.0606339 + 0.105021i
\(613\) 19.9059 + 34.4780i 0.803991 + 1.39255i 0.916970 + 0.398956i \(0.130627\pi\)
−0.112979 + 0.993597i \(0.536039\pi\)
\(614\) −16.2915 + 28.2177i −0.657472 + 1.13877i
\(615\) 23.8118 0.960183
\(616\) 2.64575 0.106600
\(617\) −25.2915 −1.01820 −0.509099 0.860708i \(-0.670021\pi\)
−0.509099 + 0.860708i \(0.670021\pi\)
\(618\) 5.00000 8.66025i 0.201129 0.348367i
\(619\) 20.5000 + 35.5070i 0.823965 + 1.42715i 0.902708 + 0.430254i \(0.141576\pi\)
−0.0787435 + 0.996895i \(0.525091\pi\)
\(620\) −5.29150 9.16515i −0.212512 0.368081i
\(621\) 1.32288 2.29129i 0.0530852 0.0919462i
\(622\) 14.5203 0.582209
\(623\) 17.5830 + 30.4547i 0.704448 + 1.22014i
\(624\) 4.00000 0.160128
\(625\) 15.5000 26.8468i 0.620000 1.07387i
\(626\) 0.291503 + 0.504897i 0.0116508 + 0.0201798i
\(627\) −2.64575 4.58258i −0.105661 0.183010i
\(628\) 5.64575 9.77873i 0.225290 0.390214i
\(629\) 27.8745 1.11143
\(630\) 3.50000 6.06218i 0.139443 0.241523i
\(631\) 10.1255 0.403089 0.201545 0.979479i \(-0.435404\pi\)
0.201545 + 0.979479i \(0.435404\pi\)
\(632\) 2.67712 4.63692i 0.106490 0.184447i
\(633\) 5.35425 + 9.27383i 0.212812 + 0.368602i
\(634\) −8.61438 14.9205i −0.342121 0.592570i
\(635\) −3.50000 + 6.06218i −0.138893 + 0.240570i
\(636\) −4.00000 −0.158610
\(637\) 14.0000 + 24.2487i 0.554700 + 0.960769i
\(638\) −2.00000 −0.0791808
\(639\) 6.64575 11.5108i 0.262902 0.455359i
\(640\) −1.32288 2.29129i −0.0522913 0.0905711i
\(641\) 2.70850 + 4.69126i 0.106979 + 0.185293i 0.914545 0.404484i \(-0.132549\pi\)
−0.807566 + 0.589777i \(0.799216\pi\)
\(642\) −4.50000 + 7.79423i −0.177601 + 0.307614i
\(643\) 41.1660 1.62343 0.811714 0.584054i \(-0.198535\pi\)
0.811714 + 0.584054i \(0.198535\pi\)
\(644\) 3.50000 6.06218i 0.137919 0.238883i
\(645\) −3.41699 −0.134544
\(646\) 7.93725 13.7477i 0.312287 0.540897i
\(647\) −21.1974 36.7149i −0.833355 1.44341i −0.895363 0.445338i \(-0.853084\pi\)
0.0620075 0.998076i \(-0.480250\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 7.29150 12.6293i 0.286217 0.495742i
\(650\) 8.00000 0.313786
\(651\) 5.29150 + 9.16515i 0.207390 + 0.359211i
\(652\) 15.5830 0.610278
\(653\) −6.55163 + 11.3478i −0.256385 + 0.444072i −0.965271 0.261251i \(-0.915865\pi\)
0.708886 + 0.705323i \(0.249198\pi\)
\(654\) −5.96863 10.3380i −0.233392 0.404246i
\(655\) 3.41699 + 5.91841i 0.133513 + 0.231251i
\(656\) −4.50000 + 7.79423i −0.175695 + 0.304314i
\(657\) −4.70850 −0.183696
\(658\) 31.5830 1.23123
\(659\) 18.1660 0.707647 0.353824 0.935312i \(-0.384881\pi\)
0.353824 + 0.935312i \(0.384881\pi\)
\(660\) −1.32288 + 2.29129i −0.0514929 + 0.0891883i
\(661\) −15.6458 27.0992i −0.608549 1.05404i −0.991480 0.130261i \(-0.958418\pi\)
0.382931 0.923777i \(-0.374915\pi\)
\(662\) 6.50000 + 11.2583i 0.252630 + 0.437567i
\(663\) 6.00000 10.3923i 0.233021 0.403604i
\(664\) 5.58301 0.216663
\(665\) −37.0405 −1.43637
\(666\) 9.29150 0.360038
\(667\) −2.64575 + 4.58258i −0.102444 + 0.177438i
\(668\) −9.64575 16.7069i −0.373205 0.646411i
\(669\) −12.2288 21.1808i −0.472791 0.818898i
\(670\) 17.9686 31.1226i 0.694189 1.20237i
\(671\) −3.93725 −0.151996
\(672\) 1.32288 + 2.29129i 0.0510310 + 0.0883883i
\(673\) −40.5830 −1.56436 −0.782180 0.623053i \(-0.785892\pi\)
−0.782180 + 0.623053i \(0.785892\pi\)
\(674\) 8.64575 14.9749i 0.333022 0.576811i
\(675\) 1.00000 + 1.73205i 0.0384900 + 0.0666667i
\(676\) −1.50000 2.59808i −0.0576923 0.0999260i
\(677\) 19.9373 34.5323i 0.766251 1.32719i −0.173332 0.984863i \(-0.555453\pi\)
0.939583 0.342322i \(-0.111213\pi\)
\(678\) −8.58301 −0.329628
\(679\) 12.6771 21.9574i 0.486503 0.842649i
\(680\) −7.93725 −0.304380
\(681\) 11.7915 20.4235i 0.451851 0.782630i
\(682\) −2.00000 3.46410i −0.0765840 0.132647i
\(683\) −12.5830 21.7944i −0.481475 0.833940i 0.518299 0.855200i \(-0.326566\pi\)
−0.999774 + 0.0212600i \(0.993232\pi\)
\(684\) 2.64575 4.58258i 0.101163 0.175219i
\(685\) 7.16601 0.273799
\(686\) −9.26013 + 16.0390i −0.353553 + 0.612372i
\(687\) −17.2915 −0.659712
\(688\) 0.645751 1.11847i 0.0246190 0.0426414i
\(689\) 8.00000 + 13.8564i 0.304776 + 0.527887i
\(690\) 3.50000 + 6.06218i 0.133243 + 0.230783i
\(691\) 14.0830 24.3925i 0.535743 0.927934i −0.463384 0.886157i \(-0.653365\pi\)
0.999127 0.0417762i \(-0.0133017\pi\)
\(692\) 4.00000 0.152057
\(693\) 1.32288 2.29129i 0.0502519 0.0870388i
\(694\) −8.41699 −0.319505
\(695\) 11.3542 19.6661i 0.430691 0.745979i
\(696\) −1.00000 1.73205i −0.0379049 0.0656532i
\(697\) 13.5000 + 23.3827i 0.511349 + 0.885682i
\(698\) 6.61438 11.4564i 0.250358 0.433633i
\(699\) 22.1660 0.838396
\(700\) 2.64575 + 4.58258i 0.100000 + 0.173205i
\(701\) −10.4575 −0.394975 −0.197487 0.980305i \(-0.563278\pi\)
−0.197487 + 0.980305i \(0.563278\pi\)
\(702\) 2.00000 3.46410i 0.0754851 0.130744i
\(703\) −24.5830 42.5790i −0.927166 1.60590i
\(704\) −0.500000 0.866025i −0.0188445 0.0326396i
\(705\) −15.7915 + 27.3517i −0.594742 + 1.03012i
\(706\) 12.7085 0.478291
\(707\) 8.70850 0.327517
\(708\) 14.5830 0.548063
\(709\) 23.8745 41.3519i 0.896626 1.55300i 0.0648467 0.997895i \(-0.479344\pi\)
0.831779 0.555106i \(-0.187322\pi\)
\(710\) 17.5830 + 30.4547i 0.659878 + 1.14294i
\(711\) −2.67712 4.63692i −0.100400 0.173898i
\(712\) 6.64575 11.5108i 0.249060 0.431385i
\(713\) −10.5830 −0.396337
\(714\) 7.93725 0.297044
\(715\) 10.5830 0.395782
\(716\) −7.64575 + 13.2428i −0.285735 + 0.494908i
\(717\) 6.64575 + 11.5108i 0.248190 + 0.429878i
\(718\) −0.291503 0.504897i −0.0108788 0.0188426i
\(719\) 21.9686 38.0508i 0.819292 1.41905i −0.0869134 0.996216i \(-0.527700\pi\)
0.906205 0.422839i \(-0.138966\pi\)
\(720\) −2.64575 −0.0986013
\(721\) −13.2288 22.9129i −0.492665 0.853320i
\(722\) −9.00000 −0.334945
\(723\) 7.58301 13.1342i 0.282015 0.488464i
\(724\) −2.64575 4.58258i −0.0983286 0.170310i
\(725\) −2.00000 3.46410i −0.0742781 0.128654i
\(726\) −0.500000 + 0.866025i −0.0185567 + 0.0321412i
\(727\) −2.00000 −0.0741759 −0.0370879 0.999312i \(-0.511808\pi\)
−0.0370879 + 0.999312i \(0.511808\pi\)
\(728\) 5.29150 9.16515i 0.196116 0.339683i
\(729\) 1.00000 0.0370370
\(730\) 6.22876 10.7885i 0.230537 0.399301i
\(731\) −1.93725 3.35542i −0.0716519 0.124105i
\(732\) −1.96863 3.40976i −0.0727625 0.126028i
\(733\) 1.96863 3.40976i 0.0727129 0.125942i −0.827377 0.561648i \(-0.810168\pi\)
0.900089 + 0.435705i \(0.143501\pi\)
\(734\) −21.2915 −0.785884
\(735\) −9.26013 16.0390i −0.341565 0.591608i
\(736\) −2.64575 −0.0975237
\(737\) 6.79150 11.7632i 0.250168 0.433304i
\(738\) 4.50000 + 7.79423i 0.165647 + 0.286910i
\(739\) 1.70850 + 2.95920i 0.0628481 + 0.108856i 0.895737 0.444584i \(-0.146648\pi\)
−0.832889 + 0.553440i \(0.813315\pi\)
\(740\) −12.2915 + 21.2895i −0.451845 + 0.782618i
\(741\) −21.1660 −0.777553
\(742\) −5.29150 + 9.16515i −0.194257 + 0.336463i
\(743\) −29.2915 −1.07460 −0.537301 0.843391i \(-0.680556\pi\)
−0.537301 + 0.843391i \(0.680556\pi\)
\(744\) 2.00000 3.46410i 0.0733236 0.127000i
\(745\) −15.7085 27.2079i −0.575515 0.996821i
\(746\) 15.9059 + 27.5498i 0.582356 + 1.00867i
\(747\) 2.79150 4.83502i 0.102136 0.176904i
\(748\) −3.00000 −0.109691
\(749\) 11.9059 + 20.6216i 0.435031 + 0.753497i
\(750\) 7.93725 0.289828
\(751\) 9.35425 16.2020i 0.341341 0.591221i −0.643341 0.765580i \(-0.722452\pi\)
0.984682 + 0.174359i \(0.0557854\pi\)
\(752\) −5.96863 10.3380i −0.217653 0.376987i
\(753\) 6.35425 + 11.0059i 0.231562 + 0.401077i
\(754\) −4.00000 + 6.92820i −0.145671 + 0.252310i
\(755\) −45.9150 −1.67102
\(756\) 2.64575 0.0962250
\(757\) −11.4170 −0.414958 −0.207479 0.978240i \(-0.566526\pi\)
−0.207479 + 0.978240i \(0.566526\pi\)
\(758\) −3.20850 + 5.55728i −0.116538 + 0.201850i
\(759\) 1.32288 + 2.29129i 0.0480173 + 0.0831685i
\(760\) 7.00000 + 12.1244i 0.253917 + 0.439797i
\(761\) −13.2085 + 22.8778i −0.478808 + 0.829319i −0.999705 0.0243003i \(-0.992264\pi\)
0.520897 + 0.853620i \(0.325598\pi\)
\(762\) −2.64575 −0.0958455
\(763\) −31.5830 −1.14338
\(764\) 17.2915 0.625585
\(765\) −3.96863 + 6.87386i −0.143486 + 0.248525i
\(766\) 14.6458 + 25.3672i 0.529173 + 0.916554i
\(767\) −29.1660 50.5170i −1.05312 1.82406i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −41.2915 −1.48901 −0.744505 0.667617i \(-0.767314\pi\)
−0.744505 + 0.667617i \(0.767314\pi\)
\(770\) 3.50000 + 6.06218i 0.126131 + 0.218466i
\(771\) 1.29150 0.0465123
\(772\) −7.93725 + 13.7477i −0.285668 + 0.494792i
\(773\) 11.9686 + 20.7303i 0.430482 + 0.745616i 0.996915 0.0784917i \(-0.0250104\pi\)
−0.566433 + 0.824108i \(0.691677\pi\)
\(774\) −0.645751 1.11847i −0.0232111 0.0402027i
\(775\) 4.00000 6.92820i 0.143684 0.248868i
\(776\) −9.58301 −0.344010
\(777\) 12.2915 21.2895i 0.440955 0.763757i
\(778\) −16.0627 −0.575877
\(779\) 23.8118 41.2432i 0.853145 1.47769i
\(780\) 5.29150 + 9.16515i 0.189466 + 0.328165i
\(781\) 6.64575 + 11.5108i 0.237804 + 0.411888i
\(782\) −3.96863 + 6.87386i −0.141918 + 0.245809i
\(783\) −2.00000 −0.0714742
\(784\) 7.00000 0.250000
\(785\) 29.8745 1.06627
\(786\) −1.29150 + 2.23695i −0.0460664 + 0.0797893i
\(787\) 0.645751 + 1.11847i 0.0230185 + 0.0398693i 0.877305 0.479933i \(-0.159339\pi\)
−0.854287 + 0.519802i \(0.826006\pi\)
\(788\) 4.93725 + 8.55157i 0.175882 + 0.304637i
\(789\) −4.93725 + 8.55157i −0.175771 + 0.304444i
\(790\) 14.1660 0.504004
\(791\) −11.3542 + 19.6661i −0.403711 + 0.699247i
\(792\) −1.00000 −0.0355335
\(793\) −7.87451 + 13.6390i −0.279632 + 0.484337i
\(794\) 3.00000 + 5.19615i 0.106466 + 0.184405i
\(795\) −5.29150 9.16515i −0.187670 0.325054i
\(796\) −11.5830 + 20.0624i −0.410549 + 0.711091i
\(797\) −13.1033 −0.464141 −0.232071 0.972699i \(-0.574550\pi\)
−0.232071 + 0.972699i \(0.574550\pi\)
\(798\) −7.00000 12.1244i −0.247797 0.429198i
\(799\) −35.8118 −1.26693
\(800\) 1.00000 1.73205i 0.0353553 0.0612372i
\(801\) −6.64575 11.5108i −0.234816 0.406713i
\(802\) −2.06275 3.57278i −0.0728381 0.126159i
\(803\) 2.35425 4.07768i 0.0830796 0.143898i
\(804\) 13.5830 0.479036
\(805\) 18.5203 0.652753
\(806\) −16.0000 −0.563576
\(807\) −2.67712 + 4.63692i −0.0942392 + 0.163227i
\(808\) −1.64575 2.85052i −0.0578973 0.100281i
\(809\) 19.6660 + 34.0625i 0.691420 + 1.19757i 0.971373 + 0.237561i \(0.0763479\pi\)
−0.279953 + 0.960014i \(0.590319\pi\)
\(810\) −1.32288 + 2.29129i −0.0464811 + 0.0805076i
\(811\) −4.58301 −0.160931 −0.0804655 0.996757i \(-0.525641\pi\)
−0.0804655 + 0.996757i \(0.525641\pi\)
\(812\) −5.29150 −0.185695
\(813\) 1.29150 0.0452950
\(814\) −4.64575 + 8.04668i −0.162833 + 0.282036i
\(815\) 20.6144 + 35.7052i 0.722090 + 1.25070i
\(816\) −1.50000 2.59808i −0.0525105 0.0909509i
\(817\) −3.41699 + 5.91841i −0.119546 + 0.207059i
\(818\) −4.12549 −0.144244
\(819\) −5.29150 9.16515i −0.184900 0.320256i
\(820\) −23.8118 −0.831543
\(821\) −27.1660 + 47.0529i −0.948100 + 1.64216i −0.198679 + 0.980065i \(0.563665\pi\)
−0.749421 + 0.662093i \(0.769668\pi\)
\(822\) 1.35425 + 2.34563i 0.0472348 + 0.0818132i
\(823\) 21.9373 + 37.9964i 0.764685 + 1.32447i 0.940413 + 0.340034i \(0.110439\pi\)
−0.175729 + 0.984439i \(0.556228\pi\)
\(824\) −5.00000 + 8.66025i −0.174183 + 0.301694i
\(825\) −2.00000 −0.0696311
\(826\) 19.2915 33.4139i 0.671237 1.16262i
\(827\) −49.3320 −1.71544 −0.857721 0.514115i \(-0.828120\pi\)
−0.857721 + 0.514115i \(0.828120\pi\)
\(828\) −1.32288 + 2.29129i −0.0459731 + 0.0796278i
\(829\) 5.93725 + 10.2836i 0.206209 + 0.357165i 0.950517 0.310671i \(-0.100554\pi\)
−0.744308 + 0.667836i \(0.767221\pi\)
\(830\) 7.38562 + 12.7923i 0.256359 + 0.444026i
\(831\) 12.5830 21.7944i 0.436500 0.756040i
\(832\) −4.00000 −0.138675
\(833\) 10.5000 18.1865i 0.363803 0.630126i
\(834\) 8.58301 0.297205
\(835\) 25.5203 44.2024i 0.883165 1.52969i
\(836\) 2.64575 + 4.58258i 0.0915052 + 0.158492i
\(837\) −2.00000 3.46410i −0.0691301 0.119737i
\(838\) 10.9373 18.9439i 0.377821 0.654405i
\(839\) 21.1033 0.728566 0.364283 0.931288i \(-0.381314\pi\)
0.364283 + 0.931288i \(0.381314\pi\)
\(840\) −3.50000 + 6.06218i −0.120761 + 0.209165i
\(841\) −25.0000 −0.862069
\(842\) 18.9373 32.8003i 0.652621 1.13037i
\(843\) −1.50000 2.59808i −0.0516627 0.0894825i
\(844\) −5.35425 9.27383i −0.184301 0.319218i
\(845\) 3.96863 6.87386i 0.136525 0.236468i
\(846\) −11.9373 −0.410411
\(847\) 1.32288 + 2.29129i 0.0454545 + 0.0787296i
\(848\) 4.00000 0.137361
\(849\) −11.2288 + 19.4488i −0.385370 + 0.667480i
\(850\) −3.00000 5.19615i −0.102899 0.178227i
\(851\) 12.2915 + 21.2895i 0.421347 + 0.729795i
\(852\) −6.64575 + 11.5108i −0.227680 + 0.394353i
\(853\) −22.5203 −0.771079 −0.385539 0.922691i \(-0.625985\pi\)
−0.385539 + 0.922691i \(0.625985\pi\)
\(854\) −10.4170 −0.356462
\(855\) 14.0000 0.478790
\(856\) 4.50000 7.79423i 0.153807 0.266401i
\(857\) −26.0830 45.1771i −0.890978 1.54322i −0.838704 0.544587i \(-0.816686\pi\)
−0.0522743 0.998633i \(-0.516647\pi\)
\(858\) 2.00000 + 3.46410i 0.0682789 + 0.118262i
\(859\) 7.37451 12.7730i 0.251615 0.435810i −0.712356 0.701819i \(-0.752372\pi\)
0.963971 + 0.266009i \(0.0857050\pi\)
\(860\) 3.41699 0.116519
\(861\) 23.8118 0.811503
\(862\) 6.70850 0.228492
\(863\) −12.5516 + 21.7401i −0.427263 + 0.740040i −0.996629 0.0820436i \(-0.973855\pi\)
0.569366 + 0.822084i \(0.307189\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) 5.29150 + 9.16515i 0.179916 + 0.311624i
\(866\) −9.79150 + 16.9594i −0.332729 + 0.576303i
\(867\) 8.00000 0.271694
\(868\) −5.29150 9.16515i −0.179605 0.311086i
\(869\) 5.35425 0.181630
\(870\) 2.64575 4.58258i 0.0896994 0.155364i
\(871\) −27.1660 47.0529i −0.920485 1.59433i
\(872\) 5.96863 + 10.3380i 0.202123 + 0.350088i
\(873\) −4.79150 + 8.29913i −0.162168 + 0.280883i
\(874\) 14.0000 0.473557
\(875\) 10.5000 18.1865i 0.354965 0.614817i
\(876\) 4.70850 0.159085
\(877\) −18.6144 + 32.2410i −0.628563 + 1.08870i 0.359277 + 0.933231i \(0.383023\pi\)
−0.987840 + 0.155472i \(0.950310\pi\)
\(878\) −7.32288 12.6836i −0.247135 0.428051i
\(879\) 3.29150 + 5.70105i 0.111020 + 0.192292i
\(880\) 1.32288 2.29129i 0.0445941 0.0772393i
\(881\) −19.1660 −0.645719 −0.322860 0.946447i \(-0.604644\pi\)
−0.322860 + 0.946447i \(0.604644\pi\)
\(882\) 3.50000 6.06218i 0.117851 0.204124i
\(883\) −55.5830 −1.87052 −0.935259 0.353965i \(-0.884833\pi\)
−0.935259 + 0.353965i \(0.884833\pi\)
\(884\) −6.00000 + 10.3923i −0.201802 + 0.349531i
\(885\) 19.2915 + 33.4139i 0.648477 + 1.12319i
\(886\) 5.58301 + 9.67005i 0.187565 + 0.324872i
\(887\) −21.5203 + 37.2742i −0.722580 + 1.25154i 0.237383 + 0.971416i \(0.423710\pi\)
−0.959963 + 0.280128i \(0.909623\pi\)
\(888\) −9.29150 −0.311802
\(889\) −3.50000 + 6.06218i −0.117386 + 0.203319i
\(890\) 35.1660 1.17877
\(891\) −0.500000 + 0.866025i −0.0167506 + 0.0290129i
\(892\) 12.2288 + 21.1808i 0.409449 + 0.709187i
\(893\) 31.5830 + 54.7034i 1.05688 + 1.83058i
\(894\) 5.93725 10.2836i 0.198571 0.343936i
\(895\) −40.4575 −1.35235
\(896\) −1.32288 2.29129i −0.0441942 0.0765466i
\(897\) 10.5830 0.353356
\(898\) −11.2288 + 19.4488i −0.374708 + 0.649014i
\(899\) 4.00000 + 6.92820i 0.133407 + 0.231069i
\(900\) −1.00000 1.73205i −0.0333333 0.0577350i
\(901\) 6.00000 10.3923i 0.199889 0.346218i
\(902\) −9.00000 −0.299667
\(903\) −3.41699 −0.113710
\(904\) 8.58301 0.285467
\(905\) 7.00000 12.1244i 0.232688 0.403027i
\(906\) −8.67712 15.0292i −0.288278 0.499312i
\(907\) 29.0830 + 50.3732i 0.965685 + 1.67262i 0.707762 + 0.706451i \(0.249705\pi\)
0.257923 + 0.966165i \(0.416962\pi\)
\(908\) −11.7915 + 20.4235i −0.391315 + 0.677777i
\(909\) −3.29150 −0.109172
\(910\) 28.0000 0.928191
\(911\) 50.3948 1.66965 0.834827 0.550513i \(-0.185568\pi\)
0.834827 + 0.550513i \(0.185568\pi\)
\(912\) −2.64575 + 4.58258i −0.0876096 + 0.151744i
\(913\) 2.79150 + 4.83502i 0.0923853 + 0.160016i
\(914\) −9.70850 16.8156i −0.321129 0.556211i
\(915\) 5.20850 9.02138i 0.172188 0.298238i
\(916\) 17.2915 0.571327
\(917\) 3.41699 + 5.91841i 0.112839 + 0.195443i
\(918\) −3.00000 −0.0990148
\(919\) −7.32288 + 12.6836i −0.241559 + 0.418393i −0.961159 0.275996i \(-0.910992\pi\)
0.719599 + 0.694390i \(0.244326\pi\)
\(920\) −3.50000 6.06218i −0.115392 0.199864i
\(921\) −16.2915 28.2177i −0.536823 0.929805i
\(922\) −1.70850 + 2.95920i −0.0562664 + 0.0974562i
\(923\) 53.1660 1.74998
\(924\) −1.32288 + 2.29129i −0.0435194 + 0.0753778i
\(925\) −18.5830 −0.611005
\(926\) −17.5203 + 30.3460i −0.575751 + 0.997231i
\(927\) 5.00000 + 8.66025i 0.164222 + 0.284440i
\(928\) 1.00000 + 1.73205i 0.0328266 + 0.0568574i
\(929\) −9.22876 + 15.9847i −0.302786 + 0.524440i −0.976766 0.214309i \(-0.931250\pi\)
0.673980 + 0.738749i \(0.264583\pi\)
\(930\) 10.5830 0.347030
\(931\) −37.0405 −1.21395
\(932\) −22.1660 −0.726072
\(933\) −7.26013 + 12.5749i −0.237686 + 0.411684i
\(934\) 4.00000 + 6.92820i 0.130884 + 0.226698i
\(935\) −3.96863 6.87386i −0.129788 0.224799i
\(936\) −2.00000 + 3.46410i −0.0653720 + 0.113228i
\(937\) 50.0000 1.63343 0.816714 0.577042i \(-0.195793\pi\)
0.816714 + 0.577042i \(0.195793\pi\)
\(938\) 17.9686 31.1226i 0.586696 1.01619i
\(939\) −0.583005 −0.0190257
\(940\) 15.7915 27.3517i 0.515062 0.892114i
\(941\) −12.2915 21.2895i −0.400692 0.694018i 0.593118 0.805116i \(-0.297897\pi\)
−0.993810 + 0.111097i \(0.964563\pi\)
\(942\) 5.64575 + 9.77873i 0.183949 + 0.318608i
\(943\) −11.9059 + 20.6216i −0.387709 + 0.671531i
\(944\) −14.5830 −0.474636
\(945\) 3.50000 + 6.06218i 0.113855 + 0.197203i
\(946\) 1.29150 0.0419904
\(947\) 18.2915 31.6818i 0.594394 1.02952i −0.399238 0.916847i \(-0.630725\pi\)
0.993632 0.112673i \(-0.0359413\pi\)
\(948\) 2.67712 + 4.63692i 0.0869490 + 0.150600i
\(949\) −9.41699 16.3107i −0.305689 0.529468i
\(950\) −5.29150 + 9.16515i −0.171679 + 0.297357i
\(951\) 17.2288 0.558681
\(952\) −7.93725 −0.257248
\(953\) −36.7490 −1.19042 −0.595209 0.803571i \(-0.702931\pi\)
−0.595209 + 0.803571i \(0.702931\pi\)
\(954\) 2.00000 3.46410i 0.0647524 0.112154i
\(955\) 22.8745 + 39.6198i 0.740202 + 1.28207i
\(956\) −6.64575 11.5108i −0.214939 0.372285i
\(957\) 1.00000 1.73205i 0.0323254 0.0559893i
\(958\) 2.12549 0.0686715
\(959\) 7.16601 0.231403
\(960\) 2.64575 0.0853913
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 18.5830 + 32.1867i 0.599140 + 1.03774i
\(963\) −4.50000 7.79423i −0.145010 0.251166i
\(964\) −7.58301 + 13.1342i −0.244232 + 0.423022i
\(965\) −42.0000 −1.35203
\(966\) 3.50000 + 6.06218i 0.112611 + 0.195047i
\(967\) 55.9373 1.79882 0.899410 0.437105i \(-0.143996\pi\)
0.899410 + 0.437105i \(0.143996\pi\)
\(968\) 0.500000 0.866025i 0.0160706 0.0278351i
\(969\) 7.93725 + 13.7477i 0.254981 + 0.441641i
\(970\) −12.6771 21.9574i −0.407038 0.705010i
\(971\) −3.00000 + 5.19615i −0.0962746 + 0.166752i −0.910140 0.414301i \(-0.864026\pi\)
0.813865 + 0.581054i \(0.197359\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 11.3542 19.6661i 0.364001 0.630467i
\(974\) 9.87451 0.316400
\(975\) −4.00000 + 6.92820i −0.128103 + 0.221880i
\(976\) 1.96863 + 3.40976i 0.0630142 + 0.109144i
\(977\) 14.5830 + 25.2585i 0.466552 + 0.808091i 0.999270 0.0382014i \(-0.0121628\pi\)
−0.532718 + 0.846293i \(0.678830\pi\)
\(978\) −7.79150 + 13.4953i −0.249145 + 0.431531i
\(979\) 13.2915 0.424798
\(980\) 9.26013 + 16.0390i 0.295804 + 0.512348i
\(981\) 11.9373 0.381127
\(982\) −0.500000 + 0.866025i −0.0159556 + 0.0276360i
\(983\) −2.73987 4.74559i −0.0873883 0.151361i 0.819018 0.573768i \(-0.194519\pi\)
−0.906406 + 0.422407i \(0.861185\pi\)
\(984\) −4.50000 7.79423i −0.143455 0.248471i
\(985\) −13.0627 + 22.6253i −0.416214 + 0.720903i
\(986\) 6.00000 0.191079
\(987\) −15.7915 + 27.3517i −0.502649 + 0.870614i
\(988\) 21.1660 0.673380
\(989\) 1.70850 2.95920i 0.0543271 0.0940972i
\(990\) −1.32288 2.29129i −0.0420437 0.0728219i
\(991\) 6.06275 + 10.5010i 0.192589 + 0.333575i 0.946108 0.323852i \(-0.104978\pi\)
−0.753518 + 0.657427i \(0.771645\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) −13.0000 −0.412543
\(994\) 17.5830 + 30.4547i 0.557699 + 0.965963i
\(995\) −61.2915 −1.94307
\(996\) −2.79150 + 4.83502i −0.0884521 + 0.153204i
\(997\) −24.5830 42.5790i −0.778552 1.34849i −0.932777 0.360455i \(-0.882621\pi\)
0.154225 0.988036i \(-0.450712\pi\)
\(998\) 1.29150 + 2.23695i 0.0408818 + 0.0708094i
\(999\) −4.64575 + 8.04668i −0.146985 + 0.254586i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 462.2.i.e.331.2 yes 4
3.2 odd 2 1386.2.k.r.793.1 4
7.2 even 3 3234.2.a.w.1.1 2
7.4 even 3 inner 462.2.i.e.67.2 4
7.5 odd 6 3234.2.a.ba.1.2 2
21.2 odd 6 9702.2.a.db.1.2 2
21.5 even 6 9702.2.a.dm.1.1 2
21.11 odd 6 1386.2.k.r.991.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.i.e.67.2 4 7.4 even 3 inner
462.2.i.e.331.2 yes 4 1.1 even 1 trivial
1386.2.k.r.793.1 4 3.2 odd 2
1386.2.k.r.991.1 4 21.11 odd 6
3234.2.a.w.1.1 2 7.2 even 3
3234.2.a.ba.1.2 2 7.5 odd 6
9702.2.a.db.1.2 2 21.2 odd 6
9702.2.a.dm.1.1 2 21.5 even 6