Properties

Label 464.2.a.d.1.1
Level $464$
Weight $2$
Character 464.1
Self dual yes
Analytic conductor $3.705$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.70505865379\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -3.00000 q^{5} -2.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -3.00000 q^{5} -2.00000 q^{7} -2.00000 q^{9} +3.00000 q^{11} -5.00000 q^{13} -3.00000 q^{15} -4.00000 q^{17} -2.00000 q^{21} +4.00000 q^{25} -5.00000 q^{27} -1.00000 q^{29} -9.00000 q^{31} +3.00000 q^{33} +6.00000 q^{35} +8.00000 q^{37} -5.00000 q^{39} -2.00000 q^{41} +11.0000 q^{43} +6.00000 q^{45} +7.00000 q^{47} -3.00000 q^{49} -4.00000 q^{51} +9.00000 q^{53} -9.00000 q^{55} -4.00000 q^{59} -12.0000 q^{61} +4.00000 q^{63} +15.0000 q^{65} -12.0000 q^{67} -2.00000 q^{71} -4.00000 q^{73} +4.00000 q^{75} -6.00000 q^{77} -3.00000 q^{79} +1.00000 q^{81} +16.0000 q^{83} +12.0000 q^{85} -1.00000 q^{87} +2.00000 q^{89} +10.0000 q^{91} -9.00000 q^{93} -14.0000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −9.00000 −1.61645 −0.808224 0.588875i \(-0.799571\pi\)
−0.808224 + 0.588875i \(0.799571\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) 6.00000 1.01419
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) −5.00000 −0.800641
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 0 0
\(45\) 6.00000 0.894427
\(46\) 0 0
\(47\) 7.00000 1.02105 0.510527 0.859861i \(-0.329450\pi\)
0.510527 + 0.859861i \(0.329450\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) 0 0
\(55\) −9.00000 −1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −12.0000 −1.53644 −0.768221 0.640184i \(-0.778858\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 4.00000 0.503953
\(64\) 0 0
\(65\) 15.0000 1.86052
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) −3.00000 −0.337526 −0.168763 0.985657i \(-0.553977\pi\)
−0.168763 + 0.985657i \(0.553977\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 10.0000 1.04828
\(92\) 0 0
\(93\) −9.00000 −0.933257
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 0 0
\(105\) 6.00000 0.585540
\(106\) 0 0
\(107\) 14.0000 1.35343 0.676716 0.736245i \(-0.263403\pi\)
0.676716 + 0.736245i \(0.263403\pi\)
\(108\) 0 0
\(109\) 1.00000 0.0957826 0.0478913 0.998853i \(-0.484750\pi\)
0.0478913 + 0.998853i \(0.484750\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.0000 0.924500
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 15.0000 1.29099
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 7.00000 0.589506
\(142\) 0 0
\(143\) −15.0000 −1.25436
\(144\) 0 0
\(145\) 3.00000 0.249136
\(146\) 0 0
\(147\) −3.00000 −0.247436
\(148\) 0 0
\(149\) 11.0000 0.901155 0.450578 0.892737i \(-0.351218\pi\)
0.450578 + 0.892737i \(0.351218\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) 27.0000 2.16869
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 15.0000 1.17489 0.587445 0.809264i \(-0.300134\pi\)
0.587445 + 0.809264i \(0.300134\pi\)
\(164\) 0 0
\(165\) −9.00000 −0.700649
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) −8.00000 −0.604743
\(176\) 0 0
\(177\) −4.00000 −0.300658
\(178\) 0 0
\(179\) −22.0000 −1.64436 −0.822179 0.569230i \(-0.807242\pi\)
−0.822179 + 0.569230i \(0.807242\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) −12.0000 −0.887066
\(184\) 0 0
\(185\) −24.0000 −1.76452
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 0 0
\(189\) 10.0000 0.727393
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 15.0000 1.07417
\(196\) 0 0
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) −26.0000 −1.84309 −0.921546 0.388270i \(-0.873073\pi\)
−0.921546 + 0.388270i \(0.873073\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 2.00000 0.140372
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.00000 0.206529 0.103264 0.994654i \(-0.467071\pi\)
0.103264 + 0.994654i \(0.467071\pi\)
\(212\) 0 0
\(213\) −2.00000 −0.137038
\(214\) 0 0
\(215\) −33.0000 −2.25058
\(216\) 0 0
\(217\) 18.0000 1.22192
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) 20.0000 1.34535
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) −8.00000 −0.533333
\(226\) 0 0
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) −21.0000 −1.36989
\(236\) 0 0
\(237\) −3.00000 −0.194871
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) −3.00000 −0.189358 −0.0946792 0.995508i \(-0.530183\pi\)
−0.0946792 + 0.995508i \(0.530183\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 12.0000 0.751469
\(256\) 0 0
\(257\) 29.0000 1.80897 0.904485 0.426505i \(-0.140255\pi\)
0.904485 + 0.426505i \(0.140255\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 19.0000 1.17159 0.585795 0.810459i \(-0.300782\pi\)
0.585795 + 0.810459i \(0.300782\pi\)
\(264\) 0 0
\(265\) −27.0000 −1.65860
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) 25.0000 1.51864 0.759321 0.650716i \(-0.225531\pi\)
0.759321 + 0.650716i \(0.225531\pi\)
\(272\) 0 0
\(273\) 10.0000 0.605228
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 18.0000 1.07763
\(280\) 0 0
\(281\) −29.0000 −1.72999 −0.864997 0.501776i \(-0.832680\pi\)
−0.864997 + 0.501776i \(0.832680\pi\)
\(282\) 0 0
\(283\) −24.0000 −1.42665 −0.713326 0.700832i \(-0.752812\pi\)
−0.713326 + 0.700832i \(0.752812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) −15.0000 −0.870388
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −22.0000 −1.26806
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 36.0000 2.06135
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) −15.0000 −0.847850 −0.423925 0.905697i \(-0.639348\pi\)
−0.423925 + 0.905697i \(0.639348\pi\)
\(314\) 0 0
\(315\) −12.0000 −0.676123
\(316\) 0 0
\(317\) 8.00000 0.449325 0.224662 0.974437i \(-0.427872\pi\)
0.224662 + 0.974437i \(0.427872\pi\)
\(318\) 0 0
\(319\) −3.00000 −0.167968
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −20.0000 −1.10940
\(326\) 0 0
\(327\) 1.00000 0.0553001
\(328\) 0 0
\(329\) −14.0000 −0.771845
\(330\) 0 0
\(331\) −17.0000 −0.934405 −0.467202 0.884150i \(-0.654738\pi\)
−0.467202 + 0.884150i \(0.654738\pi\)
\(332\) 0 0
\(333\) −16.0000 −0.876795
\(334\) 0 0
\(335\) 36.0000 1.96689
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −27.0000 −1.46213
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −30.0000 −1.61048 −0.805242 0.592946i \(-0.797965\pi\)
−0.805242 + 0.592946i \(0.797965\pi\)
\(348\) 0 0
\(349\) 21.0000 1.12410 0.562052 0.827102i \(-0.310012\pi\)
0.562052 + 0.827102i \(0.310012\pi\)
\(350\) 0 0
\(351\) 25.0000 1.33440
\(352\) 0 0
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) 8.00000 0.423405
\(358\) 0 0
\(359\) −3.00000 −0.158334 −0.0791670 0.996861i \(-0.525226\pi\)
−0.0791670 + 0.996861i \(0.525226\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −18.0000 −0.934513
\(372\) 0 0
\(373\) 15.0000 0.776671 0.388335 0.921518i \(-0.373050\pi\)
0.388335 + 0.921518i \(0.373050\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 0 0
\(385\) 18.0000 0.917365
\(386\) 0 0
\(387\) −22.0000 −1.11832
\(388\) 0 0
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 9.00000 0.452839
\(396\) 0 0
\(397\) −13.0000 −0.652451 −0.326226 0.945292i \(-0.605777\pi\)
−0.326226 + 0.945292i \(0.605777\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.0000 0.549314 0.274657 0.961542i \(-0.411436\pi\)
0.274657 + 0.961542i \(0.411436\pi\)
\(402\) 0 0
\(403\) 45.0000 2.24161
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −48.0000 −2.35623
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) 0 0
\(423\) −14.0000 −0.680703
\(424\) 0 0
\(425\) −16.0000 −0.776114
\(426\) 0 0
\(427\) 24.0000 1.16144
\(428\) 0 0
\(429\) −15.0000 −0.724207
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 8.00000 0.384455 0.192228 0.981350i \(-0.438429\pi\)
0.192228 + 0.981350i \(0.438429\pi\)
\(434\) 0 0
\(435\) 3.00000 0.143839
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 11.0000 0.520282
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 2.00000 0.0939682
\(454\) 0 0
\(455\) −30.0000 −1.40642
\(456\) 0 0
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) 0 0
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 27.0000 1.25210
\(466\) 0 0
\(467\) −21.0000 −0.971764 −0.485882 0.874024i \(-0.661502\pi\)
−0.485882 + 0.874024i \(0.661502\pi\)
\(468\) 0 0
\(469\) 24.0000 1.10822
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 0 0
\(473\) 33.0000 1.51734
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 0 0
\(479\) 17.0000 0.776750 0.388375 0.921501i \(-0.373037\pi\)
0.388375 + 0.921501i \(0.373037\pi\)
\(480\) 0 0
\(481\) −40.0000 −1.82384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 42.0000 1.90712
\(486\) 0 0
\(487\) −14.0000 −0.634401 −0.317200 0.948359i \(-0.602743\pi\)
−0.317200 + 0.948359i \(0.602743\pi\)
\(488\) 0 0
\(489\) 15.0000 0.678323
\(490\) 0 0
\(491\) −15.0000 −0.676941 −0.338470 0.940977i \(-0.609909\pi\)
−0.338470 + 0.940977i \(0.609909\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 18.0000 0.809040
\(496\) 0 0
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 16.0000 0.716258 0.358129 0.933672i \(-0.383415\pi\)
0.358129 + 0.933672i \(0.383415\pi\)
\(500\) 0 0
\(501\) 18.0000 0.804181
\(502\) 0 0
\(503\) 9.00000 0.401290 0.200645 0.979664i \(-0.435696\pi\)
0.200645 + 0.979664i \(0.435696\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 29.0000 1.28540 0.642701 0.766117i \(-0.277814\pi\)
0.642701 + 0.766117i \(0.277814\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −30.0000 −1.32196
\(516\) 0 0
\(517\) 21.0000 0.923579
\(518\) 0 0
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) −29.0000 −1.27051 −0.635257 0.772301i \(-0.719106\pi\)
−0.635257 + 0.772301i \(0.719106\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) −8.00000 −0.349149
\(526\) 0 0
\(527\) 36.0000 1.56818
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) −42.0000 −1.81582
\(536\) 0 0
\(537\) −22.0000 −0.949370
\(538\) 0 0
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) 19.0000 0.815368
\(544\) 0 0
\(545\) −3.00000 −0.128506
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 0 0
\(549\) 24.0000 1.02430
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 6.00000 0.255146
\(554\) 0 0
\(555\) −24.0000 −1.01874
\(556\) 0 0
\(557\) −34.0000 −1.44063 −0.720313 0.693649i \(-0.756002\pi\)
−0.720313 + 0.693649i \(0.756002\pi\)
\(558\) 0 0
\(559\) −55.0000 −2.32625
\(560\) 0 0
\(561\) −12.0000 −0.506640
\(562\) 0 0
\(563\) −13.0000 −0.547885 −0.273942 0.961746i \(-0.588328\pi\)
−0.273942 + 0.961746i \(0.588328\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 28.0000 1.16566 0.582828 0.812596i \(-0.301946\pi\)
0.582828 + 0.812596i \(0.301946\pi\)
\(578\) 0 0
\(579\) 2.00000 0.0831172
\(580\) 0 0
\(581\) −32.0000 −1.32758
\(582\) 0 0
\(583\) 27.0000 1.11823
\(584\) 0 0
\(585\) −30.0000 −1.24035
\(586\) 0 0
\(587\) −32.0000 −1.32078 −0.660391 0.750922i \(-0.729609\pi\)
−0.660391 + 0.750922i \(0.729609\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −14.0000 −0.575883
\(592\) 0 0
\(593\) −25.0000 −1.02663 −0.513313 0.858201i \(-0.671582\pi\)
−0.513313 + 0.858201i \(0.671582\pi\)
\(594\) 0 0
\(595\) −24.0000 −0.983904
\(596\) 0 0
\(597\) −26.0000 −1.06411
\(598\) 0 0
\(599\) 1.00000 0.0408589 0.0204294 0.999791i \(-0.493497\pi\)
0.0204294 + 0.999791i \(0.493497\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 24.0000 0.977356
\(604\) 0 0
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) 9.00000 0.365299 0.182649 0.983178i \(-0.441533\pi\)
0.182649 + 0.983178i \(0.441533\pi\)
\(608\) 0 0
\(609\) 2.00000 0.0810441
\(610\) 0 0
\(611\) −35.0000 −1.41595
\(612\) 0 0
\(613\) 37.0000 1.49442 0.747208 0.664590i \(-0.231394\pi\)
0.747208 + 0.664590i \(0.231394\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) −28.0000 −1.12724 −0.563619 0.826035i \(-0.690591\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(618\) 0 0
\(619\) −5.00000 −0.200967 −0.100483 0.994939i \(-0.532039\pi\)
−0.100483 + 0.994939i \(0.532039\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −32.0000 −1.27592
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) 0 0
\(633\) 3.00000 0.119239
\(634\) 0 0
\(635\) 48.0000 1.90482
\(636\) 0 0
\(637\) 15.0000 0.594322
\(638\) 0 0
\(639\) 4.00000 0.158238
\(640\) 0 0
\(641\) 28.0000 1.10593 0.552967 0.833203i \(-0.313496\pi\)
0.552967 + 0.833203i \(0.313496\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) −33.0000 −1.29937
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 18.0000 0.705476
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 8.00000 0.312110
\(658\) 0 0
\(659\) 25.0000 0.973862 0.486931 0.873441i \(-0.338116\pi\)
0.486931 + 0.873441i \(0.338116\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 0 0
\(663\) 20.0000 0.776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) −36.0000 −1.38976
\(672\) 0 0
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) 0 0
\(675\) −20.0000 −0.769800
\(676\) 0 0
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) 8.00000 0.306111 0.153056 0.988218i \(-0.451089\pi\)
0.153056 + 0.988218i \(0.451089\pi\)
\(684\) 0 0
\(685\) 36.0000 1.37549
\(686\) 0 0
\(687\) −26.0000 −0.991962
\(688\) 0 0
\(689\) −45.0000 −1.71436
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 0 0
\(693\) 12.0000 0.455842
\(694\) 0 0
\(695\) 24.0000 0.910372
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) −9.00000 −0.340411
\(700\) 0 0
\(701\) 7.00000 0.264386 0.132193 0.991224i \(-0.457798\pi\)
0.132193 + 0.991224i \(0.457798\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −21.0000 −0.790906
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −37.0000 −1.38956 −0.694782 0.719220i \(-0.744499\pi\)
−0.694782 + 0.719220i \(0.744499\pi\)
\(710\) 0 0
\(711\) 6.00000 0.225018
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 45.0000 1.68290
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) 26.0000 0.969636 0.484818 0.874615i \(-0.338886\pi\)
0.484818 + 0.874615i \(0.338886\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) 1.00000 0.0371904
\(724\) 0 0
\(725\) −4.00000 −0.148556
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −44.0000 −1.62740
\(732\) 0 0
\(733\) −24.0000 −0.886460 −0.443230 0.896408i \(-0.646168\pi\)
−0.443230 + 0.896408i \(0.646168\pi\)
\(734\) 0 0
\(735\) 9.00000 0.331970
\(736\) 0 0
\(737\) −36.0000 −1.32608
\(738\) 0 0
\(739\) 37.0000 1.36107 0.680534 0.732717i \(-0.261748\pi\)
0.680534 + 0.732717i \(0.261748\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.0000 −0.733729 −0.366864 0.930274i \(-0.619569\pi\)
−0.366864 + 0.930274i \(0.619569\pi\)
\(744\) 0 0
\(745\) −33.0000 −1.20903
\(746\) 0 0
\(747\) −32.0000 −1.17082
\(748\) 0 0
\(749\) −28.0000 −1.02310
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) −3.00000 −0.109326
\(754\) 0 0
\(755\) −6.00000 −0.218362
\(756\) 0 0
\(757\) −20.0000 −0.726912 −0.363456 0.931611i \(-0.618403\pi\)
−0.363456 + 0.931611i \(0.618403\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 50.0000 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) 0 0
\(763\) −2.00000 −0.0724049
\(764\) 0 0
\(765\) −24.0000 −0.867722
\(766\) 0 0
\(767\) 20.0000 0.722158
\(768\) 0 0
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) 29.0000 1.04441
\(772\) 0 0
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) −36.0000 −1.29316
\(776\) 0 0
\(777\) −16.0000 −0.573997
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 5.00000 0.178685
\(784\) 0 0
\(785\) 54.0000 1.92734
\(786\) 0 0
\(787\) 30.0000 1.06938 0.534692 0.845047i \(-0.320428\pi\)
0.534692 + 0.845047i \(0.320428\pi\)
\(788\) 0 0
\(789\) 19.0000 0.676418
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 60.0000 2.13066
\(794\) 0 0
\(795\) −27.0000 −0.957591
\(796\) 0 0
\(797\) −20.0000 −0.708436 −0.354218 0.935163i \(-0.615253\pi\)
−0.354218 + 0.935163i \(0.615253\pi\)
\(798\) 0 0
\(799\) −28.0000 −0.990569
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\) −12.0000 −0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.0000 −0.422420
\(808\) 0 0
\(809\) 8.00000 0.281265 0.140633 0.990062i \(-0.455086\pi\)
0.140633 + 0.990062i \(0.455086\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 25.0000 0.876788
\(814\) 0 0
\(815\) −45.0000 −1.57628
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −20.0000 −0.698857
\(820\) 0 0
\(821\) −45.0000 −1.57051 −0.785255 0.619172i \(-0.787468\pi\)
−0.785255 + 0.619172i \(0.787468\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) −45.0000 −1.56480 −0.782402 0.622774i \(-0.786006\pi\)
−0.782402 + 0.622774i \(0.786006\pi\)
\(828\) 0 0
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) 12.0000 0.415775
\(834\) 0 0
\(835\) −54.0000 −1.86875
\(836\) 0 0
\(837\) 45.0000 1.55543
\(838\) 0 0
\(839\) −17.0000 −0.586905 −0.293453 0.955974i \(-0.594804\pi\)
−0.293453 + 0.955974i \(0.594804\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) −29.0000 −0.998813
\(844\) 0 0
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) 4.00000 0.137442
\(848\) 0 0
\(849\) −24.0000 −0.823678
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) 0 0
\(859\) 41.0000 1.39890 0.699451 0.714681i \(-0.253428\pi\)
0.699451 + 0.714681i \(0.253428\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 46.0000 1.56586 0.782929 0.622111i \(-0.213725\pi\)
0.782929 + 0.622111i \(0.213725\pi\)
\(864\) 0 0
\(865\) 42.0000 1.42804
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) −9.00000 −0.305304
\(870\) 0 0
\(871\) 60.0000 2.03302
\(872\) 0 0
\(873\) 28.0000 0.947656
\(874\) 0 0
\(875\) −6.00000 −0.202837
\(876\) 0 0
\(877\) 17.0000 0.574049 0.287025 0.957923i \(-0.407334\pi\)
0.287025 + 0.957923i \(0.407334\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 22.0000 0.740359 0.370179 0.928960i \(-0.379296\pi\)
0.370179 + 0.928960i \(0.379296\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) 0 0
\(887\) 3.00000 0.100730 0.0503651 0.998731i \(-0.483962\pi\)
0.0503651 + 0.998731i \(0.483962\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 66.0000 2.20614
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.00000 0.300167
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) 0 0
\(903\) −22.0000 −0.732114
\(904\) 0 0
\(905\) −57.0000 −1.89474
\(906\) 0 0
\(907\) 44.0000 1.46100 0.730498 0.682915i \(-0.239288\pi\)
0.730498 + 0.682915i \(0.239288\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −39.0000 −1.29213 −0.646064 0.763283i \(-0.723586\pi\)
−0.646064 + 0.763283i \(0.723586\pi\)
\(912\) 0 0
\(913\) 48.0000 1.58857
\(914\) 0 0
\(915\) 36.0000 1.19012
\(916\) 0 0
\(917\) −8.00000 −0.264183
\(918\) 0 0
\(919\) −54.0000 −1.78130 −0.890648 0.454694i \(-0.849749\pi\)
−0.890648 + 0.454694i \(0.849749\pi\)
\(920\) 0 0
\(921\) 7.00000 0.230658
\(922\) 0 0
\(923\) 10.0000 0.329154
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 0 0
\(927\) −20.0000 −0.656886
\(928\) 0 0
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) 36.0000 1.17733
\(936\) 0 0
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) 0 0
\(939\) −15.0000 −0.489506
\(940\) 0 0
\(941\) 33.0000 1.07577 0.537885 0.843018i \(-0.319224\pi\)
0.537885 + 0.843018i \(0.319224\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −30.0000 −0.975900
\(946\) 0 0
\(947\) −9.00000 −0.292461 −0.146230 0.989251i \(-0.546714\pi\)
−0.146230 + 0.989251i \(0.546714\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 0 0
\(951\) 8.00000 0.259418
\(952\) 0 0
\(953\) −33.0000 −1.06897 −0.534487 0.845176i \(-0.679495\pi\)
−0.534487 + 0.845176i \(0.679495\pi\)
\(954\) 0 0
\(955\) 72.0000 2.32987
\(956\) 0 0
\(957\) −3.00000 −0.0969762
\(958\) 0 0
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) 50.0000 1.61290
\(962\) 0 0
\(963\) −28.0000 −0.902287
\(964\) 0 0
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) 23.0000 0.739630 0.369815 0.929105i \(-0.379421\pi\)
0.369815 + 0.929105i \(0.379421\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 0 0
\(975\) −20.0000 −0.640513
\(976\) 0 0
\(977\) −3.00000 −0.0959785 −0.0479893 0.998848i \(-0.515281\pi\)
−0.0479893 + 0.998848i \(0.515281\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 3.00000 0.0956851 0.0478426 0.998855i \(-0.484765\pi\)
0.0478426 + 0.998855i \(0.484765\pi\)
\(984\) 0 0
\(985\) 42.0000 1.33823
\(986\) 0 0
\(987\) −14.0000 −0.445625
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −46.0000 −1.46124 −0.730619 0.682785i \(-0.760768\pi\)
−0.730619 + 0.682785i \(0.760768\pi\)
\(992\) 0 0
\(993\) −17.0000 −0.539479
\(994\) 0 0
\(995\) 78.0000 2.47277
\(996\) 0 0
\(997\) 8.00000 0.253363 0.126681 0.991943i \(-0.459567\pi\)
0.126681 + 0.991943i \(0.459567\pi\)
\(998\) 0 0
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.a.d.1.1 1
3.2 odd 2 4176.2.a.be.1.1 1
4.3 odd 2 232.2.a.a.1.1 1
8.3 odd 2 1856.2.a.m.1.1 1
8.5 even 2 1856.2.a.h.1.1 1
12.11 even 2 2088.2.a.m.1.1 1
20.19 odd 2 5800.2.a.j.1.1 1
116.115 odd 2 6728.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
232.2.a.a.1.1 1 4.3 odd 2
464.2.a.d.1.1 1 1.1 even 1 trivial
1856.2.a.h.1.1 1 8.5 even 2
1856.2.a.m.1.1 1 8.3 odd 2
2088.2.a.m.1.1 1 12.11 even 2
4176.2.a.be.1.1 1 3.2 odd 2
5800.2.a.j.1.1 1 20.19 odd 2
6728.2.a.c.1.1 1 116.115 odd 2