Properties

Label 464.2.bl.b.127.1
Level $464$
Weight $2$
Character 464.127
Analytic conductor $3.705$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(15,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([14, 0, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.15");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.bl (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 127.1
Character \(\chi\) \(=\) 464.127
Dual form 464.2.bl.b.95.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.09437 + 0.235979i) q^{3} +(1.34729 - 2.79769i) q^{5} +(2.30768 + 1.84031i) q^{7} +(1.40592 - 0.320892i) q^{9} +O(q^{10})\) \(q+(-2.09437 + 0.235979i) q^{3} +(1.34729 - 2.79769i) q^{5} +(2.30768 + 1.84031i) q^{7} +(1.40592 - 0.320892i) q^{9} +(-0.987209 + 0.620305i) q^{11} +(-2.56100 - 0.584532i) q^{13} +(-2.16154 + 6.17732i) q^{15} +(3.73220 - 3.73220i) q^{17} +(0.853070 - 7.57121i) q^{19} +(-5.26741 - 3.30973i) q^{21} +(0.662879 + 1.37648i) q^{23} +(-2.89439 - 3.62945i) q^{25} +(3.09926 - 1.08448i) q^{27} +(4.23107 + 3.33138i) q^{29} +(-2.96833 - 8.48299i) q^{31} +(1.92120 - 1.53211i) q^{33} +(8.25774 - 3.97672i) q^{35} +(4.32508 - 6.88332i) q^{37} +(5.50162 + 0.619884i) q^{39} +(4.31156 + 4.31156i) q^{41} +(-7.18386 - 2.51374i) q^{43} +(0.996434 - 4.36566i) q^{45} +(-1.48214 - 2.35881i) q^{47} +(0.380985 + 1.66920i) q^{49} +(-6.93590 + 8.69734i) q^{51} +(-1.01655 - 0.489545i) q^{53} +(0.405356 + 3.59763i) q^{55} +16.0582i q^{57} -6.17711i q^{59} +(-0.362218 - 3.21477i) q^{61} +(3.83496 + 1.84682i) q^{63} +(-5.08576 + 6.37734i) q^{65} +(2.81368 + 12.3275i) q^{67} +(-1.71314 - 2.72644i) q^{69} +(-1.65815 + 7.26482i) q^{71} +(4.24079 + 1.48392i) q^{73} +(6.91840 + 6.91840i) q^{75} +(-3.41972 - 0.385309i) q^{77} +(0.529403 - 0.842540i) q^{79} +(-10.1329 + 4.87974i) q^{81} +(-5.18722 + 4.13667i) q^{83} +(-5.41316 - 15.4699i) q^{85} +(-9.64756 - 5.97870i) q^{87} +(-7.27452 + 2.54547i) q^{89} +(-4.83425 - 6.06195i) q^{91} +(8.21858 + 17.0661i) q^{93} +(-20.0325 - 12.5873i) q^{95} +(-1.13893 + 10.1082i) q^{97} +(-1.18889 + 1.18889i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q+O(q^{10}) \) Copy content Toggle raw display \( 48 q - 16 q^{17} + 16 q^{21} + 24 q^{25} + 80 q^{29} + 84 q^{33} + 28 q^{37} + 8 q^{41} - 100 q^{45} + 24 q^{49} - 20 q^{53} + 32 q^{61} + 48 q^{65} + 56 q^{73} - 180 q^{77} - 152 q^{81} - 152 q^{85} - 84 q^{89} - 112 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{25}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.09437 + 0.235979i −1.20919 + 0.136243i −0.693450 0.720505i \(-0.743910\pi\)
−0.515736 + 0.856748i \(0.672481\pi\)
\(4\) 0 0
\(5\) 1.34729 2.79769i 0.602528 1.25116i −0.347113 0.937823i \(-0.612838\pi\)
0.949641 0.313339i \(-0.101448\pi\)
\(6\) 0 0
\(7\) 2.30768 + 1.84031i 0.872221 + 0.695573i 0.953589 0.301111i \(-0.0973576\pi\)
−0.0813684 + 0.996684i \(0.525929\pi\)
\(8\) 0 0
\(9\) 1.40592 0.320892i 0.468640 0.106964i
\(10\) 0 0
\(11\) −0.987209 + 0.620305i −0.297655 + 0.187029i −0.672577 0.740028i \(-0.734812\pi\)
0.374922 + 0.927056i \(0.377670\pi\)
\(12\) 0 0
\(13\) −2.56100 0.584532i −0.710294 0.162120i −0.147915 0.989000i \(-0.547256\pi\)
−0.562378 + 0.826880i \(0.690114\pi\)
\(14\) 0 0
\(15\) −2.16154 + 6.17732i −0.558107 + 1.59498i
\(16\) 0 0
\(17\) 3.73220 3.73220i 0.905193 0.905193i −0.0906869 0.995879i \(-0.528906\pi\)
0.995879 + 0.0906869i \(0.0289062\pi\)
\(18\) 0 0
\(19\) 0.853070 7.57121i 0.195708 1.73695i −0.385066 0.922889i \(-0.625821\pi\)
0.580773 0.814065i \(-0.302750\pi\)
\(20\) 0 0
\(21\) −5.26741 3.30973i −1.14944 0.722243i
\(22\) 0 0
\(23\) 0.662879 + 1.37648i 0.138220 + 0.287016i 0.958576 0.284836i \(-0.0919392\pi\)
−0.820356 + 0.571853i \(0.806225\pi\)
\(24\) 0 0
\(25\) −2.89439 3.62945i −0.578878 0.725890i
\(26\) 0 0
\(27\) 3.09926 1.08448i 0.596452 0.208708i
\(28\) 0 0
\(29\) 4.23107 + 3.33138i 0.785689 + 0.618622i
\(30\) 0 0
\(31\) −2.96833 8.48299i −0.533127 1.52359i −0.823864 0.566787i \(-0.808186\pi\)
0.290737 0.956803i \(-0.406099\pi\)
\(32\) 0 0
\(33\) 1.92120 1.53211i 0.334439 0.266706i
\(34\) 0 0
\(35\) 8.25774 3.97672i 1.39581 0.672188i
\(36\) 0 0
\(37\) 4.32508 6.88332i 0.711038 1.13161i −0.274406 0.961614i \(-0.588481\pi\)
0.985445 0.169997i \(-0.0543758\pi\)
\(38\) 0 0
\(39\) 5.50162 + 0.619884i 0.880965 + 0.0992609i
\(40\) 0 0
\(41\) 4.31156 + 4.31156i 0.673352 + 0.673352i 0.958487 0.285135i \(-0.0920384\pi\)
−0.285135 + 0.958487i \(0.592038\pi\)
\(42\) 0 0
\(43\) −7.18386 2.51374i −1.09553 0.383342i −0.278791 0.960352i \(-0.589934\pi\)
−0.816737 + 0.577010i \(0.804220\pi\)
\(44\) 0 0
\(45\) 0.996434 4.36566i 0.148540 0.650794i
\(46\) 0 0
\(47\) −1.48214 2.35881i −0.216192 0.344068i 0.720967 0.692969i \(-0.243698\pi\)
−0.937160 + 0.348901i \(0.886555\pi\)
\(48\) 0 0
\(49\) 0.380985 + 1.66920i 0.0544264 + 0.238458i
\(50\) 0 0
\(51\) −6.93590 + 8.69734i −0.971220 + 1.21787i
\(52\) 0 0
\(53\) −1.01655 0.489545i −0.139634 0.0672442i 0.362762 0.931882i \(-0.381834\pi\)
−0.502396 + 0.864638i \(0.667548\pi\)
\(54\) 0 0
\(55\) 0.405356 + 3.59763i 0.0546582 + 0.485105i
\(56\) 0 0
\(57\) 16.0582i 2.12696i
\(58\) 0 0
\(59\) 6.17711i 0.804191i −0.915598 0.402095i \(-0.868282\pi\)
0.915598 0.402095i \(-0.131718\pi\)
\(60\) 0 0
\(61\) −0.362218 3.21477i −0.0463772 0.411609i −0.995355 0.0962677i \(-0.969310\pi\)
0.948978 0.315341i \(-0.102119\pi\)
\(62\) 0 0
\(63\) 3.83496 + 1.84682i 0.483159 + 0.232677i
\(64\) 0 0
\(65\) −5.08576 + 6.37734i −0.630810 + 0.791011i
\(66\) 0 0
\(67\) 2.81368 + 12.3275i 0.343745 + 1.50605i 0.791098 + 0.611689i \(0.209510\pi\)
−0.447353 + 0.894357i \(0.647633\pi\)
\(68\) 0 0
\(69\) −1.71314 2.72644i −0.206237 0.328225i
\(70\) 0 0
\(71\) −1.65815 + 7.26482i −0.196786 + 0.862175i 0.776048 + 0.630673i \(0.217221\pi\)
−0.972834 + 0.231502i \(0.925636\pi\)
\(72\) 0 0
\(73\) 4.24079 + 1.48392i 0.496347 + 0.173679i 0.566832 0.823833i \(-0.308169\pi\)
−0.0704846 + 0.997513i \(0.522455\pi\)
\(74\) 0 0
\(75\) 6.91840 + 6.91840i 0.798868 + 0.798868i
\(76\) 0 0
\(77\) −3.41972 0.385309i −0.389713 0.0439101i
\(78\) 0 0
\(79\) 0.529403 0.842540i 0.0595625 0.0947932i −0.815615 0.578595i \(-0.803601\pi\)
0.875178 + 0.483801i \(0.160744\pi\)
\(80\) 0 0
\(81\) −10.1329 + 4.87974i −1.12588 + 0.542193i
\(82\) 0 0
\(83\) −5.18722 + 4.13667i −0.569371 + 0.454058i −0.865372 0.501129i \(-0.832918\pi\)
0.296001 + 0.955188i \(0.404347\pi\)
\(84\) 0 0
\(85\) −5.41316 15.4699i −0.587139 1.67795i
\(86\) 0 0
\(87\) −9.64756 5.97870i −1.03433 0.640984i
\(88\) 0 0
\(89\) −7.27452 + 2.54547i −0.771098 + 0.269819i −0.687018 0.726640i \(-0.741081\pi\)
−0.0840797 + 0.996459i \(0.526795\pi\)
\(90\) 0 0
\(91\) −4.83425 6.06195i −0.506767 0.635465i
\(92\) 0 0
\(93\) 8.21858 + 17.0661i 0.852227 + 1.76967i
\(94\) 0 0
\(95\) −20.0325 12.5873i −2.05529 1.29143i
\(96\) 0 0
\(97\) −1.13893 + 10.1082i −0.115640 + 1.02634i 0.793134 + 0.609048i \(0.208448\pi\)
−0.908774 + 0.417289i \(0.862980\pi\)
\(98\) 0 0
\(99\) −1.18889 + 1.18889i −0.119488 + 0.119488i
\(100\) 0 0
\(101\) −4.42617 + 12.6493i −0.440420 + 1.25865i 0.483257 + 0.875478i \(0.339454\pi\)
−0.923678 + 0.383171i \(0.874832\pi\)
\(102\) 0 0
\(103\) 9.59132 + 2.18916i 0.945061 + 0.215704i 0.667167 0.744908i \(-0.267507\pi\)
0.277894 + 0.960612i \(0.410364\pi\)
\(104\) 0 0
\(105\) −16.3563 + 10.2774i −1.59622 + 1.00297i
\(106\) 0 0
\(107\) 16.2627 3.71186i 1.57218 0.358839i 0.654468 0.756090i \(-0.272893\pi\)
0.917710 + 0.397251i \(0.130036\pi\)
\(108\) 0 0
\(109\) −7.40742 5.90722i −0.709503 0.565809i 0.200860 0.979620i \(-0.435626\pi\)
−0.910363 + 0.413810i \(0.864198\pi\)
\(110\) 0 0
\(111\) −7.43400 + 15.4369i −0.705604 + 1.46520i
\(112\) 0 0
\(113\) 12.1029 1.36367i 1.13855 0.128283i 0.477503 0.878630i \(-0.341542\pi\)
0.661044 + 0.750347i \(0.270113\pi\)
\(114\) 0 0
\(115\) 4.74406 0.442386
\(116\) 0 0
\(117\) −3.78814 −0.350213
\(118\) 0 0
\(119\) 15.4812 1.74431i 1.41915 0.159900i
\(120\) 0 0
\(121\) −4.18292 + 8.68592i −0.380265 + 0.789629i
\(122\) 0 0
\(123\) −10.0474 8.01257i −0.905947 0.722469i
\(124\) 0 0
\(125\) 1.08305 0.247200i 0.0968712 0.0221102i
\(126\) 0 0
\(127\) 14.0909 8.85389i 1.25036 0.785656i 0.266372 0.963870i \(-0.414175\pi\)
0.983992 + 0.178215i \(0.0570322\pi\)
\(128\) 0 0
\(129\) 15.6389 + 3.56947i 1.37693 + 0.314274i
\(130\) 0 0
\(131\) −2.04606 + 5.84730i −0.178765 + 0.510881i −0.998044 0.0625141i \(-0.980088\pi\)
0.819279 + 0.573395i \(0.194374\pi\)
\(132\) 0 0
\(133\) 15.9020 15.9020i 1.37888 1.37888i
\(134\) 0 0
\(135\) 1.14159 10.1318i 0.0982520 0.872011i
\(136\) 0 0
\(137\) 0.943425 + 0.592793i 0.0806022 + 0.0506457i 0.571730 0.820442i \(-0.306272\pi\)
−0.491128 + 0.871087i \(0.663415\pi\)
\(138\) 0 0
\(139\) 2.85245 + 5.92318i 0.241942 + 0.502398i 0.986213 0.165480i \(-0.0529173\pi\)
−0.744271 + 0.667877i \(0.767203\pi\)
\(140\) 0 0
\(141\) 3.66078 + 4.59048i 0.308294 + 0.386588i
\(142\) 0 0
\(143\) 2.89083 1.01155i 0.241743 0.0845897i
\(144\) 0 0
\(145\) 15.0206 7.34884i 1.24740 0.610288i
\(146\) 0 0
\(147\) −1.19182 3.40603i −0.0982997 0.280925i
\(148\) 0 0
\(149\) −14.6711 + 11.6998i −1.20190 + 0.958487i −0.999782 0.0208734i \(-0.993355\pi\)
−0.202122 + 0.979360i \(0.564784\pi\)
\(150\) 0 0
\(151\) −6.23281 + 3.00156i −0.507219 + 0.244264i −0.669949 0.742407i \(-0.733684\pi\)
0.162730 + 0.986671i \(0.447970\pi\)
\(152\) 0 0
\(153\) 4.04955 6.44482i 0.327387 0.521033i
\(154\) 0 0
\(155\) −27.7319 3.12464i −2.22748 0.250977i
\(156\) 0 0
\(157\) −5.35355 5.35355i −0.427260 0.427260i 0.460434 0.887694i \(-0.347694\pi\)
−0.887694 + 0.460434i \(0.847694\pi\)
\(158\) 0 0
\(159\) 2.24456 + 0.785405i 0.178005 + 0.0622866i
\(160\) 0 0
\(161\) −1.00345 + 4.39638i −0.0790826 + 0.346483i
\(162\) 0 0
\(163\) 10.1118 + 16.0928i 0.792014 + 1.26048i 0.961461 + 0.274943i \(0.0886590\pi\)
−0.169447 + 0.985539i \(0.554198\pi\)
\(164\) 0 0
\(165\) −1.69793 7.43912i −0.132184 0.579135i
\(166\) 0 0
\(167\) 15.3968 19.3069i 1.19144 1.49401i 0.364979 0.931016i \(-0.381076\pi\)
0.826457 0.562999i \(-0.190353\pi\)
\(168\) 0 0
\(169\) −5.49555 2.64652i −0.422735 0.203578i
\(170\) 0 0
\(171\) −1.23019 10.9183i −0.0940752 0.834941i
\(172\) 0 0
\(173\) 7.05771i 0.536587i 0.963337 + 0.268294i \(0.0864598\pi\)
−0.963337 + 0.268294i \(0.913540\pi\)
\(174\) 0 0
\(175\) 13.7022i 1.03579i
\(176\) 0 0
\(177\) 1.45767 + 12.9372i 0.109565 + 0.972416i
\(178\) 0 0
\(179\) 22.9964 + 11.0745i 1.71883 + 0.827745i 0.989664 + 0.143408i \(0.0458061\pi\)
0.729166 + 0.684337i \(0.239908\pi\)
\(180\) 0 0
\(181\) 3.41861 4.28680i 0.254103 0.318635i −0.638375 0.769725i \(-0.720393\pi\)
0.892478 + 0.451090i \(0.148965\pi\)
\(182\) 0 0
\(183\) 1.51724 + 6.64745i 0.112157 + 0.491393i
\(184\) 0 0
\(185\) −13.4302 21.3741i −0.987409 1.57145i
\(186\) 0 0
\(187\) −1.36936 + 5.99957i −0.100138 + 0.438732i
\(188\) 0 0
\(189\) 9.14786 + 3.20098i 0.665409 + 0.232837i
\(190\) 0 0
\(191\) −8.71514 8.71514i −0.630605 0.630605i 0.317615 0.948220i \(-0.397118\pi\)
−0.948220 + 0.317615i \(0.897118\pi\)
\(192\) 0 0
\(193\) 3.61876 + 0.407736i 0.260484 + 0.0293495i 0.241241 0.970465i \(-0.422446\pi\)
0.0192434 + 0.999815i \(0.493874\pi\)
\(194\) 0 0
\(195\) 9.14654 14.5566i 0.654998 1.04242i
\(196\) 0 0
\(197\) −21.6907 + 10.4457i −1.54540 + 0.744224i −0.995830 0.0912250i \(-0.970922\pi\)
−0.549567 + 0.835449i \(0.685207\pi\)
\(198\) 0 0
\(199\) −16.1895 + 12.9107i −1.14764 + 0.915216i −0.997301 0.0734183i \(-0.976609\pi\)
−0.150343 + 0.988634i \(0.548038\pi\)
\(200\) 0 0
\(201\) −8.80192 25.1544i −0.620840 1.77426i
\(202\) 0 0
\(203\) 3.63316 + 15.4742i 0.254998 + 1.08608i
\(204\) 0 0
\(205\) 17.8713 6.25345i 1.24819 0.436760i
\(206\) 0 0
\(207\) 1.37366 + 1.72251i 0.0954758 + 0.119723i
\(208\) 0 0
\(209\) 3.85430 + 8.00353i 0.266607 + 0.553616i
\(210\) 0 0
\(211\) −21.3418 13.4100i −1.46923 0.923180i −0.999178 0.0405424i \(-0.987091\pi\)
−0.470054 0.882637i \(-0.655766\pi\)
\(212\) 0 0
\(213\) 1.75843 15.6065i 0.120486 1.06934i
\(214\) 0 0
\(215\) −16.7114 + 16.7114i −1.13971 + 1.13971i
\(216\) 0 0
\(217\) 8.76141 25.0387i 0.594763 1.69974i
\(218\) 0 0
\(219\) −9.23197 2.10714i −0.623839 0.142387i
\(220\) 0 0
\(221\) −11.7398 + 7.37659i −0.789702 + 0.496203i
\(222\) 0 0
\(223\) 2.58349 0.589664i 0.173003 0.0394868i −0.135142 0.990826i \(-0.543149\pi\)
0.308145 + 0.951339i \(0.400292\pi\)
\(224\) 0 0
\(225\) −5.23395 4.17393i −0.348930 0.278262i
\(226\) 0 0
\(227\) −4.89134 + 10.1570i −0.324649 + 0.674142i −0.997865 0.0653044i \(-0.979198\pi\)
0.673216 + 0.739446i \(0.264912\pi\)
\(228\) 0 0
\(229\) −14.2156 + 1.60172i −0.939396 + 0.105845i −0.568366 0.822776i \(-0.692424\pi\)
−0.371031 + 0.928621i \(0.620995\pi\)
\(230\) 0 0
\(231\) 7.25308 0.477218
\(232\) 0 0
\(233\) 13.6749 0.895872 0.447936 0.894066i \(-0.352159\pi\)
0.447936 + 0.894066i \(0.352159\pi\)
\(234\) 0 0
\(235\) −8.59610 + 0.968547i −0.560747 + 0.0631811i
\(236\) 0 0
\(237\) −0.909945 + 1.88952i −0.0591073 + 0.122738i
\(238\) 0 0
\(239\) −8.30159 6.62029i −0.536985 0.428231i 0.317079 0.948399i \(-0.397298\pi\)
−0.854064 + 0.520168i \(0.825869\pi\)
\(240\) 0 0
\(241\) 21.0142 4.79635i 1.35364 0.308960i 0.516660 0.856191i \(-0.327175\pi\)
0.836982 + 0.547231i \(0.184318\pi\)
\(242\) 0 0
\(243\) 11.7298 7.37032i 0.752467 0.472806i
\(244\) 0 0
\(245\) 5.18321 + 1.18303i 0.331143 + 0.0755812i
\(246\) 0 0
\(247\) −6.61033 + 18.8912i −0.420605 + 1.20202i
\(248\) 0 0
\(249\) 9.88779 9.88779i 0.626613 0.626613i
\(250\) 0 0
\(251\) −2.82321 + 25.0567i −0.178200 + 1.58157i 0.512669 + 0.858586i \(0.328657\pi\)
−0.690869 + 0.722980i \(0.742772\pi\)
\(252\) 0 0
\(253\) −1.50824 0.947689i −0.0948221 0.0595807i
\(254\) 0 0
\(255\) 14.9877 + 31.1223i 0.938568 + 1.94896i
\(256\) 0 0
\(257\) −6.70885 8.41263i −0.418487 0.524766i 0.527245 0.849713i \(-0.323225\pi\)
−0.945732 + 0.324947i \(0.894653\pi\)
\(258\) 0 0
\(259\) 22.6483 7.92500i 1.40730 0.492435i
\(260\) 0 0
\(261\) 7.01756 + 3.32594i 0.434376 + 0.205871i
\(262\) 0 0
\(263\) −2.82427 8.07131i −0.174152 0.497698i 0.823413 0.567443i \(-0.192067\pi\)
−0.997565 + 0.0697448i \(0.977782\pi\)
\(264\) 0 0
\(265\) −2.73919 + 2.18443i −0.168267 + 0.134188i
\(266\) 0 0
\(267\) 14.6349 7.04778i 0.895640 0.431317i
\(268\) 0 0
\(269\) 11.7074 18.6323i 0.713816 1.13603i −0.271026 0.962572i \(-0.587363\pi\)
0.984841 0.173459i \(-0.0554943\pi\)
\(270\) 0 0
\(271\) 0.307953 + 0.0346980i 0.0187068 + 0.00210775i 0.121313 0.992614i \(-0.461290\pi\)
−0.102606 + 0.994722i \(0.532718\pi\)
\(272\) 0 0
\(273\) 11.5552 + 11.5552i 0.699352 + 0.699352i
\(274\) 0 0
\(275\) 5.10873 + 1.78762i 0.308068 + 0.107798i
\(276\) 0 0
\(277\) 6.91767 30.3083i 0.415642 1.82105i −0.140647 0.990060i \(-0.544918\pi\)
0.556290 0.830989i \(-0.312225\pi\)
\(278\) 0 0
\(279\) −6.89536 10.9739i −0.412814 0.656990i
\(280\) 0 0
\(281\) −1.72954 7.57763i −0.103176 0.452043i −0.999954 0.00956320i \(-0.996956\pi\)
0.896778 0.442480i \(-0.145901\pi\)
\(282\) 0 0
\(283\) −6.86684 + 8.61075i −0.408191 + 0.511856i −0.942852 0.333211i \(-0.891868\pi\)
0.534661 + 0.845067i \(0.320439\pi\)
\(284\) 0 0
\(285\) 44.9259 + 21.6352i 2.66118 + 1.28156i
\(286\) 0 0
\(287\) 2.01508 + 17.8843i 0.118946 + 1.05568i
\(288\) 0 0
\(289\) 10.8587i 0.638747i
\(290\) 0 0
\(291\) 21.4392i 1.25679i
\(292\) 0 0
\(293\) 1.61435 + 14.3278i 0.0943115 + 0.837038i 0.948436 + 0.316969i \(0.102665\pi\)
−0.854124 + 0.520069i \(0.825906\pi\)
\(294\) 0 0
\(295\) −17.2816 8.32238i −1.00617 0.484548i
\(296\) 0 0
\(297\) −2.38691 + 2.99309i −0.138502 + 0.173677i
\(298\) 0 0
\(299\) −0.893036 3.91264i −0.0516456 0.226274i
\(300\) 0 0
\(301\) −11.9520 19.0215i −0.688900 1.09638i
\(302\) 0 0
\(303\) 6.28508 27.5367i 0.361069 1.58194i
\(304\) 0 0
\(305\) −9.48193 3.31787i −0.542934 0.189981i
\(306\) 0 0
\(307\) −7.59248 7.59248i −0.433326 0.433326i 0.456432 0.889758i \(-0.349127\pi\)
−0.889758 + 0.456432i \(0.849127\pi\)
\(308\) 0 0
\(309\) −20.6044 2.32156i −1.17214 0.132069i
\(310\) 0 0
\(311\) −5.27706 + 8.39839i −0.299234 + 0.476229i −0.962171 0.272447i \(-0.912167\pi\)
0.662936 + 0.748676i \(0.269310\pi\)
\(312\) 0 0
\(313\) 7.41861 3.57262i 0.419325 0.201936i −0.212310 0.977202i \(-0.568099\pi\)
0.631635 + 0.775266i \(0.282384\pi\)
\(314\) 0 0
\(315\) 10.3336 8.24079i 0.582234 0.464316i
\(316\) 0 0
\(317\) 9.70532 + 27.7362i 0.545105 + 1.55782i 0.805670 + 0.592365i \(0.201806\pi\)
−0.260565 + 0.965456i \(0.583909\pi\)
\(318\) 0 0
\(319\) −6.24342 0.664219i −0.349564 0.0371891i
\(320\) 0 0
\(321\) −33.1843 + 11.6117i −1.85217 + 0.648101i
\(322\) 0 0
\(323\) −25.0735 31.4411i −1.39513 1.74943i
\(324\) 0 0
\(325\) 5.29101 + 10.9869i 0.293492 + 0.609443i
\(326\) 0 0
\(327\) 16.9079 + 10.6239i 0.935008 + 0.587504i
\(328\) 0 0
\(329\) 0.920649 8.17098i 0.0507570 0.450481i
\(330\) 0 0
\(331\) 12.6785 12.6785i 0.696872 0.696872i −0.266863 0.963735i \(-0.585987\pi\)
0.963735 + 0.266863i \(0.0859871\pi\)
\(332\) 0 0
\(333\) 3.87191 11.0653i 0.212179 0.606374i
\(334\) 0 0
\(335\) 38.2794 + 8.73702i 2.09143 + 0.477354i
\(336\) 0 0
\(337\) −18.4993 + 11.6239i −1.00772 + 0.633193i −0.931441 0.363894i \(-0.881447\pi\)
−0.0762800 + 0.997086i \(0.524304\pi\)
\(338\) 0 0
\(339\) −25.0262 + 5.71207i −1.35924 + 0.310237i
\(340\) 0 0
\(341\) 8.19240 + 6.53322i 0.443643 + 0.353794i
\(342\) 0 0
\(343\) 6.77199 14.0622i 0.365653 0.759286i
\(344\) 0 0
\(345\) −9.93581 + 1.11950i −0.534926 + 0.0602717i
\(346\) 0 0
\(347\) −2.98192 −0.160078 −0.0800389 0.996792i \(-0.525504\pi\)
−0.0800389 + 0.996792i \(0.525504\pi\)
\(348\) 0 0
\(349\) 16.0459 0.858917 0.429458 0.903087i \(-0.358704\pi\)
0.429458 + 0.903087i \(0.358704\pi\)
\(350\) 0 0
\(351\) −8.57111 + 0.965732i −0.457492 + 0.0515469i
\(352\) 0 0
\(353\) 0.503281 1.04507i 0.0267869 0.0556236i −0.887146 0.461489i \(-0.847315\pi\)
0.913933 + 0.405865i \(0.133030\pi\)
\(354\) 0 0
\(355\) 18.0907 + 14.4268i 0.960153 + 0.765696i
\(356\) 0 0
\(357\) −32.0117 + 7.30645i −1.69424 + 0.386698i
\(358\) 0 0
\(359\) 7.98355 5.01640i 0.421356 0.264755i −0.304622 0.952473i \(-0.598530\pi\)
0.725978 + 0.687718i \(0.241387\pi\)
\(360\) 0 0
\(361\) −38.0719 8.68965i −2.00378 0.457350i
\(362\) 0 0
\(363\) 6.71089 19.1786i 0.352230 1.00662i
\(364\) 0 0
\(365\) 9.86513 9.86513i 0.516365 0.516365i
\(366\) 0 0
\(367\) 1.04407 9.26640i 0.0545001 0.483702i −0.936582 0.350449i \(-0.886029\pi\)
0.991082 0.133253i \(-0.0425424\pi\)
\(368\) 0 0
\(369\) 7.44526 + 4.67816i 0.387585 + 0.243536i
\(370\) 0 0
\(371\) −1.44496 3.00048i −0.0750184 0.155777i
\(372\) 0 0
\(373\) 1.52198 + 1.90850i 0.0788049 + 0.0988182i 0.819671 0.572834i \(-0.194156\pi\)
−0.740866 + 0.671653i \(0.765585\pi\)
\(374\) 0 0
\(375\) −2.20998 + 0.773306i −0.114123 + 0.0399333i
\(376\) 0 0
\(377\) −8.88846 11.0049i −0.457779 0.566779i
\(378\) 0 0
\(379\) −0.383516 1.09603i −0.0196999 0.0562991i 0.933614 0.358282i \(-0.116637\pi\)
−0.953313 + 0.301983i \(0.902352\pi\)
\(380\) 0 0
\(381\) −27.4222 + 21.8685i −1.40488 + 1.12036i
\(382\) 0 0
\(383\) 19.7833 9.52714i 1.01088 0.486814i 0.146263 0.989246i \(-0.453276\pi\)
0.864617 + 0.502432i \(0.167561\pi\)
\(384\) 0 0
\(385\) −5.68534 + 9.04816i −0.289752 + 0.461137i
\(386\) 0 0
\(387\) −10.9066 1.22888i −0.554413 0.0624673i
\(388\) 0 0
\(389\) 19.8252 + 19.8252i 1.00518 + 1.00518i 0.999987 + 0.00519035i \(0.00165215\pi\)
0.00519035 + 0.999987i \(0.498348\pi\)
\(390\) 0 0
\(391\) 7.61131 + 2.66331i 0.384921 + 0.134690i
\(392\) 0 0
\(393\) 2.90537 12.7292i 0.146556 0.642105i
\(394\) 0 0
\(395\) −1.64390 2.61625i −0.0827136 0.131638i
\(396\) 0 0
\(397\) 3.37636 + 14.7928i 0.169454 + 0.742428i 0.986217 + 0.165455i \(0.0529092\pi\)
−0.816763 + 0.576973i \(0.804234\pi\)
\(398\) 0 0
\(399\) −29.5522 + 37.0572i −1.47946 + 1.85518i
\(400\) 0 0
\(401\) 35.2210 + 16.9615i 1.75885 + 0.847018i 0.973740 + 0.227662i \(0.0731080\pi\)
0.785110 + 0.619356i \(0.212606\pi\)
\(402\) 0 0
\(403\) 2.64331 + 23.4600i 0.131673 + 1.16863i
\(404\) 0 0
\(405\) 34.9230i 1.73534i
\(406\) 0 0
\(407\) 9.47814i 0.469814i
\(408\) 0 0
\(409\) 3.33611 + 29.6088i 0.164960 + 1.46406i 0.754489 + 0.656313i \(0.227885\pi\)
−0.589529 + 0.807747i \(0.700687\pi\)
\(410\) 0 0
\(411\) −2.11577 1.01890i −0.104363 0.0502587i
\(412\) 0 0
\(413\) 11.3678 14.2548i 0.559373 0.701432i
\(414\) 0 0
\(415\) 4.58439 + 20.0855i 0.225039 + 0.985959i
\(416\) 0 0
\(417\) −7.37184 11.7322i −0.361001 0.574529i
\(418\) 0 0
\(419\) −2.56850 + 11.2533i −0.125479 + 0.549760i 0.872635 + 0.488373i \(0.162410\pi\)
−0.998114 + 0.0613870i \(0.980448\pi\)
\(420\) 0 0
\(421\) −33.9911 11.8940i −1.65662 0.579678i −0.669952 0.742404i \(-0.733685\pi\)
−0.986671 + 0.162727i \(0.947971\pi\)
\(422\) 0 0
\(423\) −2.84070 2.84070i −0.138119 0.138119i
\(424\) 0 0
\(425\) −24.3483 2.74340i −1.18107 0.133074i
\(426\) 0 0
\(427\) 5.08030 8.08525i 0.245853 0.391273i
\(428\) 0 0
\(429\) −5.81577 + 2.80073i −0.280788 + 0.135220i
\(430\) 0 0
\(431\) −16.6480 + 13.2763i −0.801906 + 0.639499i −0.936210 0.351442i \(-0.885692\pi\)
0.134304 + 0.990940i \(0.457120\pi\)
\(432\) 0 0
\(433\) −5.39115 15.4070i −0.259082 0.740414i −0.997794 0.0663923i \(-0.978851\pi\)
0.738712 0.674022i \(-0.235435\pi\)
\(434\) 0 0
\(435\) −29.7246 + 18.9358i −1.42519 + 0.907900i
\(436\) 0 0
\(437\) 10.9871 3.84456i 0.525585 0.183910i
\(438\) 0 0
\(439\) −2.87858 3.60962i −0.137387 0.172278i 0.708378 0.705833i \(-0.249427\pi\)
−0.845765 + 0.533555i \(0.820856\pi\)
\(440\) 0 0
\(441\) 1.07127 + 2.22451i 0.0510128 + 0.105929i
\(442\) 0 0
\(443\) 15.7193 + 9.87707i 0.746845 + 0.469274i 0.850920 0.525296i \(-0.176045\pi\)
−0.104075 + 0.994569i \(0.533188\pi\)
\(444\) 0 0
\(445\) −2.67951 + 23.7813i −0.127021 + 1.12734i
\(446\) 0 0
\(447\) 27.9658 27.9658i 1.32274 1.32274i
\(448\) 0 0
\(449\) −0.704079 + 2.01214i −0.0332276 + 0.0949589i −0.959302 0.282381i \(-0.908876\pi\)
0.926075 + 0.377340i \(0.123161\pi\)
\(450\) 0 0
\(451\) −6.93089 1.58193i −0.326363 0.0744902i
\(452\) 0 0
\(453\) 12.3455 7.75720i 0.580043 0.364465i
\(454\) 0 0
\(455\) −23.4726 + 5.35746i −1.10041 + 0.251162i
\(456\) 0 0
\(457\) 12.8054 + 10.2120i 0.599013 + 0.477697i 0.875433 0.483340i \(-0.160577\pi\)
−0.276420 + 0.961037i \(0.589148\pi\)
\(458\) 0 0
\(459\) 7.51957 15.6145i 0.350983 0.728824i
\(460\) 0 0
\(461\) −18.1185 + 2.04147i −0.843865 + 0.0950807i −0.523303 0.852147i \(-0.675300\pi\)
−0.320562 + 0.947228i \(0.603872\pi\)
\(462\) 0 0
\(463\) −16.9869 −0.789447 −0.394724 0.918800i \(-0.629160\pi\)
−0.394724 + 0.918800i \(0.629160\pi\)
\(464\) 0 0
\(465\) 58.8183 2.72763
\(466\) 0 0
\(467\) 1.71710 0.193471i 0.0794580 0.00895277i −0.0721459 0.997394i \(-0.522985\pi\)
0.151604 + 0.988441i \(0.451556\pi\)
\(468\) 0 0
\(469\) −16.1934 + 33.6260i −0.747743 + 1.55270i
\(470\) 0 0
\(471\) 12.4757 + 9.94900i 0.574848 + 0.458426i
\(472\) 0 0
\(473\) 8.65126 1.97459i 0.397785 0.0907919i
\(474\) 0 0
\(475\) −29.9485 + 18.8179i −1.37413 + 0.863423i
\(476\) 0 0
\(477\) −1.58628 0.362058i −0.0726308 0.0165775i
\(478\) 0 0
\(479\) −5.34825 + 15.2844i −0.244368 + 0.698363i 0.754736 + 0.656029i \(0.227765\pi\)
−0.999104 + 0.0423339i \(0.986521\pi\)
\(480\) 0 0
\(481\) −15.1000 + 15.1000i −0.688503 + 0.688503i
\(482\) 0 0
\(483\) 1.06413 9.44445i 0.0484198 0.429737i
\(484\) 0 0
\(485\) 26.7452 + 16.8051i 1.21444 + 0.763082i
\(486\) 0 0
\(487\) −5.04874 10.4838i −0.228780 0.475067i 0.754703 0.656067i \(-0.227781\pi\)
−0.983483 + 0.180999i \(0.942067\pi\)
\(488\) 0 0
\(489\) −24.9753 31.3181i −1.12942 1.41625i
\(490\) 0 0
\(491\) 16.8546 5.89768i 0.760637 0.266158i 0.0780370 0.996950i \(-0.475135\pi\)
0.682600 + 0.730792i \(0.260849\pi\)
\(492\) 0 0
\(493\) 28.2246 3.35781i 1.27117 0.151228i
\(494\) 0 0
\(495\) 1.72435 + 4.92791i 0.0775038 + 0.221493i
\(496\) 0 0
\(497\) −17.1960 + 13.7134i −0.771346 + 0.615128i
\(498\) 0 0
\(499\) 6.22583 2.99820i 0.278706 0.134218i −0.289309 0.957236i \(-0.593426\pi\)
0.568016 + 0.823018i \(0.307711\pi\)
\(500\) 0 0
\(501\) −27.6905 + 44.0692i −1.23712 + 1.96887i
\(502\) 0 0
\(503\) −0.235790 0.0265672i −0.0105134 0.00118457i 0.106706 0.994291i \(-0.465970\pi\)
−0.117220 + 0.993106i \(0.537398\pi\)
\(504\) 0 0
\(505\) 29.4253 + 29.4253i 1.30941 + 1.30941i
\(506\) 0 0
\(507\) 12.1342 + 4.24595i 0.538901 + 0.188569i
\(508\) 0 0
\(509\) 2.80650 12.2961i 0.124396 0.545014i −0.873871 0.486158i \(-0.838398\pi\)
0.998267 0.0588554i \(-0.0187451\pi\)
\(510\) 0 0
\(511\) 7.05552 + 11.2288i 0.312118 + 0.496733i
\(512\) 0 0
\(513\) −5.56691 24.3902i −0.245785 1.07686i
\(514\) 0 0
\(515\) 19.0469 23.8841i 0.839307 1.05246i
\(516\) 0 0
\(517\) 2.92636 + 1.40926i 0.128701 + 0.0619793i
\(518\) 0 0
\(519\) −1.66547 14.7815i −0.0731060 0.648834i
\(520\) 0 0
\(521\) 33.2575i 1.45704i −0.685025 0.728519i \(-0.740209\pi\)
0.685025 0.728519i \(-0.259791\pi\)
\(522\) 0 0
\(523\) 32.1986i 1.40795i 0.710227 + 0.703973i \(0.248592\pi\)
−0.710227 + 0.703973i \(0.751408\pi\)
\(524\) 0 0
\(525\) 3.23343 + 28.6975i 0.141118 + 1.25246i
\(526\) 0 0
\(527\) −42.7387 20.5819i −1.86172 0.896559i
\(528\) 0 0
\(529\) 12.8850 16.1572i 0.560216 0.702489i
\(530\) 0 0
\(531\) −1.98219 8.68452i −0.0860195 0.376876i
\(532\) 0 0
\(533\) −8.52166 13.5621i −0.369114 0.587442i
\(534\) 0 0
\(535\) 11.5261 50.4990i 0.498315 2.18326i
\(536\) 0 0
\(537\) −50.7763 17.7674i −2.19116 0.766720i
\(538\) 0 0
\(539\) −1.41153 1.41153i −0.0607988 0.0607988i
\(540\) 0 0
\(541\) −20.9034 2.35525i −0.898709 0.101260i −0.349492 0.936939i \(-0.613646\pi\)
−0.549218 + 0.835679i \(0.685074\pi\)
\(542\) 0 0
\(543\) −6.14824 + 9.78487i −0.263846 + 0.419909i
\(544\) 0 0
\(545\) −26.5065 + 12.7649i −1.13542 + 0.546787i
\(546\) 0 0
\(547\) −30.3576 + 24.2094i −1.29800 + 1.03512i −0.301334 + 0.953519i \(0.597432\pi\)
−0.996665 + 0.0816013i \(0.973997\pi\)
\(548\) 0 0
\(549\) −1.54084 4.40348i −0.0657616 0.187936i
\(550\) 0 0
\(551\) 28.8320 29.1924i 1.22828 1.24364i
\(552\) 0 0
\(553\) 2.77223 0.970045i 0.117887 0.0412505i
\(554\) 0 0
\(555\) 33.1717 + 41.5960i 1.40806 + 1.76565i
\(556\) 0 0
\(557\) −3.20118 6.64731i −0.135638 0.281656i 0.822076 0.569378i \(-0.192816\pi\)
−0.957714 + 0.287723i \(0.907102\pi\)
\(558\) 0 0
\(559\) 16.9285 + 10.6369i 0.716000 + 0.449893i
\(560\) 0 0
\(561\) 1.45218 12.8885i 0.0613111 0.544151i
\(562\) 0 0
\(563\) −18.0130 + 18.0130i −0.759158 + 0.759158i −0.976169 0.217011i \(-0.930369\pi\)
0.217011 + 0.976169i \(0.430369\pi\)
\(564\) 0 0
\(565\) 12.4911 35.6974i 0.525503 1.50180i
\(566\) 0 0
\(567\) −32.3637 7.38680i −1.35915 0.310216i
\(568\) 0 0
\(569\) 4.17358 2.62243i 0.174966 0.109938i −0.441702 0.897162i \(-0.645625\pi\)
0.616668 + 0.787224i \(0.288482\pi\)
\(570\) 0 0
\(571\) 5.26217 1.20106i 0.220215 0.0502626i −0.110990 0.993822i \(-0.535402\pi\)
0.331205 + 0.943559i \(0.392545\pi\)
\(572\) 0 0
\(573\) 20.3093 + 16.1961i 0.848434 + 0.676603i
\(574\) 0 0
\(575\) 3.07724 6.38996i 0.128330 0.266480i
\(576\) 0 0
\(577\) 18.5482 2.08987i 0.772170 0.0870026i 0.282917 0.959145i \(-0.408698\pi\)
0.489253 + 0.872142i \(0.337269\pi\)
\(578\) 0 0
\(579\) −7.67524 −0.318972
\(580\) 0 0
\(581\) −19.5832 −0.812448
\(582\) 0 0
\(583\) 1.30722 0.147288i 0.0541393 0.00610004i
\(584\) 0 0
\(585\) −5.10373 + 10.5980i −0.211013 + 0.438174i
\(586\) 0 0
\(587\) 13.9818 + 11.1501i 0.577090 + 0.460214i 0.868019 0.496530i \(-0.165393\pi\)
−0.290929 + 0.956745i \(0.593964\pi\)
\(588\) 0 0
\(589\) −66.7587 + 15.2372i −2.75074 + 0.627839i
\(590\) 0 0
\(591\) 42.9634 26.9957i 1.76728 1.11045i
\(592\) 0 0
\(593\) 32.1417 + 7.33613i 1.31990 + 0.301259i 0.823738 0.566971i \(-0.191885\pi\)
0.496162 + 0.868230i \(0.334742\pi\)
\(594\) 0 0
\(595\) 15.9776 45.6615i 0.655020 1.87194i
\(596\) 0 0
\(597\) 30.8602 30.8602i 1.26302 1.26302i
\(598\) 0 0
\(599\) −0.807847 + 7.16984i −0.0330077 + 0.292952i 0.966354 + 0.257217i \(0.0828056\pi\)
−0.999361 + 0.0357344i \(0.988623\pi\)
\(600\) 0 0
\(601\) −2.32564 1.46129i −0.0948647 0.0596074i 0.483764 0.875198i \(-0.339269\pi\)
−0.578629 + 0.815591i \(0.696412\pi\)
\(602\) 0 0
\(603\) 7.91161 + 16.4286i 0.322186 + 0.669026i
\(604\) 0 0
\(605\) 18.6648 + 23.4050i 0.758834 + 0.951547i
\(606\) 0 0
\(607\) −7.80951 + 2.73267i −0.316978 + 0.110915i −0.484079 0.875024i \(-0.660845\pi\)
0.167101 + 0.985940i \(0.446560\pi\)
\(608\) 0 0
\(609\) −11.2608 31.5514i −0.456310 1.27853i
\(610\) 0 0
\(611\) 2.41696 + 6.90728i 0.0977798 + 0.279439i
\(612\) 0 0
\(613\) −14.6864 + 11.7120i −0.593178 + 0.473044i −0.873475 0.486870i \(-0.838139\pi\)
0.280296 + 0.959914i \(0.409567\pi\)
\(614\) 0 0
\(615\) −35.9535 + 17.3143i −1.44978 + 0.698180i
\(616\) 0 0
\(617\) −8.79225 + 13.9928i −0.353963 + 0.563328i −0.975484 0.220069i \(-0.929372\pi\)
0.621522 + 0.783397i \(0.286515\pi\)
\(618\) 0 0
\(619\) 32.2639 + 3.63527i 1.29679 + 0.146114i 0.733243 0.679967i \(-0.238006\pi\)
0.563552 + 0.826081i \(0.309434\pi\)
\(620\) 0 0
\(621\) 3.54719 + 3.54719i 0.142344 + 0.142344i
\(622\) 0 0
\(623\) −21.4717 7.51328i −0.860246 0.301013i
\(624\) 0 0
\(625\) 5.93258 25.9924i 0.237303 1.03969i
\(626\) 0 0
\(627\) −9.96099 15.8528i −0.397804 0.633101i
\(628\) 0 0
\(629\) −9.54789 41.8320i −0.380699 1.66795i
\(630\) 0 0
\(631\) 18.8126 23.5902i 0.748917 0.939112i −0.250664 0.968074i \(-0.580649\pi\)
0.999580 + 0.0289625i \(0.00922033\pi\)
\(632\) 0 0
\(633\) 47.8622 + 23.0492i 1.90235 + 0.916124i
\(634\) 0 0
\(635\) −5.78583 51.3506i −0.229604 2.03779i
\(636\) 0 0
\(637\) 4.49753i 0.178199i
\(638\) 0 0
\(639\) 10.7458i 0.425099i
\(640\) 0 0
\(641\) 3.24307 + 28.7830i 0.128094 + 1.13686i 0.879124 + 0.476594i \(0.158129\pi\)
−0.751030 + 0.660268i \(0.770443\pi\)
\(642\) 0 0
\(643\) 29.5116 + 14.2120i 1.16382 + 0.560468i 0.913158 0.407605i \(-0.133636\pi\)
0.250666 + 0.968074i \(0.419350\pi\)
\(644\) 0 0
\(645\) 31.0564 38.9435i 1.22284 1.53340i
\(646\) 0 0
\(647\) −7.38113 32.3388i −0.290182 1.27137i −0.884272 0.466972i \(-0.845345\pi\)
0.594090 0.804399i \(-0.297512\pi\)
\(648\) 0 0
\(649\) 3.83169 + 6.09809i 0.150407 + 0.239371i
\(650\) 0 0
\(651\) −12.4410 + 54.5078i −0.487603 + 2.13633i
\(652\) 0 0
\(653\) 6.16818 + 2.15834i 0.241380 + 0.0844624i 0.448258 0.893904i \(-0.352045\pi\)
−0.206878 + 0.978367i \(0.566330\pi\)
\(654\) 0 0
\(655\) 13.6023 + 13.6023i 0.531484 + 0.531484i
\(656\) 0 0
\(657\) 6.43840 + 0.725433i 0.251186 + 0.0283019i
\(658\) 0 0
\(659\) 8.93208 14.2153i 0.347945 0.553751i −0.626204 0.779659i \(-0.715392\pi\)
0.974148 + 0.225909i \(0.0725351\pi\)
\(660\) 0 0
\(661\) 5.88821 2.83561i 0.229025 0.110293i −0.315852 0.948808i \(-0.602290\pi\)
0.544877 + 0.838516i \(0.316576\pi\)
\(662\) 0 0
\(663\) 22.8467 18.2196i 0.887293 0.707593i
\(664\) 0 0
\(665\) −23.0641 65.9135i −0.894388 2.55601i
\(666\) 0 0
\(667\) −1.78090 + 8.03229i −0.0689567 + 0.311011i
\(668\) 0 0
\(669\) −5.27163 + 1.84462i −0.203813 + 0.0713173i
\(670\) 0 0
\(671\) 2.35172 + 2.94896i 0.0907872 + 0.113844i
\(672\) 0 0
\(673\) 7.62327 + 15.8299i 0.293855 + 0.610197i 0.994666 0.103151i \(-0.0328923\pi\)
−0.700810 + 0.713348i \(0.747178\pi\)
\(674\) 0 0
\(675\) −12.9065 8.10970i −0.496772 0.312142i
\(676\) 0 0
\(677\) 1.71169 15.1916i 0.0657854 0.583862i −0.916971 0.398955i \(-0.869373\pi\)
0.982756 0.184907i \(-0.0591984\pi\)
\(678\) 0 0
\(679\) −21.2306 + 21.2306i −0.814756 + 0.814756i
\(680\) 0 0
\(681\) 7.84745 22.4267i 0.300715 0.859393i
\(682\) 0 0
\(683\) −7.51491 1.71523i −0.287550 0.0656314i 0.0763129 0.997084i \(-0.475685\pi\)
−0.363863 + 0.931453i \(0.618542\pi\)
\(684\) 0 0
\(685\) 2.92952 1.84074i 0.111931 0.0703310i
\(686\) 0 0
\(687\) 29.3949 6.70919i 1.12148 0.255971i
\(688\) 0 0
\(689\) 2.31723 + 1.84793i 0.0882795 + 0.0704006i
\(690\) 0 0
\(691\) 13.9014 28.8666i 0.528836 1.09814i −0.449912 0.893073i \(-0.648545\pi\)
0.978748 0.205066i \(-0.0657409\pi\)
\(692\) 0 0
\(693\) −4.93149 + 0.555646i −0.187332 + 0.0211072i
\(694\) 0 0
\(695\) 20.4143 0.774358
\(696\) 0 0
\(697\) 32.1832 1.21903
\(698\) 0 0
\(699\) −28.6403 + 3.22699i −1.08328 + 0.122056i
\(700\) 0 0
\(701\) 8.78683 18.2460i 0.331874 0.689144i −0.666538 0.745471i \(-0.732225\pi\)
0.998412 + 0.0563272i \(0.0179390\pi\)
\(702\) 0 0
\(703\) −48.4255 38.6180i −1.82640 1.45651i
\(704\) 0 0
\(705\) 17.7749 4.05700i 0.669440 0.152795i
\(706\) 0 0
\(707\) −33.4928 + 21.0449i −1.25963 + 0.791475i
\(708\) 0 0
\(709\) −11.5019 2.62523i −0.431962 0.0985925i 0.00101071 0.999999i \(-0.499678\pi\)
−0.432973 + 0.901407i \(0.642535\pi\)
\(710\) 0 0
\(711\) 0.473934 1.35443i 0.0177739 0.0507950i
\(712\) 0 0
\(713\) 9.70904 9.70904i 0.363606 0.363606i
\(714\) 0 0
\(715\) 1.06481 9.45048i 0.0398218 0.353428i
\(716\) 0 0
\(717\) 18.9489 + 11.9064i 0.707658 + 0.444651i
\(718\) 0 0
\(719\) −3.57892 7.43170i −0.133471 0.277156i 0.823512 0.567298i \(-0.192011\pi\)
−0.956983 + 0.290143i \(0.906297\pi\)
\(720\) 0 0
\(721\) 18.1050 + 22.7029i 0.674264 + 0.845500i
\(722\) 0 0
\(723\) −42.8796 + 15.0042i −1.59471 + 0.558014i
\(724\) 0 0
\(725\) −0.155277 24.9988i −0.00576684 0.928431i
\(726\) 0 0
\(727\) 7.60870 + 21.7444i 0.282191 + 0.806456i 0.994514 + 0.104604i \(0.0333575\pi\)
−0.712323 + 0.701852i \(0.752357\pi\)
\(728\) 0 0
\(729\) 3.55164 2.83234i 0.131542 0.104901i
\(730\) 0 0
\(731\) −36.1934 + 17.4298i −1.33866 + 0.644666i
\(732\) 0 0
\(733\) 14.3027 22.7626i 0.528282 0.840756i −0.470859 0.882209i \(-0.656056\pi\)
0.999140 + 0.0414531i \(0.0131987\pi\)
\(734\) 0 0
\(735\) −11.1347 1.25458i −0.410711 0.0462760i
\(736\) 0 0
\(737\) −10.4245 10.4245i −0.383992 0.383992i
\(738\) 0 0
\(739\) 37.0526 + 12.9653i 1.36300 + 0.476935i 0.910012 0.414581i \(-0.136072\pi\)
0.452989 + 0.891516i \(0.350358\pi\)
\(740\) 0 0
\(741\) 9.38654 41.1251i 0.344823 1.51077i
\(742\) 0 0
\(743\) 17.6332 + 28.0631i 0.646899 + 1.02953i 0.995727 + 0.0923472i \(0.0294370\pi\)
−0.348828 + 0.937187i \(0.613420\pi\)
\(744\) 0 0
\(745\) 12.9661 + 56.8083i 0.475042 + 2.08129i
\(746\) 0 0
\(747\) −5.96539 + 7.48037i −0.218262 + 0.273692i
\(748\) 0 0
\(749\) 44.3602 + 21.3627i 1.62088 + 0.780577i
\(750\) 0 0
\(751\) 1.61357 + 14.3208i 0.0588800 + 0.522575i 0.988185 + 0.153263i \(0.0489781\pi\)
−0.929305 + 0.369312i \(0.879593\pi\)
\(752\) 0 0
\(753\) 53.1443i 1.93669i
\(754\) 0 0
\(755\) 21.4814i 0.781789i
\(756\) 0 0
\(757\) −0.918137 8.14869i −0.0333703 0.296169i −0.999301 0.0373704i \(-0.988102\pi\)
0.965931 0.258799i \(-0.0833267\pi\)
\(758\) 0 0
\(759\) 3.38244 + 1.62890i 0.122775 + 0.0591253i
\(760\) 0 0
\(761\) −7.27965 + 9.12839i −0.263887 + 0.330904i −0.896068 0.443917i \(-0.853589\pi\)
0.632181 + 0.774821i \(0.282160\pi\)
\(762\) 0 0
\(763\) −6.22282 27.2640i −0.225281 0.987021i
\(764\) 0 0
\(765\) −12.5746 20.0124i −0.454637 0.723551i
\(766\) 0 0
\(767\) −3.61071 + 15.8196i −0.130375 + 0.571212i
\(768\) 0 0
\(769\) −27.7974 9.72673i −1.00240 0.350755i −0.221330 0.975199i \(-0.571040\pi\)
−0.781070 + 0.624444i \(0.785326\pi\)
\(770\) 0 0
\(771\) 16.0360 + 16.0360i 0.577524 + 0.577524i
\(772\) 0 0
\(773\) −15.0114 1.69138i −0.539922 0.0608346i −0.162208 0.986757i \(-0.551861\pi\)
−0.377715 + 0.925922i \(0.623290\pi\)
\(774\) 0 0
\(775\) −22.1971 + 35.3265i −0.797343 + 1.26896i
\(776\) 0 0
\(777\) −45.5639 + 21.9424i −1.63460 + 0.787180i
\(778\) 0 0
\(779\) 36.3218 28.9657i 1.30136 1.03780i
\(780\) 0 0
\(781\) −2.86946 8.20045i −0.102677 0.293435i
\(782\) 0 0
\(783\) 16.7260 + 5.73631i 0.597737 + 0.204999i
\(784\) 0 0
\(785\) −22.1904 + 7.76474i −0.792008 + 0.277136i
\(786\) 0 0
\(787\) 0.453293 + 0.568411i 0.0161581 + 0.0202617i 0.789845 0.613307i \(-0.210161\pi\)
−0.773687 + 0.633568i \(0.781590\pi\)
\(788\) 0 0
\(789\) 7.81973 + 16.2378i 0.278390 + 0.578083i
\(790\) 0 0
\(791\) 30.4392 + 19.1262i 1.08229 + 0.680051i
\(792\) 0 0
\(793\) −0.951495 + 8.44476i −0.0337886 + 0.299882i
\(794\) 0 0
\(795\) 5.22139 5.22139i 0.185184 0.185184i
\(796\) 0 0
\(797\) 13.1404 37.5530i 0.465455 1.33019i −0.437020 0.899452i \(-0.643966\pi\)
0.902475 0.430743i \(-0.141748\pi\)
\(798\) 0 0
\(799\) −14.3352 3.27192i −0.507144 0.115752i
\(800\) 0 0
\(801\) −9.41058 + 5.91306i −0.332507 + 0.208928i
\(802\) 0 0
\(803\) −5.10703 + 1.16565i −0.180223 + 0.0411348i
\(804\) 0 0
\(805\) 10.9478 + 8.73055i 0.385858 + 0.307711i
\(806\) 0 0
\(807\) −20.1229 + 41.7856i −0.708360 + 1.47092i
\(808\) 0 0
\(809\) −38.6610 + 4.35605i −1.35925 + 0.153151i −0.761308 0.648390i \(-0.775443\pi\)
−0.597941 + 0.801540i \(0.704014\pi\)
\(810\) 0 0
\(811\) 12.2107 0.428774 0.214387 0.976749i \(-0.431225\pi\)
0.214387 + 0.976749i \(0.431225\pi\)
\(812\) 0 0
\(813\) −0.653157 −0.0229072
\(814\) 0 0
\(815\) 58.6460 6.60782i 2.05428 0.231462i
\(816\) 0 0
\(817\) −25.1604 + 52.2461i −0.880251 + 1.82786i
\(818\) 0 0
\(819\) −8.74180 6.97135i −0.305463 0.243599i
\(820\) 0 0
\(821\) −21.4152 + 4.88788i −0.747395 + 0.170588i −0.579223 0.815169i \(-0.696644\pi\)
−0.168173 + 0.985758i \(0.553787\pi\)
\(822\) 0 0
\(823\) −23.5330 + 14.7868i −0.820308 + 0.515434i −0.875600 0.483036i \(-0.839534\pi\)
0.0552919 + 0.998470i \(0.482391\pi\)
\(824\) 0 0
\(825\) −11.1214 2.53839i −0.387198 0.0883755i
\(826\) 0 0
\(827\) 3.41569 9.76149i 0.118775 0.339440i −0.869112 0.494616i \(-0.835309\pi\)
0.987887 + 0.155176i \(0.0495944\pi\)
\(828\) 0 0
\(829\) −0.841520 + 0.841520i −0.0292272 + 0.0292272i −0.721569 0.692342i \(-0.756579\pi\)
0.692342 + 0.721569i \(0.256579\pi\)
\(830\) 0 0
\(831\) −7.33605 + 65.1092i −0.254485 + 2.25861i
\(832\) 0 0
\(833\) 7.65173 + 4.80790i 0.265117 + 0.166584i
\(834\) 0 0
\(835\) −33.2707 69.0874i −1.15138 2.39087i
\(836\) 0 0
\(837\) −18.3992 23.0719i −0.635969 0.797481i
\(838\) 0 0
\(839\) −37.7758 + 13.2183i −1.30417 + 0.456347i −0.890874 0.454251i \(-0.849907\pi\)
−0.413292 + 0.910598i \(0.635621\pi\)
\(840\) 0 0
\(841\) 6.80382 + 28.1906i 0.234615 + 0.972088i
\(842\) 0 0
\(843\) 5.41047 + 15.4622i 0.186346 + 0.532547i
\(844\) 0 0
\(845\) −14.8082 + 11.8092i −0.509419 + 0.406248i
\(846\) 0 0
\(847\) −25.6376 + 12.3464i −0.880919 + 0.424228i
\(848\) 0 0
\(849\) 12.3498 19.6545i 0.423843 0.674542i
\(850\) 0 0
\(851\) 12.3418 + 1.39058i 0.423070 + 0.0476686i
\(852\) 0 0
\(853\) 1.17047 + 1.17047i 0.0400761 + 0.0400761i 0.726861 0.686785i \(-0.240978\pi\)
−0.686785 + 0.726861i \(0.740978\pi\)
\(854\) 0 0
\(855\) −32.2033 11.2684i −1.10133 0.385372i
\(856\) 0 0
\(857\) −8.88259 + 38.9172i −0.303423 + 1.32938i 0.561498 + 0.827478i \(0.310225\pi\)
−0.864922 + 0.501907i \(0.832632\pi\)
\(858\) 0 0
\(859\) −22.3731 35.6065i −0.763359 1.21488i −0.971560 0.236794i \(-0.923904\pi\)
0.208201 0.978086i \(-0.433239\pi\)
\(860\) 0 0
\(861\) −8.44064 36.9809i −0.287656 1.26030i
\(862\) 0 0
\(863\) 16.1782 20.2869i 0.550713 0.690573i −0.426097 0.904677i \(-0.640112\pi\)
0.976811 + 0.214105i \(0.0686833\pi\)
\(864\) 0 0
\(865\) 19.7452 + 9.50881i 0.671358 + 0.323309i
\(866\) 0 0
\(867\) 2.56243 + 22.7422i 0.0870245 + 0.772364i
\(868\) 0 0
\(869\) 1.16015i 0.0393556i
\(870\) 0 0
\(871\) 33.2155i 1.12546i
\(872\) 0 0
\(873\) 1.64242 + 14.5769i 0.0555874 + 0.493352i
\(874\) 0 0
\(875\) 2.95426 + 1.42270i 0.0998723 + 0.0480960i
\(876\) 0 0
\(877\) −0.729178 + 0.914360i −0.0246226 + 0.0308758i −0.793990 0.607930i \(-0.792000\pi\)
0.769368 + 0.638806i \(0.220571\pi\)
\(878\) 0 0
\(879\) −6.76211 29.6267i −0.228080 0.999285i
\(880\) 0 0
\(881\) −21.5579 34.3091i −0.726303 1.15590i −0.981951 0.189134i \(-0.939432\pi\)
0.255649 0.966770i \(-0.417711\pi\)
\(882\) 0 0
\(883\) −4.69502 + 20.5702i −0.158000 + 0.692243i 0.832419 + 0.554147i \(0.186955\pi\)
−0.990419 + 0.138096i \(0.955902\pi\)
\(884\) 0 0
\(885\) 38.1580 + 13.3521i 1.28267 + 0.448824i
\(886\) 0 0
\(887\) −5.50303 5.50303i −0.184774 0.184774i 0.608659 0.793432i \(-0.291708\pi\)
−0.793432 + 0.608659i \(0.791708\pi\)
\(888\) 0 0
\(889\) 48.8111 + 5.49970i 1.63707 + 0.184454i
\(890\) 0 0
\(891\) 6.97635 11.1028i 0.233716 0.371957i
\(892\) 0 0
\(893\) −19.1234 + 9.20936i −0.639941 + 0.308180i
\(894\) 0 0
\(895\) 61.9658 49.4160i 2.07129 1.65180i
\(896\) 0 0
\(897\) 2.79365 + 7.98379i 0.0932773 + 0.266571i
\(898\) 0 0
\(899\) 15.7009 45.7807i 0.523653 1.52687i
\(900\) 0 0
\(901\) −5.62106 + 1.96689i −0.187265 + 0.0655267i
\(902\) 0 0
\(903\) 29.5205 + 37.0176i 0.982382 + 1.23187i
\(904\) 0 0
\(905\) −7.38724 15.3398i −0.245560 0.509911i
\(906\) 0 0
\(907\) −15.8551 9.96242i −0.526460 0.330797i 0.242439 0.970167i \(-0.422052\pi\)
−0.768899 + 0.639370i \(0.779195\pi\)
\(908\) 0 0
\(909\) −2.16379 + 19.2042i −0.0717685 + 0.636963i
\(910\) 0 0
\(911\) 12.3577 12.3577i 0.409430 0.409430i −0.472110 0.881540i \(-0.656507\pi\)
0.881540 + 0.472110i \(0.156507\pi\)
\(912\) 0 0
\(913\) 2.55487 7.30141i 0.0845540 0.241641i
\(914\) 0 0
\(915\) 20.6416 + 4.71132i 0.682391 + 0.155751i
\(916\) 0 0
\(917\) −15.4825 + 9.72830i −0.511277 + 0.321257i
\(918\) 0 0
\(919\) 8.34866 1.90553i 0.275397 0.0628576i −0.0825917 0.996583i \(-0.526320\pi\)
0.357989 + 0.933726i \(0.383463\pi\)
\(920\) 0 0
\(921\) 17.6931 + 14.1098i 0.583009 + 0.464934i
\(922\) 0 0
\(923\) 8.49303 17.6360i 0.279552 0.580495i
\(924\) 0 0
\(925\) −37.5011 + 4.22536i −1.23303 + 0.138929i
\(926\) 0 0
\(927\) 14.1871 0.465966
\(928\) 0 0
\(929\) 0.147927 0.00485333 0.00242666 0.999997i \(-0.499228\pi\)
0.00242666 + 0.999997i \(0.499228\pi\)
\(930\) 0 0
\(931\) 12.9629 1.46057i 0.424842 0.0478682i
\(932\) 0 0
\(933\) 9.07027 18.8346i 0.296947 0.616618i
\(934\) 0 0
\(935\) 14.9400 + 11.9142i 0.488589 + 0.389637i
\(936\) 0 0
\(937\) 2.03147 0.463670i 0.0663652 0.0151474i −0.189209 0.981937i \(-0.560592\pi\)
0.255575 + 0.966789i \(0.417735\pi\)
\(938\) 0 0
\(939\) −14.6943 + 9.23302i −0.479529 + 0.301308i
\(940\) 0 0
\(941\) 42.1888 + 9.62931i 1.37532 + 0.313907i 0.845395 0.534141i \(-0.179365\pi\)
0.529920 + 0.848048i \(0.322222\pi\)
\(942\) 0 0
\(943\) −3.07674 + 8.79282i −0.100193 + 0.286334i
\(944\) 0 0
\(945\) 21.2802 21.2802i 0.692244 0.692244i
\(946\) 0 0
\(947\) 1.75156 15.5455i 0.0569181 0.505162i −0.932617 0.360868i \(-0.882480\pi\)
0.989535 0.144294i \(-0.0460911\pi\)
\(948\) 0 0
\(949\) −9.99328 6.27919i −0.324396 0.203831i
\(950\) 0 0
\(951\) −26.8717 55.7997i −0.871375 1.80943i
\(952\) 0 0
\(953\) −8.06113 10.1083i −0.261126 0.327441i 0.633934 0.773387i \(-0.281439\pi\)
−0.895060 + 0.445946i \(0.852868\pi\)
\(954\) 0 0
\(955\) −36.1241 + 12.6404i −1.16895 + 0.409032i
\(956\) 0 0
\(957\) 13.2328 0.0821938i 0.427755 0.00265695i
\(958\) 0 0
\(959\) 1.08620 + 3.10417i 0.0350751 + 0.100239i
\(960\) 0 0
\(961\) −38.9134 + 31.0324i −1.25527 + 1.00104i
\(962\) 0 0
\(963\) 21.6730 10.4372i 0.698403 0.336333i
\(964\) 0 0
\(965\) 6.01625 9.57481i 0.193670 0.308224i
\(966\) 0 0
\(967\) 24.9376 + 2.80979i 0.801938 + 0.0903567i 0.503414 0.864046i \(-0.332077\pi\)
0.298524 + 0.954402i \(0.403506\pi\)
\(968\) 0 0
\(969\) 59.9326 + 59.9326i 1.92531 + 1.92531i
\(970\) 0 0
\(971\) −19.4163 6.79407i −0.623100 0.218032i 0.000218879 1.00000i \(-0.499930\pi\)
−0.623319 + 0.781968i \(0.714216\pi\)
\(972\) 0 0
\(973\) −4.31796 + 18.9182i −0.138427 + 0.606490i
\(974\) 0 0
\(975\) −13.6740 21.7621i −0.437919 0.696944i
\(976\) 0 0
\(977\) 9.76689 + 42.7915i 0.312470 + 1.36902i 0.850446 + 0.526062i \(0.176332\pi\)
−0.537976 + 0.842960i \(0.680811\pi\)
\(978\) 0 0
\(979\) 5.60251 7.02533i 0.179057 0.224530i
\(980\) 0 0
\(981\) −12.3098 5.92810i −0.393023 0.189270i
\(982\) 0 0
\(983\) 1.55760 + 13.8241i 0.0496798 + 0.440920i 0.993788 + 0.111286i \(0.0354969\pi\)
−0.944109 + 0.329634i \(0.893075\pi\)
\(984\) 0 0
\(985\) 74.7571i 2.38196i
\(986\) 0 0
\(987\) 17.3303i 0.551630i
\(988\) 0 0
\(989\) −1.30191 11.5548i −0.0413983 0.367420i
\(990\) 0 0
\(991\) 6.07680 + 2.92643i 0.193036 + 0.0929611i 0.527905 0.849304i \(-0.322978\pi\)
−0.334869 + 0.942265i \(0.608692\pi\)
\(992\) 0 0
\(993\) −23.5616 + 29.5453i −0.747704 + 0.937591i
\(994\) 0 0
\(995\) 14.3081 + 62.6877i 0.453596 + 1.98733i
\(996\) 0 0
\(997\) −7.56480 12.0393i −0.239580 0.381289i 0.705193 0.709015i \(-0.250860\pi\)
−0.944773 + 0.327727i \(0.893718\pi\)
\(998\) 0 0
\(999\) 5.93972 26.0236i 0.187924 0.823351i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.bl.b.127.1 yes 48
4.3 odd 2 inner 464.2.bl.b.127.4 yes 48
29.8 odd 28 inner 464.2.bl.b.95.4 yes 48
116.95 even 28 inner 464.2.bl.b.95.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
464.2.bl.b.95.1 48 116.95 even 28 inner
464.2.bl.b.95.4 yes 48 29.8 odd 28 inner
464.2.bl.b.127.1 yes 48 1.1 even 1 trivial
464.2.bl.b.127.4 yes 48 4.3 odd 2 inner