Properties

Label 464.2.y.a
Level $464$
Weight $2$
Character orbit 464.y
Analytic conductor $3.705$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(33,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.y (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 116)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{14}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{14}^{3} - 1) q^{3} + ( - 2 \zeta_{14}^{5} + 2 \zeta_{14}^{4} + \cdots + 1) q^{5}+ \cdots + (\zeta_{14}^{5} - \zeta_{14}^{4} + \cdots + \zeta_{14}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{14}^{3} - 1) q^{3} + ( - 2 \zeta_{14}^{5} + 2 \zeta_{14}^{4} + \cdots + 1) q^{5}+ \cdots + ( - 5 \zeta_{14}^{5} + 6 \zeta_{14}^{4} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 7 q^{3} - q^{5} + 5 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 7 q^{3} - q^{5} + 5 q^{7} + 4 q^{9} - 7 q^{11} - 5 q^{13} + 7 q^{15} - 7 q^{19} - 7 q^{21} + 13 q^{23} - 24 q^{25} - 7 q^{27} - 6 q^{29} + 21 q^{31} + 7 q^{33} + 5 q^{35} - 7 q^{37} + 7 q^{39} - 7 q^{43} + 11 q^{45} - 7 q^{47} + 10 q^{49} + 23 q^{53} - 21 q^{55} + 14 q^{57} - 28 q^{59} + 35 q^{61} + q^{63} + 9 q^{65} - 25 q^{67} - 7 q^{69} - q^{71} + 7 q^{73} - 7 q^{77} + 35 q^{79} - 2 q^{81} + 9 q^{83} - 42 q^{85} + 21 q^{87} - 35 q^{89} - 3 q^{91} - 35 q^{93} - 21 q^{95} - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{14}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
33.1
0.222521 0.974928i
0.900969 + 0.433884i
−0.623490 + 0.781831i
0.222521 + 0.974928i
0.900969 0.433884i
−0.623490 0.781831i
0 −0.376510 0.781831i 0 −0.900969 + 3.94740i 0 1.62349 0.781831i 0 1.40097 1.75676i 0
129.1 0 −1.22252 0.974928i 0 0.623490 + 0.300257i 0 0.777479 0.974928i 0 −0.123490 0.541044i 0
209.1 0 −1.90097 0.433884i 0 −0.222521 + 0.279032i 0 0.0990311 0.433884i 0 0.722521 + 0.347948i 0
225.1 0 −0.376510 + 0.781831i 0 −0.900969 3.94740i 0 1.62349 + 0.781831i 0 1.40097 + 1.75676i 0
241.1 0 −1.22252 + 0.974928i 0 0.623490 0.300257i 0 0.777479 + 0.974928i 0 −0.123490 + 0.541044i 0
353.1 0 −1.90097 + 0.433884i 0 −0.222521 0.279032i 0 0.0990311 + 0.433884i 0 0.722521 0.347948i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 33.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.e even 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.y.a 6
4.b odd 2 1 116.2.i.b 6
12.b even 2 1 1044.2.z.a 6
29.e even 14 1 inner 464.2.y.a 6
116.h odd 14 1 116.2.i.b 6
116.h odd 14 1 3364.2.c.g 6
116.j odd 14 1 3364.2.c.g 6
116.l even 28 2 3364.2.a.o 6
348.t even 14 1 1044.2.z.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.2.i.b 6 4.b odd 2 1
116.2.i.b 6 116.h odd 14 1
464.2.y.a 6 1.a even 1 1 trivial
464.2.y.a 6 29.e even 14 1 inner
1044.2.z.a 6 12.b even 2 1
1044.2.z.a 6 348.t even 14 1
3364.2.a.o 6 116.l even 28 2
3364.2.c.g 6 116.h odd 14 1
3364.2.c.g 6 116.j odd 14 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 7T_{3}^{5} + 21T_{3}^{4} + 35T_{3}^{3} + 35T_{3}^{2} + 21T_{3} + 7 \) acting on \(S_{2}^{\mathrm{new}}(464, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 7 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} + 15 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} - 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} + 7 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$13$ \( T^{6} + 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} + 56 T^{4} + \cdots + 448 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} + \cdots + 1183 \) Copy content Toggle raw display
$23$ \( T^{6} - 13 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{6} + 6 T^{5} + \cdots + 24389 \) Copy content Toggle raw display
$31$ \( T^{6} - 21 T^{5} + \cdots + 11767 \) Copy content Toggle raw display
$37$ \( T^{6} + 7 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$41$ \( T^{6} + 56 T^{4} + \cdots + 448 \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{5} + \cdots + 89383 \) Copy content Toggle raw display
$47$ \( T^{6} + 7 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$53$ \( T^{6} - 23 T^{5} + \cdots + 49729 \) Copy content Toggle raw display
$59$ \( (T^{3} + 14 T^{2} + \cdots - 56)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} - 35 T^{5} + \cdots + 89383 \) Copy content Toggle raw display
$67$ \( T^{6} + 25 T^{5} + \cdots + 28561 \) Copy content Toggle raw display
$71$ \( T^{6} + T^{5} + \cdots + 212521 \) Copy content Toggle raw display
$73$ \( T^{6} - 7 T^{5} + \cdots + 12943 \) Copy content Toggle raw display
$79$ \( T^{6} - 35 T^{5} + \cdots + 1183 \) Copy content Toggle raw display
$83$ \( T^{6} - 9 T^{5} + \cdots + 5041 \) Copy content Toggle raw display
$89$ \( T^{6} + 35 T^{5} + \cdots + 65863 \) Copy content Toggle raw display
$97$ \( T^{6} + 21 T^{5} + \cdots + 11767 \) Copy content Toggle raw display
show more
show less