Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [464,2,Mod(33,464)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("464.33");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 464.y (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 116) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
33.1 |
|
0 | −0.376510 | − | 0.781831i | 0 | −0.900969 | + | 3.94740i | 0 | 1.62349 | − | 0.781831i | 0 | 1.40097 | − | 1.75676i | 0 | ||||||||||||||||||||||||||||
129.1 | 0 | −1.22252 | − | 0.974928i | 0 | 0.623490 | + | 0.300257i | 0 | 0.777479 | − | 0.974928i | 0 | −0.123490 | − | 0.541044i | 0 | |||||||||||||||||||||||||||||
209.1 | 0 | −1.90097 | − | 0.433884i | 0 | −0.222521 | + | 0.279032i | 0 | 0.0990311 | − | 0.433884i | 0 | 0.722521 | + | 0.347948i | 0 | |||||||||||||||||||||||||||||
225.1 | 0 | −0.376510 | + | 0.781831i | 0 | −0.900969 | − | 3.94740i | 0 | 1.62349 | + | 0.781831i | 0 | 1.40097 | + | 1.75676i | 0 | |||||||||||||||||||||||||||||
241.1 | 0 | −1.22252 | + | 0.974928i | 0 | 0.623490 | − | 0.300257i | 0 | 0.777479 | + | 0.974928i | 0 | −0.123490 | + | 0.541044i | 0 | |||||||||||||||||||||||||||||
353.1 | 0 | −1.90097 | + | 0.433884i | 0 | −0.222521 | − | 0.279032i | 0 | 0.0990311 | + | 0.433884i | 0 | 0.722521 | − | 0.347948i | 0 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.e | even | 14 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 464.2.y.a | 6 | |
4.b | odd | 2 | 1 | 116.2.i.b | ✓ | 6 | |
12.b | even | 2 | 1 | 1044.2.z.a | 6 | ||
29.e | even | 14 | 1 | inner | 464.2.y.a | 6 | |
116.h | odd | 14 | 1 | 116.2.i.b | ✓ | 6 | |
116.h | odd | 14 | 1 | 3364.2.c.g | 6 | ||
116.j | odd | 14 | 1 | 3364.2.c.g | 6 | ||
116.l | even | 28 | 2 | 3364.2.a.o | 6 | ||
348.t | even | 14 | 1 | 1044.2.z.a | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
116.2.i.b | ✓ | 6 | 4.b | odd | 2 | 1 | |
116.2.i.b | ✓ | 6 | 116.h | odd | 14 | 1 | |
464.2.y.a | 6 | 1.a | even | 1 | 1 | trivial | |
464.2.y.a | 6 | 29.e | even | 14 | 1 | inner | |
1044.2.z.a | 6 | 12.b | even | 2 | 1 | ||
1044.2.z.a | 6 | 348.t | even | 14 | 1 | ||
3364.2.a.o | 6 | 116.l | even | 28 | 2 | ||
3364.2.c.g | 6 | 116.h | odd | 14 | 1 | ||
3364.2.c.g | 6 | 116.j | odd | 14 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .