Properties

Label 464.2.y.a
Level 464464
Weight 22
Character orbit 464.y
Analytic conductor 3.7053.705
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(33,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 464.y (of order 1414, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.705058653793.70505865379
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ14)\Q(\zeta_{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+x4x3+x2x+1 x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 116)
Sato-Tate group: SU(2)[C14]\mathrm{SU}(2)[C_{14}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ14\zeta_{14}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ1431)q3+(2ζ145+2ζ144++1)q5+(ζ143+1)q7+(ζ145ζ144++ζ14)q9+(2ζ145+2ζ143+1)q11++(5ζ145+6ζ144++3)q99+O(q100) q + ( - \zeta_{14}^{3} - 1) q^{3} + ( - 2 \zeta_{14}^{5} + 2 \zeta_{14}^{4} + \cdots + 1) q^{5} + ( - \zeta_{14}^{3} + 1) q^{7} + (\zeta_{14}^{5} - \zeta_{14}^{4} + \cdots + \zeta_{14}) q^{9} + ( - 2 \zeta_{14}^{5} + 2 \zeta_{14}^{3} + \cdots - 1) q^{11}+ \cdots + ( - 5 \zeta_{14}^{5} + 6 \zeta_{14}^{4} + \cdots + 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q7q3q5+5q7+4q97q115q13+7q157q197q21+13q2324q257q276q29+21q31+7q33+5q357q37+7q397q43+21q97+O(q100) 6 q - 7 q^{3} - q^{5} + 5 q^{7} + 4 q^{9} - 7 q^{11} - 5 q^{13} + 7 q^{15} - 7 q^{19} - 7 q^{21} + 13 q^{23} - 24 q^{25} - 7 q^{27} - 6 q^{29} + 21 q^{31} + 7 q^{33} + 5 q^{35} - 7 q^{37} + 7 q^{39} - 7 q^{43}+ \cdots - 21 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/464Z)×\left(\mathbb{Z}/464\mathbb{Z}\right)^\times.

nn 117117 175175 321321
χ(n)\chi(n) 11 11 ζ142-\zeta_{14}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
33.1
0.222521 0.974928i
0.900969 + 0.433884i
−0.623490 + 0.781831i
0.222521 + 0.974928i
0.900969 0.433884i
−0.623490 0.781831i
0 −0.376510 0.781831i 0 −0.900969 + 3.94740i 0 1.62349 0.781831i 0 1.40097 1.75676i 0
129.1 0 −1.22252 0.974928i 0 0.623490 + 0.300257i 0 0.777479 0.974928i 0 −0.123490 0.541044i 0
209.1 0 −1.90097 0.433884i 0 −0.222521 + 0.279032i 0 0.0990311 0.433884i 0 0.722521 + 0.347948i 0
225.1 0 −0.376510 + 0.781831i 0 −0.900969 3.94740i 0 1.62349 + 0.781831i 0 1.40097 + 1.75676i 0
241.1 0 −1.22252 + 0.974928i 0 0.623490 0.300257i 0 0.777479 + 0.974928i 0 −0.123490 + 0.541044i 0
353.1 0 −1.90097 + 0.433884i 0 −0.222521 0.279032i 0 0.0990311 + 0.433884i 0 0.722521 0.347948i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 33.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.e even 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.2.y.a 6
4.b odd 2 1 116.2.i.b 6
12.b even 2 1 1044.2.z.a 6
29.e even 14 1 inner 464.2.y.a 6
116.h odd 14 1 116.2.i.b 6
116.h odd 14 1 3364.2.c.g 6
116.j odd 14 1 3364.2.c.g 6
116.l even 28 2 3364.2.a.o 6
348.t even 14 1 1044.2.z.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
116.2.i.b 6 4.b odd 2 1
116.2.i.b 6 116.h odd 14 1
464.2.y.a 6 1.a even 1 1 trivial
464.2.y.a 6 29.e even 14 1 inner
1044.2.z.a 6 12.b even 2 1
1044.2.z.a 6 348.t even 14 1
3364.2.a.o 6 116.l even 28 2
3364.2.c.g 6 116.h odd 14 1
3364.2.c.g 6 116.j odd 14 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36+7T35+21T34+35T33+35T32+21T3+7 T_{3}^{6} + 7T_{3}^{5} + 21T_{3}^{4} + 35T_{3}^{3} + 35T_{3}^{2} + 21T_{3} + 7 acting on S2new(464,[χ])S_{2}^{\mathrm{new}}(464, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6+7T5++7 T^{6} + 7 T^{5} + \cdots + 7 Copy content Toggle raw display
55 T6+T5+15T4++1 T^{6} + T^{5} + 15 T^{4} + \cdots + 1 Copy content Toggle raw display
77 T65T5++1 T^{6} - 5 T^{5} + \cdots + 1 Copy content Toggle raw display
1111 T6+7T5++7 T^{6} + 7 T^{5} + \cdots + 7 Copy content Toggle raw display
1313 T6+5T5++1 T^{6} + 5 T^{5} + \cdots + 1 Copy content Toggle raw display
1717 T6+56T4++448 T^{6} + 56 T^{4} + \cdots + 448 Copy content Toggle raw display
1919 T6+7T5++1183 T^{6} + 7 T^{5} + \cdots + 1183 Copy content Toggle raw display
2323 T613T5++1 T^{6} - 13 T^{5} + \cdots + 1 Copy content Toggle raw display
2929 T6+6T5++24389 T^{6} + 6 T^{5} + \cdots + 24389 Copy content Toggle raw display
3131 T621T5++11767 T^{6} - 21 T^{5} + \cdots + 11767 Copy content Toggle raw display
3737 T6+7T5++7 T^{6} + 7 T^{5} + \cdots + 7 Copy content Toggle raw display
4141 T6+56T4++448 T^{6} + 56 T^{4} + \cdots + 448 Copy content Toggle raw display
4343 T6+7T5++89383 T^{6} + 7 T^{5} + \cdots + 89383 Copy content Toggle raw display
4747 T6+7T5++7 T^{6} + 7 T^{5} + \cdots + 7 Copy content Toggle raw display
5353 T623T5++49729 T^{6} - 23 T^{5} + \cdots + 49729 Copy content Toggle raw display
5959 (T3+14T2+56)2 (T^{3} + 14 T^{2} + \cdots - 56)^{2} Copy content Toggle raw display
6161 T635T5++89383 T^{6} - 35 T^{5} + \cdots + 89383 Copy content Toggle raw display
6767 T6+25T5++28561 T^{6} + 25 T^{5} + \cdots + 28561 Copy content Toggle raw display
7171 T6+T5++212521 T^{6} + T^{5} + \cdots + 212521 Copy content Toggle raw display
7373 T67T5++12943 T^{6} - 7 T^{5} + \cdots + 12943 Copy content Toggle raw display
7979 T635T5++1183 T^{6} - 35 T^{5} + \cdots + 1183 Copy content Toggle raw display
8383 T69T5++5041 T^{6} - 9 T^{5} + \cdots + 5041 Copy content Toggle raw display
8989 T6+35T5++65863 T^{6} + 35 T^{5} + \cdots + 65863 Copy content Toggle raw display
9797 T6+21T5++11767 T^{6} + 21 T^{5} + \cdots + 11767 Copy content Toggle raw display
show more
show less