Properties

Label 464.2.y.e.33.1
Level $464$
Weight $2$
Character 464.33
Analytic conductor $3.705$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(33,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.y (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{14})\)
Twist minimal: no (minimal twist has level 232)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 33.1
Character \(\chi\) \(=\) 464.33
Dual form 464.2.y.e.225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42415 - 2.95728i) q^{3} +(-0.136467 + 0.597901i) q^{5} +(-0.294470 + 0.141809i) q^{7} +(-4.84685 + 6.07775i) q^{9} +O(q^{10})\) \(q+(-1.42415 - 2.95728i) q^{3} +(-0.136467 + 0.597901i) q^{5} +(-0.294470 + 0.141809i) q^{7} +(-4.84685 + 6.07775i) q^{9} +(-3.71818 + 2.96515i) q^{11} +(-2.63087 - 3.29900i) q^{13} +(1.96251 - 0.447931i) q^{15} +1.72036i q^{17} +(0.863022 - 1.79208i) q^{19} +(0.838739 + 0.668872i) q^{21} +(1.12584 + 4.93263i) q^{23} +(4.16598 + 2.00623i) q^{25} +(15.2762 + 3.48668i) q^{27} +(-5.38071 - 0.218958i) q^{29} +(-8.88354 - 2.02761i) q^{31} +(14.0640 + 6.77289i) q^{33} +(-0.0446024 - 0.195416i) q^{35} +(4.28644 + 3.41832i) q^{37} +(-6.00933 + 12.4785i) q^{39} -6.90110i q^{41} +(-7.25565 + 1.65605i) q^{43} +(-2.97246 - 3.72735i) q^{45} +(-2.73445 + 2.18065i) q^{47} +(-4.29783 + 5.38930i) q^{49} +(5.08758 - 2.45005i) q^{51} +(0.145980 - 0.639579i) q^{53} +(-1.26546 - 2.62775i) q^{55} -6.52877 q^{57} +10.3221 q^{59} +(-6.65192 - 13.8129i) q^{61} +(0.565368 - 2.47704i) q^{63} +(2.33151 - 1.12279i) q^{65} +(-0.567230 + 0.711284i) q^{67} +(12.9838 - 10.3543i) q^{69} +(2.65263 + 3.32630i) q^{71} +(-5.98816 + 1.36676i) q^{73} -15.1772i q^{75} +(0.674406 - 1.40042i) q^{77} +(-3.37455 - 2.69112i) q^{79} +(-6.25501 - 27.4050i) q^{81} +(-6.50740 - 3.13380i) q^{83} +(-1.02860 - 0.234772i) q^{85} +(7.01544 + 16.2241i) q^{87} +(-4.11167 - 0.938463i) q^{89} +(1.24254 + 0.598375i) q^{91} +(6.65530 + 29.1588i) q^{93} +(0.953715 + 0.760562i) q^{95} +(-0.123789 + 0.257051i) q^{97} -36.9698i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{5} + 4 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 48 q - 2 q^{5} + 4 q^{7} + 6 q^{9} + 10 q^{13} - 14 q^{15} + 14 q^{21} - 4 q^{23} - 48 q^{25} - 4 q^{29} + 10 q^{33} - 8 q^{35} - 38 q^{45} + 14 q^{47} - 18 q^{49} + 56 q^{51} - 48 q^{53} + 28 q^{55} - 12 q^{57} + 128 q^{59} - 28 q^{61} - 42 q^{63} - 28 q^{65} + 4 q^{67} + 28 q^{69} + 14 q^{71} - 28 q^{73} + 14 q^{77} - 32 q^{81} - 80 q^{83} + 112 q^{87} + 42 q^{89} + 28 q^{91} + 6 q^{93} + 70 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.42415 2.95728i −0.822235 1.70739i −0.699130 0.714995i \(-0.746429\pi\)
−0.123105 0.992394i \(-0.539285\pi\)
\(4\) 0 0
\(5\) −0.136467 + 0.597901i −0.0610299 + 0.267390i −0.996232 0.0867239i \(-0.972360\pi\)
0.935202 + 0.354114i \(0.115217\pi\)
\(6\) 0 0
\(7\) −0.294470 + 0.141809i −0.111299 + 0.0535988i −0.488705 0.872449i \(-0.662530\pi\)
0.377406 + 0.926048i \(0.376816\pi\)
\(8\) 0 0
\(9\) −4.84685 + 6.07775i −1.61562 + 2.02592i
\(10\) 0 0
\(11\) −3.71818 + 2.96515i −1.12107 + 0.894026i −0.995185 0.0980183i \(-0.968750\pi\)
−0.125889 + 0.992044i \(0.540178\pi\)
\(12\) 0 0
\(13\) −2.63087 3.29900i −0.729671 0.914979i 0.269171 0.963093i \(-0.413250\pi\)
−0.998842 + 0.0481137i \(0.984679\pi\)
\(14\) 0 0
\(15\) 1.96251 0.447931i 0.506719 0.115655i
\(16\) 0 0
\(17\) 1.72036i 0.417248i 0.977996 + 0.208624i \(0.0668984\pi\)
−0.977996 + 0.208624i \(0.933102\pi\)
\(18\) 0 0
\(19\) 0.863022 1.79208i 0.197991 0.411132i −0.778209 0.628005i \(-0.783872\pi\)
0.976200 + 0.216873i \(0.0695859\pi\)
\(20\) 0 0
\(21\) 0.838739 + 0.668872i 0.183028 + 0.145960i
\(22\) 0 0
\(23\) 1.12584 + 4.93263i 0.234754 + 1.02853i 0.945639 + 0.325217i \(0.105437\pi\)
−0.710885 + 0.703308i \(0.751705\pi\)
\(24\) 0 0
\(25\) 4.16598 + 2.00623i 0.833196 + 0.401246i
\(26\) 0 0
\(27\) 15.2762 + 3.48668i 2.93990 + 0.671013i
\(28\) 0 0
\(29\) −5.38071 0.218958i −0.999173 0.0406594i
\(30\) 0 0
\(31\) −8.88354 2.02761i −1.59553 0.364169i −0.669856 0.742491i \(-0.733644\pi\)
−0.925674 + 0.378322i \(0.876501\pi\)
\(32\) 0 0
\(33\) 14.0640 + 6.77289i 2.44824 + 1.17901i
\(34\) 0 0
\(35\) −0.0446024 0.195416i −0.00753919 0.0330313i
\(36\) 0 0
\(37\) 4.28644 + 3.41832i 0.704686 + 0.561968i 0.908929 0.416952i \(-0.136902\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(38\) 0 0
\(39\) −6.00933 + 12.4785i −0.962263 + 1.99816i
\(40\) 0 0
\(41\) 6.90110i 1.07777i −0.842379 0.538885i \(-0.818846\pi\)
0.842379 0.538885i \(-0.181154\pi\)
\(42\) 0 0
\(43\) −7.25565 + 1.65605i −1.10648 + 0.252546i −0.736461 0.676480i \(-0.763505\pi\)
−0.370015 + 0.929026i \(0.620647\pi\)
\(44\) 0 0
\(45\) −2.97246 3.72735i −0.443108 0.555640i
\(46\) 0 0
\(47\) −2.73445 + 2.18065i −0.398860 + 0.318080i −0.802295 0.596928i \(-0.796388\pi\)
0.403434 + 0.915009i \(0.367816\pi\)
\(48\) 0 0
\(49\) −4.29783 + 5.38930i −0.613975 + 0.769900i
\(50\) 0 0
\(51\) 5.08758 2.45005i 0.712404 0.343076i
\(52\) 0 0
\(53\) 0.145980 0.639579i 0.0200519 0.0878530i −0.963912 0.266221i \(-0.914225\pi\)
0.983964 + 0.178368i \(0.0570819\pi\)
\(54\) 0 0
\(55\) −1.26546 2.62775i −0.170634 0.354326i
\(56\) 0 0
\(57\) −6.52877 −0.864757
\(58\) 0 0
\(59\) 10.3221 1.34383 0.671915 0.740629i \(-0.265472\pi\)
0.671915 + 0.740629i \(0.265472\pi\)
\(60\) 0 0
\(61\) −6.65192 13.8129i −0.851691 1.76856i −0.598467 0.801148i \(-0.704223\pi\)
−0.253224 0.967408i \(-0.581491\pi\)
\(62\) 0 0
\(63\) 0.565368 2.47704i 0.0712297 0.312078i
\(64\) 0 0
\(65\) 2.33151 1.12279i 0.289188 0.139265i
\(66\) 0 0
\(67\) −0.567230 + 0.711284i −0.0692982 + 0.0868971i −0.815272 0.579078i \(-0.803413\pi\)
0.745974 + 0.665975i \(0.231984\pi\)
\(68\) 0 0
\(69\) 12.9838 10.3543i 1.56307 1.24651i
\(70\) 0 0
\(71\) 2.65263 + 3.32630i 0.314810 + 0.394759i 0.913911 0.405914i \(-0.133047\pi\)
−0.599102 + 0.800673i \(0.704475\pi\)
\(72\) 0 0
\(73\) −5.98816 + 1.36676i −0.700861 + 0.159967i −0.558080 0.829787i \(-0.688462\pi\)
−0.142781 + 0.989754i \(0.545605\pi\)
\(74\) 0 0
\(75\) 15.1772i 1.75251i
\(76\) 0 0
\(77\) 0.674406 1.40042i 0.0768557 0.159592i
\(78\) 0 0
\(79\) −3.37455 2.69112i −0.379667 0.302774i 0.414998 0.909822i \(-0.363782\pi\)
−0.794665 + 0.607048i \(0.792354\pi\)
\(80\) 0 0
\(81\) −6.25501 27.4050i −0.695001 3.04500i
\(82\) 0 0
\(83\) −6.50740 3.13380i −0.714280 0.343979i 0.0412002 0.999151i \(-0.486882\pi\)
−0.755480 + 0.655172i \(0.772596\pi\)
\(84\) 0 0
\(85\) −1.02860 0.234772i −0.111568 0.0254646i
\(86\) 0 0
\(87\) 7.01544 + 16.2241i 0.752134 + 1.73941i
\(88\) 0 0
\(89\) −4.11167 0.938463i −0.435837 0.0994769i −0.00102740 0.999999i \(-0.500327\pi\)
−0.434809 + 0.900523i \(0.643184\pi\)
\(90\) 0 0
\(91\) 1.24254 + 0.598375i 0.130253 + 0.0627268i
\(92\) 0 0
\(93\) 6.65530 + 29.1588i 0.690122 + 3.02362i
\(94\) 0 0
\(95\) 0.953715 + 0.760562i 0.0978491 + 0.0780321i
\(96\) 0 0
\(97\) −0.123789 + 0.257051i −0.0125689 + 0.0260996i −0.907159 0.420788i \(-0.861753\pi\)
0.894590 + 0.446888i \(0.147468\pi\)
\(98\) 0 0
\(99\) 36.9698i 3.71560i
\(100\) 0 0
\(101\) −17.2186 + 3.93003i −1.71331 + 0.391053i −0.962888 0.269902i \(-0.913009\pi\)
−0.750426 + 0.660955i \(0.770151\pi\)
\(102\) 0 0
\(103\) −9.54887 11.9739i −0.940878 1.17982i −0.983532 0.180734i \(-0.942153\pi\)
0.0426537 0.999090i \(-0.486419\pi\)
\(104\) 0 0
\(105\) −0.514380 + 0.410204i −0.0501984 + 0.0400318i
\(106\) 0 0
\(107\) −6.82377 + 8.55673i −0.659678 + 0.827210i −0.993308 0.115494i \(-0.963155\pi\)
0.333630 + 0.942704i \(0.391726\pi\)
\(108\) 0 0
\(109\) −4.21128 + 2.02805i −0.403368 + 0.194252i −0.624557 0.780979i \(-0.714720\pi\)
0.221189 + 0.975231i \(0.429006\pi\)
\(110\) 0 0
\(111\) 4.00440 17.5444i 0.380081 1.66524i
\(112\) 0 0
\(113\) −2.63131 5.46397i −0.247533 0.514007i 0.739770 0.672860i \(-0.234935\pi\)
−0.987302 + 0.158854i \(0.949220\pi\)
\(114\) 0 0
\(115\) −3.10287 −0.289344
\(116\) 0 0
\(117\) 32.8019 3.03254
\(118\) 0 0
\(119\) −0.243962 0.506592i −0.0223640 0.0464393i
\(120\) 0 0
\(121\) 2.58502 11.3257i 0.235002 1.02961i
\(122\) 0 0
\(123\) −20.4085 + 9.82822i −1.84017 + 0.886181i
\(124\) 0 0
\(125\) −3.67991 + 4.61446i −0.329141 + 0.412730i
\(126\) 0 0
\(127\) 3.03189 2.41785i 0.269037 0.214550i −0.479673 0.877447i \(-0.659245\pi\)
0.748710 + 0.662897i \(0.230673\pi\)
\(128\) 0 0
\(129\) 15.2306 + 19.0985i 1.34098 + 1.68153i
\(130\) 0 0
\(131\) 18.4841 4.21888i 1.61497 0.368606i 0.682791 0.730613i \(-0.260766\pi\)
0.932175 + 0.362008i \(0.117909\pi\)
\(132\) 0 0
\(133\) 0.650098i 0.0563707i
\(134\) 0 0
\(135\) −4.16939 + 8.65782i −0.358844 + 0.745147i
\(136\) 0 0
\(137\) 11.3927 + 9.08538i 0.973345 + 0.776217i 0.974639 0.223783i \(-0.0718405\pi\)
−0.00129423 + 0.999999i \(0.500412\pi\)
\(138\) 0 0
\(139\) 1.68524 + 7.38350i 0.142940 + 0.626260i 0.994743 + 0.102399i \(0.0326519\pi\)
−0.851804 + 0.523861i \(0.824491\pi\)
\(140\) 0 0
\(141\) 10.3431 + 4.98096i 0.871044 + 0.419473i
\(142\) 0 0
\(143\) 19.5641 + 4.46537i 1.63603 + 0.373413i
\(144\) 0 0
\(145\) 0.865205 3.18725i 0.0718514 0.264687i
\(146\) 0 0
\(147\) 22.0585 + 5.03470i 1.81935 + 0.415255i
\(148\) 0 0
\(149\) −9.13720 4.40025i −0.748549 0.360482i 0.0204004 0.999792i \(-0.493506\pi\)
−0.768949 + 0.639310i \(0.779220\pi\)
\(150\) 0 0
\(151\) −2.17697 9.53793i −0.177159 0.776186i −0.982933 0.183963i \(-0.941107\pi\)
0.805774 0.592223i \(-0.201750\pi\)
\(152\) 0 0
\(153\) −10.4559 8.33830i −0.845309 0.674112i
\(154\) 0 0
\(155\) 2.42462 5.03478i 0.194750 0.404403i
\(156\) 0 0
\(157\) 10.8273i 0.864114i 0.901846 + 0.432057i \(0.142212\pi\)
−0.901846 + 0.432057i \(0.857788\pi\)
\(158\) 0 0
\(159\) −2.09932 + 0.479155i −0.166487 + 0.0379995i
\(160\) 0 0
\(161\) −1.03102 1.29286i −0.0812556 0.101891i
\(162\) 0 0
\(163\) 15.7944 12.5956i 1.23711 0.986566i 0.237229 0.971454i \(-0.423761\pi\)
0.999886 0.0151123i \(-0.00481058\pi\)
\(164\) 0 0
\(165\) −5.96880 + 7.48463i −0.464670 + 0.582678i
\(166\) 0 0
\(167\) 4.77190 2.29802i 0.369260 0.177826i −0.240046 0.970762i \(-0.577162\pi\)
0.609306 + 0.792935i \(0.291448\pi\)
\(168\) 0 0
\(169\) −1.06919 + 4.68441i −0.0822452 + 0.360340i
\(170\) 0 0
\(171\) 6.70890 + 13.9312i 0.513043 + 1.06534i
\(172\) 0 0
\(173\) 4.33809 0.329819 0.164909 0.986309i \(-0.447267\pi\)
0.164909 + 0.986309i \(0.447267\pi\)
\(174\) 0 0
\(175\) −1.51126 −0.114240
\(176\) 0 0
\(177\) −14.7003 30.5255i −1.10494 2.29444i
\(178\) 0 0
\(179\) −3.81909 + 16.7325i −0.285452 + 1.25065i 0.605242 + 0.796042i \(0.293077\pi\)
−0.890693 + 0.454604i \(0.849781\pi\)
\(180\) 0 0
\(181\) −11.3770 + 5.47888i −0.845646 + 0.407242i −0.805960 0.591970i \(-0.798350\pi\)
−0.0396867 + 0.999212i \(0.512636\pi\)
\(182\) 0 0
\(183\) −31.3752 + 39.3432i −2.31932 + 2.90834i
\(184\) 0 0
\(185\) −2.62878 + 2.09638i −0.193271 + 0.154129i
\(186\) 0 0
\(187\) −5.10111 6.39659i −0.373030 0.467765i
\(188\) 0 0
\(189\) −4.99281 + 1.13958i −0.363173 + 0.0828919i
\(190\) 0 0
\(191\) 13.6103i 0.984808i 0.870367 + 0.492404i \(0.163882\pi\)
−0.870367 + 0.492404i \(0.836118\pi\)
\(192\) 0 0
\(193\) 5.40424 11.2220i 0.389005 0.807778i −0.610866 0.791734i \(-0.709179\pi\)
0.999871 0.0160440i \(-0.00510718\pi\)
\(194\) 0 0
\(195\) −6.64084 5.29589i −0.475560 0.379247i
\(196\) 0 0
\(197\) −0.330554 1.44825i −0.0235510 0.103184i 0.961786 0.273801i \(-0.0882810\pi\)
−0.985337 + 0.170617i \(0.945424\pi\)
\(198\) 0 0
\(199\) 8.93699 + 4.30383i 0.633526 + 0.305090i 0.722947 0.690904i \(-0.242787\pi\)
−0.0894203 + 0.995994i \(0.528501\pi\)
\(200\) 0 0
\(201\) 2.91129 + 0.664483i 0.205347 + 0.0468690i
\(202\) 0 0
\(203\) 1.61551 0.698557i 0.113386 0.0490291i
\(204\) 0 0
\(205\) 4.12618 + 0.941773i 0.288185 + 0.0657763i
\(206\) 0 0
\(207\) −35.4361 17.0651i −2.46298 1.18611i
\(208\) 0 0
\(209\) 2.10492 + 9.22227i 0.145601 + 0.637918i
\(210\) 0 0
\(211\) −7.72880 6.16351i −0.532072 0.424314i 0.320248 0.947334i \(-0.396234\pi\)
−0.852320 + 0.523020i \(0.824805\pi\)
\(212\) 0 0
\(213\) 6.05905 12.5817i 0.415159 0.862087i
\(214\) 0 0
\(215\) 4.56416i 0.311273i
\(216\) 0 0
\(217\) 2.90346 0.662697i 0.197100 0.0449868i
\(218\) 0 0
\(219\) 12.5699 + 15.7622i 0.849398 + 1.06511i
\(220\) 0 0
\(221\) 5.67546 4.52603i 0.381773 0.304454i
\(222\) 0 0
\(223\) 10.5864 13.2749i 0.708917 0.888953i −0.288738 0.957408i \(-0.593236\pi\)
0.997654 + 0.0684550i \(0.0218070\pi\)
\(224\) 0 0
\(225\) −32.3852 + 15.5959i −2.15902 + 1.03973i
\(226\) 0 0
\(227\) −0.736755 + 3.22794i −0.0489002 + 0.214246i −0.993475 0.114051i \(-0.963617\pi\)
0.944575 + 0.328296i \(0.106474\pi\)
\(228\) 0 0
\(229\) −2.23936 4.65008i −0.147981 0.307286i 0.813781 0.581171i \(-0.197405\pi\)
−0.961762 + 0.273885i \(0.911691\pi\)
\(230\) 0 0
\(231\) −5.10189 −0.335680
\(232\) 0 0
\(233\) 10.6512 0.697783 0.348892 0.937163i \(-0.386558\pi\)
0.348892 + 0.937163i \(0.386558\pi\)
\(234\) 0 0
\(235\) −0.930652 1.93252i −0.0607090 0.126064i
\(236\) 0 0
\(237\) −3.15252 + 13.8121i −0.204778 + 0.897191i
\(238\) 0 0
\(239\) −9.59472 + 4.62057i −0.620631 + 0.298880i −0.717652 0.696402i \(-0.754783\pi\)
0.0970209 + 0.995282i \(0.469069\pi\)
\(240\) 0 0
\(241\) 1.82979 2.29448i 0.117867 0.147801i −0.719398 0.694599i \(-0.755582\pi\)
0.837265 + 0.546798i \(0.184153\pi\)
\(242\) 0 0
\(243\) −35.3847 + 28.2183i −2.26993 + 1.81021i
\(244\) 0 0
\(245\) −2.63576 3.30514i −0.168393 0.211158i
\(246\) 0 0
\(247\) −8.18258 + 1.86762i −0.520645 + 0.118834i
\(248\) 0 0
\(249\) 23.7072i 1.50238i
\(250\) 0 0
\(251\) 7.85981 16.3211i 0.496107 1.03018i −0.491155 0.871072i \(-0.663425\pi\)
0.987262 0.159104i \(-0.0508605\pi\)
\(252\) 0 0
\(253\) −18.8121 15.0021i −1.18271 0.943176i
\(254\) 0 0
\(255\) 0.770601 + 3.37622i 0.0482569 + 0.211427i
\(256\) 0 0
\(257\) 17.0262 + 8.19937i 1.06206 + 0.511462i 0.881540 0.472108i \(-0.156507\pi\)
0.180522 + 0.983571i \(0.442221\pi\)
\(258\) 0 0
\(259\) −1.74697 0.398735i −0.108552 0.0247762i
\(260\) 0 0
\(261\) 27.4102 31.6414i 1.69665 1.95855i
\(262\) 0 0
\(263\) 13.2676 + 3.02824i 0.818116 + 0.186730i 0.611044 0.791596i \(-0.290750\pi\)
0.207071 + 0.978326i \(0.433607\pi\)
\(264\) 0 0
\(265\) 0.362484 + 0.174563i 0.0222672 + 0.0107233i
\(266\) 0 0
\(267\) 3.08035 + 13.4959i 0.188514 + 0.825936i
\(268\) 0 0
\(269\) −1.94346 1.54986i −0.118495 0.0944967i 0.562449 0.826832i \(-0.309859\pi\)
−0.680945 + 0.732335i \(0.738431\pi\)
\(270\) 0 0
\(271\) −4.42198 + 9.18233i −0.268616 + 0.557787i −0.991025 0.133679i \(-0.957321\pi\)
0.722409 + 0.691467i \(0.243035\pi\)
\(272\) 0 0
\(273\) 4.52672i 0.273969i
\(274\) 0 0
\(275\) −21.4386 + 4.89323i −1.29280 + 0.295073i
\(276\) 0 0
\(277\) −14.4508 18.1207i −0.868263 1.08877i −0.995297 0.0968690i \(-0.969117\pi\)
0.127034 0.991898i \(-0.459454\pi\)
\(278\) 0 0
\(279\) 55.3804 44.1644i 3.31554 2.64405i
\(280\) 0 0
\(281\) 0.775063 0.971899i 0.0462364 0.0579786i −0.758176 0.652050i \(-0.773909\pi\)
0.804412 + 0.594072i \(0.202480\pi\)
\(282\) 0 0
\(283\) −15.0202 + 7.23333i −0.892856 + 0.429977i −0.823303 0.567602i \(-0.807871\pi\)
−0.0695523 + 0.997578i \(0.522157\pi\)
\(284\) 0 0
\(285\) 0.890963 3.90356i 0.0527761 0.231227i
\(286\) 0 0
\(287\) 0.978639 + 2.03216i 0.0577672 + 0.119955i
\(288\) 0 0
\(289\) 14.0404 0.825904
\(290\) 0 0
\(291\) 0.936468 0.0548967
\(292\) 0 0
\(293\) 11.5967 + 24.0807i 0.677484 + 1.40681i 0.901740 + 0.432279i \(0.142290\pi\)
−0.224256 + 0.974530i \(0.571995\pi\)
\(294\) 0 0
\(295\) −1.40863 + 6.17163i −0.0820138 + 0.359326i
\(296\) 0 0
\(297\) −67.1380 + 32.3320i −3.89574 + 1.87609i
\(298\) 0 0
\(299\) 13.3108 16.6913i 0.769785 0.965280i
\(300\) 0 0
\(301\) 1.90172 1.51657i 0.109614 0.0874139i
\(302\) 0 0
\(303\) 36.1441 + 45.3233i 2.07642 + 2.60375i
\(304\) 0 0
\(305\) 9.16650 2.09219i 0.524872 0.119799i
\(306\) 0 0
\(307\) 14.4465i 0.824506i 0.911069 + 0.412253i \(0.135258\pi\)
−0.911069 + 0.412253i \(0.864742\pi\)
\(308\) 0 0
\(309\) −21.8112 + 45.2914i −1.24079 + 2.57654i
\(310\) 0 0
\(311\) −17.5399 13.9876i −0.994599 0.793166i −0.0161948 0.999869i \(-0.505155\pi\)
−0.978404 + 0.206703i \(0.933727\pi\)
\(312\) 0 0
\(313\) 3.38107 + 14.8134i 0.191109 + 0.837304i 0.976017 + 0.217692i \(0.0698529\pi\)
−0.784908 + 0.619612i \(0.787290\pi\)
\(314\) 0 0
\(315\) 1.40387 + 0.676069i 0.0790992 + 0.0380922i
\(316\) 0 0
\(317\) −7.06457 1.61244i −0.396786 0.0905638i 0.0194720 0.999810i \(-0.493801\pi\)
−0.416258 + 0.909247i \(0.636659\pi\)
\(318\) 0 0
\(319\) 20.6557 15.1405i 1.15650 0.847705i
\(320\) 0 0
\(321\) 35.0228 + 7.99372i 1.95478 + 0.446166i
\(322\) 0 0
\(323\) 3.08302 + 1.48470i 0.171544 + 0.0826112i
\(324\) 0 0
\(325\) −4.34158 19.0217i −0.240828 1.05513i
\(326\) 0 0
\(327\) 11.9950 + 9.56571i 0.663326 + 0.528985i
\(328\) 0 0
\(329\) 0.495976 1.02990i 0.0273440 0.0567805i
\(330\) 0 0
\(331\) 4.85090i 0.266630i 0.991074 + 0.133315i \(0.0425621\pi\)
−0.991074 + 0.133315i \(0.957438\pi\)
\(332\) 0 0
\(333\) −41.5514 + 9.48384i −2.27700 + 0.519711i
\(334\) 0 0
\(335\) −0.347869 0.436214i −0.0190061 0.0238329i
\(336\) 0 0
\(337\) 20.0284 15.9721i 1.09101 0.870055i 0.0988633 0.995101i \(-0.468479\pi\)
0.992151 + 0.125046i \(0.0399079\pi\)
\(338\) 0 0
\(339\) −12.4111 + 15.5630i −0.674079 + 0.845269i
\(340\) 0 0
\(341\) 39.0427 18.8020i 2.11428 1.01818i
\(342\) 0 0
\(343\) 1.01042 4.42695i 0.0545577 0.239033i
\(344\) 0 0
\(345\) 4.41896 + 9.17606i 0.237909 + 0.494023i
\(346\) 0 0
\(347\) −10.9788 −0.589370 −0.294685 0.955594i \(-0.595215\pi\)
−0.294685 + 0.955594i \(0.595215\pi\)
\(348\) 0 0
\(349\) 0.685139 0.0366747 0.0183373 0.999832i \(-0.494163\pi\)
0.0183373 + 0.999832i \(0.494163\pi\)
\(350\) 0 0
\(351\) −28.6870 59.5691i −1.53120 3.17956i
\(352\) 0 0
\(353\) 1.19318 5.22766i 0.0635065 0.278240i −0.933198 0.359364i \(-0.882994\pi\)
0.996704 + 0.0811236i \(0.0258509\pi\)
\(354\) 0 0
\(355\) −2.35079 + 1.13208i −0.124767 + 0.0600847i
\(356\) 0 0
\(357\) −1.15070 + 1.44293i −0.0609014 + 0.0763680i
\(358\) 0 0
\(359\) 19.8673 15.8437i 1.04856 0.836197i 0.0617494 0.998092i \(-0.480332\pi\)
0.986808 + 0.161895i \(0.0517606\pi\)
\(360\) 0 0
\(361\) 9.37955 + 11.7616i 0.493661 + 0.619031i
\(362\) 0 0
\(363\) −37.1748 + 8.48490i −1.95117 + 0.445342i
\(364\) 0 0
\(365\) 3.76685i 0.197166i
\(366\) 0 0
\(367\) 8.23285 17.0957i 0.429751 0.892388i −0.567848 0.823134i \(-0.692224\pi\)
0.997599 0.0692544i \(-0.0220620\pi\)
\(368\) 0 0
\(369\) 41.9432 + 33.4486i 2.18347 + 1.74126i
\(370\) 0 0
\(371\) 0.0477116 + 0.209038i 0.00247706 + 0.0108527i
\(372\) 0 0
\(373\) 22.3441 + 10.7604i 1.15693 + 0.557150i 0.911110 0.412164i \(-0.135227\pi\)
0.245825 + 0.969314i \(0.420941\pi\)
\(374\) 0 0
\(375\) 18.8870 + 4.31084i 0.975322 + 0.222611i
\(376\) 0 0
\(377\) 13.4336 + 18.3270i 0.691865 + 0.943890i
\(378\) 0 0
\(379\) −4.82824 1.10202i −0.248010 0.0566067i 0.0967085 0.995313i \(-0.469169\pi\)
−0.344719 + 0.938706i \(0.612026\pi\)
\(380\) 0 0
\(381\) −11.4682 5.52277i −0.587531 0.282940i
\(382\) 0 0
\(383\) 5.17194 + 22.6597i 0.264274 + 1.15786i 0.916564 + 0.399889i \(0.130951\pi\)
−0.652290 + 0.757970i \(0.726192\pi\)
\(384\) 0 0
\(385\) 0.745278 + 0.594339i 0.0379829 + 0.0302903i
\(386\) 0 0
\(387\) 25.1019 52.1247i 1.27600 2.64965i
\(388\) 0 0
\(389\) 26.6484i 1.35113i −0.737301 0.675565i \(-0.763900\pi\)
0.737301 0.675565i \(-0.236100\pi\)
\(390\) 0 0
\(391\) −8.48589 + 1.93685i −0.429150 + 0.0979506i
\(392\) 0 0
\(393\) −38.8007 48.6545i −1.95723 2.45429i
\(394\) 0 0
\(395\) 2.06954 1.65040i 0.104130 0.0830407i
\(396\) 0 0
\(397\) −10.4670 + 13.1252i −0.525325 + 0.658737i −0.971730 0.236094i \(-0.924133\pi\)
0.446405 + 0.894831i \(0.352704\pi\)
\(398\) 0 0
\(399\) 1.92252 0.925839i 0.0962466 0.0463499i
\(400\) 0 0
\(401\) −8.15340 + 35.7224i −0.407161 + 1.78389i 0.190015 + 0.981781i \(0.439146\pi\)
−0.597176 + 0.802110i \(0.703711\pi\)
\(402\) 0 0
\(403\) 16.6823 + 34.6412i 0.831005 + 1.72560i
\(404\) 0 0
\(405\) 17.2391 0.856618
\(406\) 0 0
\(407\) −26.0736 −1.29242
\(408\) 0 0
\(409\) 0.556937 + 1.15649i 0.0275388 + 0.0571848i 0.914284 0.405073i \(-0.132754\pi\)
−0.886746 + 0.462258i \(0.847040\pi\)
\(410\) 0 0
\(411\) 10.6431 46.6304i 0.524985 2.30011i
\(412\) 0 0
\(413\) −3.03956 + 1.46377i −0.149567 + 0.0720276i
\(414\) 0 0
\(415\) 2.76175 3.46312i 0.135569 0.169998i
\(416\) 0 0
\(417\) 19.4351 15.4990i 0.951740 0.758987i
\(418\) 0 0
\(419\) −11.5704 14.5088i −0.565250 0.708802i 0.414268 0.910155i \(-0.364038\pi\)
−0.979519 + 0.201353i \(0.935466\pi\)
\(420\) 0 0
\(421\) 9.76598 2.22902i 0.475965 0.108636i 0.0221929 0.999754i \(-0.492935\pi\)
0.453772 + 0.891118i \(0.350078\pi\)
\(422\) 0 0
\(423\) 27.1886i 1.32195i
\(424\) 0 0
\(425\) −3.45143 + 7.16697i −0.167419 + 0.347649i
\(426\) 0 0
\(427\) 3.91758 + 3.12416i 0.189585 + 0.151189i
\(428\) 0 0
\(429\) −14.6569 64.2159i −0.707640 3.10037i
\(430\) 0 0
\(431\) −8.26153 3.97854i −0.397944 0.191640i 0.224199 0.974543i \(-0.428023\pi\)
−0.622143 + 0.782904i \(0.713738\pi\)
\(432\) 0 0
\(433\) −20.7331 4.73219i −0.996368 0.227415i −0.306909 0.951739i \(-0.599295\pi\)
−0.689459 + 0.724324i \(0.742152\pi\)
\(434\) 0 0
\(435\) −10.6578 + 1.98048i −0.511002 + 0.0949568i
\(436\) 0 0
\(437\) 9.81132 + 2.23937i 0.469339 + 0.107124i
\(438\) 0 0
\(439\) −17.8377 8.59017i −0.851345 0.409986i −0.0432686 0.999063i \(-0.513777\pi\)
−0.808077 + 0.589077i \(0.799491\pi\)
\(440\) 0 0
\(441\) −11.9240 52.2422i −0.567807 2.48773i
\(442\) 0 0
\(443\) −5.05031 4.02749i −0.239947 0.191352i 0.496132 0.868247i \(-0.334753\pi\)
−0.736079 + 0.676896i \(0.763325\pi\)
\(444\) 0 0
\(445\) 1.12222 2.33031i 0.0531982 0.110467i
\(446\) 0 0
\(447\) 33.2879i 1.57446i
\(448\) 0 0
\(449\) −0.869120 + 0.198371i −0.0410163 + 0.00936170i −0.242980 0.970031i \(-0.578125\pi\)
0.201964 + 0.979393i \(0.435268\pi\)
\(450\) 0 0
\(451\) 20.4628 + 25.6595i 0.963555 + 1.20826i
\(452\) 0 0
\(453\) −25.1060 + 20.0214i −1.17958 + 0.940687i
\(454\) 0 0
\(455\) −0.527335 + 0.661257i −0.0247219 + 0.0310002i
\(456\) 0 0
\(457\) −6.76281 + 3.25680i −0.316351 + 0.152347i −0.585320 0.810802i \(-0.699031\pi\)
0.268969 + 0.963149i \(0.413317\pi\)
\(458\) 0 0
\(459\) −5.99834 + 26.2804i −0.279978 + 1.22667i
\(460\) 0 0
\(461\) 2.02120 + 4.19706i 0.0941364 + 0.195476i 0.942720 0.333585i \(-0.108258\pi\)
−0.848584 + 0.529061i \(0.822544\pi\)
\(462\) 0 0
\(463\) −16.5581 −0.769520 −0.384760 0.923017i \(-0.625716\pi\)
−0.384760 + 0.923017i \(0.625716\pi\)
\(464\) 0 0
\(465\) −18.3423 −0.850603
\(466\) 0 0
\(467\) 5.93783 + 12.3300i 0.274770 + 0.570565i 0.991995 0.126276i \(-0.0403025\pi\)
−0.717225 + 0.696841i \(0.754588\pi\)
\(468\) 0 0
\(469\) 0.0661654 0.289890i 0.00305524 0.0133859i
\(470\) 0 0
\(471\) 32.0195 15.4198i 1.47538 0.710505i
\(472\) 0 0
\(473\) 22.0674 27.6716i 1.01466 1.27234i
\(474\) 0 0
\(475\) 7.19067 5.73436i 0.329930 0.263111i
\(476\) 0 0
\(477\) 3.17966 + 3.98717i 0.145587 + 0.182560i
\(478\) 0 0
\(479\) −30.9396 + 7.06176i −1.41367 + 0.322660i −0.860091 0.510140i \(-0.829594\pi\)
−0.553574 + 0.832800i \(0.686736\pi\)
\(480\) 0 0
\(481\) 23.1341i 1.05482i
\(482\) 0 0
\(483\) −2.35501 + 4.89024i −0.107157 + 0.222514i
\(484\) 0 0
\(485\) −0.136798 0.109093i −0.00621168 0.00495365i
\(486\) 0 0
\(487\) −7.81891 34.2569i −0.354309 1.55233i −0.767115 0.641509i \(-0.778309\pi\)
0.412806 0.910819i \(-0.364549\pi\)
\(488\) 0 0
\(489\) −59.7425 28.7705i −2.70165 1.30105i
\(490\) 0 0
\(491\) −12.4972 2.85240i −0.563990 0.128727i −0.0689858 0.997618i \(-0.521976\pi\)
−0.495004 + 0.868891i \(0.664833\pi\)
\(492\) 0 0
\(493\) 0.376685 9.25674i 0.0169650 0.416903i
\(494\) 0 0
\(495\) 22.1043 + 5.04516i 0.993514 + 0.226763i
\(496\) 0 0
\(497\) −1.25282 0.603326i −0.0561966 0.0270628i
\(498\) 0 0
\(499\) 4.08484 + 17.8969i 0.182863 + 0.801173i 0.980259 + 0.197718i \(0.0633529\pi\)
−0.797396 + 0.603456i \(0.793790\pi\)
\(500\) 0 0
\(501\) −13.5918 10.8391i −0.607238 0.484256i
\(502\) 0 0
\(503\) 3.07138 6.37779i 0.136946 0.284371i −0.821206 0.570632i \(-0.806698\pi\)
0.958152 + 0.286261i \(0.0924124\pi\)
\(504\) 0 0
\(505\) 10.8313i 0.481988i
\(506\) 0 0
\(507\) 15.3758 3.50943i 0.682864 0.155859i
\(508\) 0 0
\(509\) 0.104264 + 0.130743i 0.00462142 + 0.00579507i 0.784137 0.620588i \(-0.213106\pi\)
−0.779515 + 0.626383i \(0.784535\pi\)
\(510\) 0 0
\(511\) 1.56951 1.25164i 0.0694311 0.0553695i
\(512\) 0 0
\(513\) 19.4321 24.3671i 0.857947 1.07583i
\(514\) 0 0
\(515\) 8.46232 4.07524i 0.372895 0.179577i
\(516\) 0 0
\(517\) 3.70122 16.2161i 0.162779 0.713183i
\(518\) 0 0
\(519\) −6.17810 12.8290i −0.271188 0.563129i
\(520\) 0 0
\(521\) −8.16492 −0.357712 −0.178856 0.983875i \(-0.557240\pi\)
−0.178856 + 0.983875i \(0.557240\pi\)
\(522\) 0 0
\(523\) 22.6967 0.992459 0.496230 0.868191i \(-0.334717\pi\)
0.496230 + 0.868191i \(0.334717\pi\)
\(524\) 0 0
\(525\) 2.15226 + 4.46921i 0.0939323 + 0.195052i
\(526\) 0 0
\(527\) 3.48821 15.2828i 0.151949 0.665731i
\(528\) 0 0
\(529\) −2.34108 + 1.12740i −0.101786 + 0.0490175i
\(530\) 0 0
\(531\) −50.0299 + 62.7355i −2.17111 + 2.72249i
\(532\) 0 0
\(533\) −22.7668 + 18.1559i −0.986137 + 0.786418i
\(534\) 0 0
\(535\) −4.18486 5.24765i −0.180927 0.226876i
\(536\) 0 0
\(537\) 54.9217 12.5355i 2.37005 0.540948i
\(538\) 0 0
\(539\) 32.7821i 1.41202i
\(540\) 0 0
\(541\) −19.0092 + 39.4729i −0.817268 + 1.69707i −0.105764 + 0.994391i \(0.533729\pi\)
−0.711503 + 0.702683i \(0.751985\pi\)
\(542\) 0 0
\(543\) 32.4052 + 25.8423i 1.39064 + 1.10900i
\(544\) 0 0
\(545\) −0.637870 2.79469i −0.0273234 0.119711i
\(546\) 0 0
\(547\) −14.3354 6.90356i −0.612937 0.295175i 0.101542 0.994831i \(-0.467622\pi\)
−0.714480 + 0.699656i \(0.753337\pi\)
\(548\) 0 0
\(549\) 116.192 + 26.5201i 4.95895 + 1.13185i
\(550\) 0 0
\(551\) −5.03606 + 9.45372i −0.214543 + 0.402742i
\(552\) 0 0
\(553\) 1.37533 + 0.313910i 0.0584849 + 0.0133488i
\(554\) 0 0
\(555\) 9.94337 + 4.78847i 0.422072 + 0.203259i
\(556\) 0 0
\(557\) 5.54172 + 24.2799i 0.234810 + 1.02877i 0.945591 + 0.325358i \(0.105485\pi\)
−0.710781 + 0.703414i \(0.751658\pi\)
\(558\) 0 0
\(559\) 24.5520 + 19.5796i 1.03844 + 0.828127i
\(560\) 0 0
\(561\) −11.6518 + 24.1952i −0.491938 + 1.02152i
\(562\) 0 0
\(563\) 8.56468i 0.360958i −0.983579 0.180479i \(-0.942235\pi\)
0.983579 0.180479i \(-0.0577648\pi\)
\(564\) 0 0
\(565\) 3.62600 0.827611i 0.152547 0.0348179i
\(566\) 0 0
\(567\) 5.72819 + 7.18292i 0.240561 + 0.301654i
\(568\) 0 0
\(569\) −20.8516 + 16.6286i −0.874146 + 0.697108i −0.954035 0.299696i \(-0.903115\pi\)
0.0798889 + 0.996804i \(0.474543\pi\)
\(570\) 0 0
\(571\) 8.91957 11.1848i 0.373273 0.468069i −0.559345 0.828935i \(-0.688947\pi\)
0.932618 + 0.360866i \(0.117519\pi\)
\(572\) 0 0
\(573\) 40.2496 19.3832i 1.68145 0.809744i
\(574\) 0 0
\(575\) −5.20577 + 22.8080i −0.217096 + 0.951158i
\(576\) 0 0
\(577\) −16.0183 33.2624i −0.666851 1.38473i −0.909945 0.414728i \(-0.863877\pi\)
0.243094 0.970003i \(-0.421838\pi\)
\(578\) 0 0
\(579\) −40.8831 −1.69904
\(580\) 0 0
\(581\) 2.36063 0.0979355
\(582\) 0 0
\(583\) 1.35367 + 2.81092i 0.0560633 + 0.116417i
\(584\) 0 0
\(585\) −4.47638 + 19.6123i −0.185076 + 0.810870i
\(586\) 0 0
\(587\) −22.2992 + 10.7388i −0.920388 + 0.443236i −0.833210 0.552957i \(-0.813499\pi\)
−0.0871786 + 0.996193i \(0.527785\pi\)
\(588\) 0 0
\(589\) −11.3003 + 14.1702i −0.465622 + 0.583871i
\(590\) 0 0
\(591\) −3.81214 + 3.04008i −0.156810 + 0.125052i
\(592\) 0 0
\(593\) 15.5202 + 19.4617i 0.637338 + 0.799197i 0.990667 0.136302i \(-0.0435218\pi\)
−0.353329 + 0.935499i \(0.614950\pi\)
\(594\) 0 0
\(595\) 0.336185 0.0767321i 0.0137822 0.00314571i
\(596\) 0 0
\(597\) 32.5585i 1.33253i
\(598\) 0 0
\(599\) 6.73699 13.9895i 0.275266 0.571596i −0.716805 0.697273i \(-0.754396\pi\)
0.992071 + 0.125678i \(0.0401106\pi\)
\(600\) 0 0
\(601\) 5.66301 + 4.51610i 0.230999 + 0.184216i 0.732148 0.681145i \(-0.238518\pi\)
−0.501149 + 0.865361i \(0.667089\pi\)
\(602\) 0 0
\(603\) −1.57373 6.89496i −0.0640873 0.280785i
\(604\) 0 0
\(605\) 6.41888 + 3.09117i 0.260965 + 0.125674i
\(606\) 0 0
\(607\) 2.32851 + 0.531467i 0.0945113 + 0.0215716i 0.269515 0.962996i \(-0.413137\pi\)
−0.175004 + 0.984568i \(0.555994\pi\)
\(608\) 0 0
\(609\) −4.36656 3.78266i −0.176942 0.153281i
\(610\) 0 0
\(611\) 14.3879 + 3.28395i 0.582074 + 0.132855i
\(612\) 0 0
\(613\) −18.7899 9.04876i −0.758919 0.365476i 0.0140655 0.999901i \(-0.495523\pi\)
−0.772984 + 0.634425i \(0.781237\pi\)
\(614\) 0 0
\(615\) −3.09122 13.5435i −0.124650 0.546127i
\(616\) 0 0
\(617\) 7.07139 + 5.63924i 0.284683 + 0.227027i 0.755411 0.655251i \(-0.227437\pi\)
−0.470728 + 0.882278i \(0.656009\pi\)
\(618\) 0 0
\(619\) −13.9169 + 28.8986i −0.559365 + 1.16153i 0.409124 + 0.912479i \(0.365834\pi\)
−0.968489 + 0.249055i \(0.919880\pi\)
\(620\) 0 0
\(621\) 79.2772i 3.18128i
\(622\) 0 0
\(623\) 1.34385 0.306724i 0.0538400 0.0122886i
\(624\) 0 0
\(625\) 12.1579 + 15.2456i 0.486317 + 0.609823i
\(626\) 0 0
\(627\) 24.2751 19.3588i 0.969456 0.773115i
\(628\) 0 0
\(629\) −5.88073 + 7.37420i −0.234480 + 0.294029i
\(630\) 0 0
\(631\) 32.7801 15.7861i 1.30496 0.628434i 0.353274 0.935520i \(-0.385068\pi\)
0.951682 + 0.307086i \(0.0993540\pi\)
\(632\) 0 0
\(633\) −7.22026 + 31.6340i −0.286980 + 1.25734i
\(634\) 0 0
\(635\) 1.03188 + 2.14273i 0.0409491 + 0.0850316i
\(636\) 0 0
\(637\) 29.0863 1.15244
\(638\) 0 0
\(639\) −33.0733 −1.30836
\(640\) 0 0
\(641\) −12.7518 26.4795i −0.503667 1.04588i −0.985510 0.169618i \(-0.945747\pi\)
0.481843 0.876258i \(-0.339968\pi\)
\(642\) 0 0
\(643\) −10.4747 + 45.8928i −0.413083 + 1.80983i 0.156238 + 0.987719i \(0.450063\pi\)
−0.569321 + 0.822115i \(0.692794\pi\)
\(644\) 0 0
\(645\) −13.4975 + 6.50006i −0.531464 + 0.255940i
\(646\) 0 0
\(647\) −10.4549 + 13.1101i −0.411026 + 0.515411i −0.943652 0.330940i \(-0.892634\pi\)
0.532625 + 0.846351i \(0.321206\pi\)
\(648\) 0 0
\(649\) −38.3796 + 30.6067i −1.50653 + 1.20142i
\(650\) 0 0
\(651\) −6.09476 7.64259i −0.238872 0.299537i
\(652\) 0 0
\(653\) −43.8382 + 10.0058i −1.71552 + 0.391556i −0.963526 0.267614i \(-0.913765\pi\)
−0.751994 + 0.659170i \(0.770908\pi\)
\(654\) 0 0
\(655\) 11.6274i 0.454321i
\(656\) 0 0
\(657\) 20.7169 43.0190i 0.808242 1.67833i
\(658\) 0 0
\(659\) −11.1071 8.85762i −0.432671 0.345044i 0.382810 0.923827i \(-0.374956\pi\)
−0.815482 + 0.578783i \(0.803528\pi\)
\(660\) 0 0
\(661\) 9.49854 + 41.6158i 0.369450 + 1.61867i 0.728290 + 0.685269i \(0.240315\pi\)
−0.358840 + 0.933399i \(0.616828\pi\)
\(662\) 0 0
\(663\) −21.4675 10.3382i −0.833727 0.401502i
\(664\) 0 0
\(665\) −0.388695 0.0887170i −0.0150729 0.00344030i
\(666\) 0 0
\(667\) −4.97779 26.7876i −0.192741 1.03722i
\(668\) 0 0
\(669\) −54.3343 12.4014i −2.10068 0.479468i
\(670\) 0 0
\(671\) 65.6902 + 31.6347i 2.53594 + 1.22125i
\(672\) 0 0
\(673\) 2.34591 + 10.2781i 0.0904282 + 0.396192i 0.999804 0.0197831i \(-0.00629758\pi\)
−0.909376 + 0.415975i \(0.863440\pi\)
\(674\) 0 0
\(675\) 56.6451 + 45.1730i 2.18027 + 1.73871i
\(676\) 0 0
\(677\) −13.7605 + 28.5740i −0.528860 + 1.09819i 0.449881 + 0.893089i \(0.351467\pi\)
−0.978741 + 0.205101i \(0.934248\pi\)
\(678\) 0 0
\(679\) 0.0932482i 0.00357854i
\(680\) 0 0
\(681\) 10.5952 2.41828i 0.406008 0.0926686i
\(682\) 0 0
\(683\) −15.4538 19.3784i −0.591323 0.741495i 0.392675 0.919677i \(-0.371550\pi\)
−0.983998 + 0.178182i \(0.942978\pi\)
\(684\) 0 0
\(685\) −6.98689 + 5.57186i −0.266955 + 0.212890i
\(686\) 0 0
\(687\) −10.5624 + 13.2448i −0.402981 + 0.505323i
\(688\) 0 0
\(689\) −2.49403 + 1.20106i −0.0950149 + 0.0457568i
\(690\) 0 0
\(691\) 0.116466 0.510271i 0.00443058 0.0194116i −0.972664 0.232216i \(-0.925402\pi\)
0.977095 + 0.212804i \(0.0682596\pi\)
\(692\) 0 0
\(693\) 5.24265 + 10.8865i 0.199152 + 0.413543i
\(694\) 0 0
\(695\) −4.64459 −0.176179
\(696\) 0 0
\(697\) 11.8723 0.449697
\(698\) 0 0
\(699\) −15.1689 31.4986i −0.573742 1.19139i
\(700\) 0 0
\(701\) 6.44928 28.2561i 0.243586 1.06722i −0.694139 0.719841i \(-0.744215\pi\)
0.937725 0.347379i \(-0.112928\pi\)
\(702\) 0 0
\(703\) 9.82520 4.73157i 0.370565 0.178454i
\(704\) 0 0
\(705\) −4.38961 + 5.50440i −0.165322 + 0.207308i
\(706\) 0 0
\(707\) 4.51304 3.59903i 0.169730 0.135355i
\(708\) 0 0
\(709\) −30.0136 37.6359i −1.12718 1.41344i −0.897963 0.440070i \(-0.854954\pi\)
−0.229221 0.973374i \(-0.573618\pi\)
\(710\) 0 0
\(711\) 32.7119 7.46628i 1.22679 0.280007i
\(712\) 0 0
\(713\) 46.1020i 1.72653i
\(714\) 0 0
\(715\) −5.33970 + 11.0880i −0.199694 + 0.414668i
\(716\) 0 0
\(717\) 27.3287 + 21.7939i 1.02061 + 0.813908i
\(718\) 0 0
\(719\) −4.06492 17.8096i −0.151596 0.664185i −0.992422 0.122879i \(-0.960787\pi\)
0.840826 0.541306i \(-0.182070\pi\)
\(720\) 0 0
\(721\) 4.50986 + 2.17183i 0.167956 + 0.0808833i
\(722\) 0 0
\(723\) −9.39134 2.14351i −0.349268 0.0797180i
\(724\) 0 0
\(725\) −21.9767 11.7071i −0.816193 0.434792i
\(726\) 0 0
\(727\) −14.7545 3.36761i −0.547213 0.124898i −0.0600281 0.998197i \(-0.519119\pi\)
−0.487185 + 0.873299i \(0.661976\pi\)
\(728\) 0 0
\(729\) 57.8648 + 27.8662i 2.14314 + 1.03208i
\(730\) 0 0
\(731\) −2.84900 12.4823i −0.105374 0.461675i
\(732\) 0 0
\(733\) 36.1552 + 28.8328i 1.33542 + 1.06496i 0.992061 + 0.125761i \(0.0401372\pi\)
0.343362 + 0.939203i \(0.388434\pi\)
\(734\) 0 0
\(735\) −6.02051 + 12.5017i −0.222070 + 0.461133i
\(736\) 0 0
\(737\) 4.32660i 0.159372i
\(738\) 0 0
\(739\) 22.4926 5.13380i 0.827405 0.188850i 0.212209 0.977224i \(-0.431934\pi\)
0.615196 + 0.788374i \(0.289077\pi\)
\(740\) 0 0
\(741\) 17.1763 + 21.5384i 0.630988 + 0.791234i
\(742\) 0 0
\(743\) −14.1975 + 11.3221i −0.520855 + 0.415368i −0.848311 0.529499i \(-0.822380\pi\)
0.327456 + 0.944866i \(0.393809\pi\)
\(744\) 0 0
\(745\) 3.87784 4.86266i 0.142073 0.178154i
\(746\) 0 0
\(747\) 50.5868 24.3613i 1.85087 0.891334i
\(748\) 0 0
\(749\) 0.795969 3.48737i 0.0290841 0.127426i
\(750\) 0 0
\(751\) −2.05070 4.25832i −0.0748311 0.155388i 0.860197 0.509962i \(-0.170340\pi\)
−0.935028 + 0.354573i \(0.884626\pi\)
\(752\) 0 0
\(753\) −59.4596 −2.16683
\(754\) 0 0
\(755\) 5.99983 0.218356
\(756\) 0 0
\(757\) −3.41186 7.08479i −0.124006 0.257501i 0.829719 0.558181i \(-0.188501\pi\)
−0.953725 + 0.300680i \(0.902786\pi\)
\(758\) 0 0
\(759\) −17.5743 + 76.9980i −0.637906 + 2.79485i
\(760\) 0 0
\(761\) −6.24291 + 3.00643i −0.226305 + 0.108983i −0.543601 0.839344i \(-0.682940\pi\)
0.317296 + 0.948327i \(0.397225\pi\)
\(762\) 0 0
\(763\) 0.952499 1.19440i 0.0344828 0.0432400i
\(764\) 0 0
\(765\) 6.41237 5.11369i 0.231840 0.184886i
\(766\) 0 0
\(767\) −27.1562 34.0528i −0.980554 1.22958i
\(768\) 0 0
\(769\) −49.9097 + 11.3916i −1.79979 + 0.410790i −0.985501 0.169671i \(-0.945730\pi\)
−0.814288 + 0.580461i \(0.802873\pi\)
\(770\) 0 0
\(771\) 62.0283i 2.23390i
\(772\) 0 0
\(773\) −5.94886 + 12.3529i −0.213966 + 0.444304i −0.980134 0.198335i \(-0.936446\pi\)
0.766169 + 0.642640i \(0.222161\pi\)
\(774\) 0 0
\(775\) −32.9408 26.2694i −1.18327 0.943625i
\(776\) 0 0
\(777\) 1.30878 + 5.73416i 0.0469524 + 0.205712i
\(778\) 0 0
\(779\) −12.3673 5.95580i −0.443106 0.213389i
\(780\) 0 0
\(781\) −19.7259 4.50231i −0.705849 0.161105i
\(782\) 0 0
\(783\) −81.4332 22.1057i −2.91018 0.789992i
\(784\) 0 0
\(785\) −6.47367 1.47757i −0.231055 0.0527368i
\(786\) 0 0
\(787\) 9.61605 + 4.63085i 0.342775 + 0.165072i 0.597349 0.801982i \(-0.296221\pi\)
−0.254574 + 0.967053i \(0.581935\pi\)
\(788\) 0 0
\(789\) −9.93972 43.5488i −0.353863 1.55038i
\(790\) 0 0
\(791\) 1.54968 + 1.23583i 0.0551003 + 0.0439410i
\(792\) 0 0
\(793\) −28.0683 + 58.2845i −0.996736 + 2.06974i
\(794\) 0 0
\(795\) 1.32057i 0.0468359i
\(796\) 0 0
\(797\) 22.7143 5.18439i 0.804581 0.183640i 0.199597 0.979878i \(-0.436037\pi\)
0.604984 + 0.796238i \(0.293180\pi\)
\(798\) 0 0
\(799\) −3.75149 4.70422i −0.132718 0.166423i
\(800\) 0 0
\(801\) 25.6324 20.4412i 0.905676 0.722253i
\(802\) 0 0
\(803\) 18.2124 22.8376i 0.642702 0.805923i
\(804\) 0 0
\(805\) 0.913701 0.440015i 0.0322037 0.0155085i
\(806\) 0 0
\(807\) −1.81559 + 7.95461i −0.0639118 + 0.280016i
\(808\) 0 0
\(809\) −16.7192 34.7177i −0.587815 1.22061i −0.956684 0.291129i \(-0.905969\pi\)
0.368869 0.929482i \(-0.379745\pi\)
\(810\) 0 0
\(811\) −12.4473 −0.437084 −0.218542 0.975828i \(-0.570130\pi\)
−0.218542 + 0.975828i \(0.570130\pi\)
\(812\) 0 0
\(813\) 33.4523 1.17322
\(814\) 0 0
\(815\) 5.37553 + 11.1624i 0.188297 + 0.391002i
\(816\) 0 0
\(817\) −3.29400 + 14.4319i −0.115242 + 0.504910i
\(818\) 0 0
\(819\) −9.65917 + 4.65161i −0.337519 + 0.162540i
\(820\) 0 0
\(821\) 6.52179 8.17806i 0.227612 0.285416i −0.654891 0.755723i \(-0.727285\pi\)
0.882503 + 0.470307i \(0.155857\pi\)
\(822\) 0 0
\(823\) −32.7667 + 26.1306i −1.14217 + 0.910854i −0.996911 0.0785392i \(-0.974974\pi\)
−0.145264 + 0.989393i \(0.546403\pi\)
\(824\) 0 0
\(825\) 45.0026 + 56.4314i 1.56679 + 1.96469i
\(826\) 0 0
\(827\) −18.3395 + 4.18586i −0.637725 + 0.145557i −0.529146 0.848531i \(-0.677487\pi\)
−0.108580 + 0.994088i \(0.534630\pi\)
\(828\) 0 0
\(829\) 33.0460i 1.14773i −0.818948 0.573867i \(-0.805443\pi\)
0.818948 0.573867i \(-0.194557\pi\)
\(830\) 0 0
\(831\) −33.0079 + 68.5417i −1.14503 + 2.37768i
\(832\) 0 0
\(833\) −9.27152 7.39379i −0.321239 0.256180i
\(834\) 0 0
\(835\) 0.722785 + 3.16673i 0.0250130 + 0.109589i
\(836\) 0 0
\(837\) −128.637 61.9482i −4.44633 2.14124i
\(838\) 0 0
\(839\) −8.34515 1.90473i −0.288106 0.0657584i 0.0760252 0.997106i \(-0.475777\pi\)
−0.364132 + 0.931347i \(0.618634\pi\)
\(840\) 0 0
\(841\) 28.9041 + 2.35630i 0.996694 + 0.0812516i
\(842\) 0 0
\(843\) −3.97799 0.907950i −0.137009 0.0312715i
\(844\) 0 0
\(845\) −2.65491 1.27854i −0.0913317 0.0439830i
\(846\) 0 0
\(847\) 0.844878 + 3.70165i 0.0290304 + 0.127190i
\(848\) 0 0
\(849\) 42.7820 + 34.1175i 1.46827 + 1.17091i
\(850\) 0 0
\(851\) −12.0355 + 24.9919i −0.412571 + 0.856712i
\(852\) 0 0
\(853\) 22.1666i 0.758969i 0.925198 + 0.379484i \(0.123899\pi\)
−0.925198 + 0.379484i \(0.876101\pi\)
\(854\) 0 0
\(855\) −9.24502 + 2.11012i −0.316173 + 0.0721644i
\(856\) 0 0
\(857\) 2.03964 + 2.55763i 0.0696728 + 0.0873670i 0.815447 0.578832i \(-0.196491\pi\)
−0.745774 + 0.666199i \(0.767920\pi\)
\(858\) 0 0
\(859\) −28.5801 + 22.7918i −0.975139 + 0.777647i −0.974966 0.222353i \(-0.928626\pi\)
−0.000172584 1.00000i \(0.500055\pi\)
\(860\) 0 0
\(861\) 4.61595 5.78822i 0.157311 0.197262i
\(862\) 0 0
\(863\) −4.39516 + 2.11660i −0.149613 + 0.0720498i −0.507192 0.861833i \(-0.669317\pi\)
0.357579 + 0.933883i \(0.383602\pi\)
\(864\) 0 0
\(865\) −0.592006 + 2.59375i −0.0201288 + 0.0881901i
\(866\) 0 0
\(867\) −19.9956 41.5214i −0.679088 1.41014i
\(868\) 0 0
\(869\) 20.5268 0.696323
\(870\) 0 0
\(871\) 3.83883 0.130074
\(872\) 0 0
\(873\) −0.962305 1.99825i −0.0325691 0.0676304i
\(874\) 0 0
\(875\) 0.429249 1.88066i 0.0145113 0.0635780i
\(876\) 0 0
\(877\) 41.5923 20.0298i 1.40447 0.676358i 0.430408 0.902634i \(-0.358370\pi\)
0.974063 + 0.226277i \(0.0726554\pi\)
\(878\) 0 0
\(879\) 54.6980 68.5892i 1.84492 2.31346i
\(880\) 0 0
\(881\) 3.25429 2.59521i 0.109640 0.0874348i −0.567135 0.823625i \(-0.691948\pi\)
0.676775 + 0.736190i \(0.263377\pi\)
\(882\) 0 0
\(883\) 27.7771 + 34.8313i 0.934772 + 1.17217i 0.984848 + 0.173422i \(0.0554824\pi\)
−0.0500753 + 0.998745i \(0.515946\pi\)
\(884\) 0 0
\(885\) 20.2574 4.62361i 0.680944 0.155421i
\(886\) 0 0
\(887\) 14.9134i 0.500744i −0.968150 0.250372i \(-0.919447\pi\)
0.968150 0.250372i \(-0.0805529\pi\)
\(888\) 0 0
\(889\) −0.549926 + 1.14193i −0.0184439 + 0.0382992i
\(890\) 0 0
\(891\) 104.517 + 83.3497i 3.50146 + 2.79232i
\(892\) 0 0
\(893\) 1.54802 + 6.78231i 0.0518024 + 0.226961i
\(894\) 0 0
\(895\) −9.48321 4.56687i −0.316989 0.152654i
\(896\) 0 0
\(897\) −68.3175 15.5930i −2.28105 0.520636i
\(898\) 0 0
\(899\) 47.3558 + 12.8551i 1.57940 + 0.428741i
\(900\) 0 0
\(901\) 1.10030 + 0.251137i 0.0366565 + 0.00836660i
\(902\) 0 0
\(903\) −7.19329 3.46410i −0.239378 0.115278i
\(904\) 0 0
\(905\) −1.72324 7.55002i −0.0572825 0.250971i
\(906\) 0 0
\(907\) 33.9941 + 27.1094i 1.12876 + 0.900153i 0.995853 0.0909764i \(-0.0289988\pi\)
0.132903 + 0.991129i \(0.457570\pi\)
\(908\) 0 0
\(909\) 59.5701 123.699i 1.97582 4.10282i
\(910\) 0 0
\(911\) 49.5298i 1.64100i 0.571650 + 0.820498i \(0.306304\pi\)
−0.571650 + 0.820498i \(0.693696\pi\)
\(912\) 0 0
\(913\) 33.4878 7.64338i 1.10829 0.252959i
\(914\) 0 0
\(915\) −19.2417 24.1283i −0.636111 0.797658i
\(916\) 0 0
\(917\) −4.84474 + 3.86355i −0.159987 + 0.127586i
\(918\) 0 0
\(919\) 8.10530 10.1637i 0.267369 0.335270i −0.629964 0.776625i \(-0.716930\pi\)
0.897333 + 0.441354i \(0.145502\pi\)
\(920\) 0 0
\(921\) 42.7224 20.5740i 1.40775 0.677937i
\(922\) 0 0
\(923\) 3.99474 17.5021i 0.131488 0.576088i
\(924\) 0 0
\(925\) 10.9993 + 22.8402i 0.361654 + 0.750983i
\(926\) 0 0
\(927\) 119.056 3.91032
\(928\) 0 0
\(929\) −50.4564 −1.65542 −0.827710 0.561156i \(-0.810357\pi\)
−0.827710 + 0.561156i \(0.810357\pi\)
\(930\) 0 0
\(931\) 5.94896 + 12.3531i 0.194969 + 0.404858i
\(932\) 0 0
\(933\) −16.3858 + 71.7911i −0.536449 + 2.35033i
\(934\) 0 0
\(935\) 4.52067 2.17704i 0.147842 0.0711967i
\(936\) 0 0
\(937\) 11.5802 14.5211i 0.378309 0.474384i −0.555829 0.831297i \(-0.687599\pi\)
0.934138 + 0.356912i \(0.116171\pi\)
\(938\) 0 0
\(939\) 38.9923 31.0953i 1.27247 1.01476i
\(940\) 0 0
\(941\) −29.1245 36.5209i −0.949430 1.19055i −0.981578 0.191064i \(-0.938806\pi\)
0.0321475 0.999483i \(-0.489765\pi\)
\(942\) 0 0
\(943\) 34.0406 7.76955i 1.10851 0.253011i
\(944\) 0 0
\(945\) 3.14072i 0.102168i
\(946\) 0 0
\(947\) 5.27851 10.9609i 0.171529 0.356183i −0.797428 0.603414i \(-0.793807\pi\)
0.968956 + 0.247232i \(0.0795209\pi\)
\(948\) 0 0
\(949\) 20.2630 + 16.1592i 0.657765 + 0.524550i
\(950\) 0 0
\(951\) 5.29258 + 23.1883i 0.171624 + 0.751932i
\(952\) 0 0
\(953\) 8.24999 + 3.97299i 0.267243 + 0.128698i 0.562707 0.826656i \(-0.309760\pi\)
−0.295464 + 0.955354i \(0.595474\pi\)
\(954\) 0 0
\(955\) −8.13763 1.85736i −0.263328 0.0601028i
\(956\) 0 0
\(957\) −74.1916 39.5224i −2.39827 1.27758i
\(958\) 0 0
\(959\) −4.64320 1.05978i −0.149937 0.0342221i
\(960\) 0 0
\(961\) 46.8760 + 22.5743i 1.51213 + 0.728202i
\(962\) 0 0
\(963\) −18.9320 82.9463i −0.610074 2.67291i
\(964\) 0 0
\(965\) 5.97216 + 4.76264i 0.192251 + 0.153315i
\(966\) 0 0
\(967\) −10.5663 + 21.9412i −0.339790 + 0.705581i −0.998921 0.0464476i \(-0.985210\pi\)
0.659131 + 0.752028i \(0.270924\pi\)
\(968\) 0 0
\(969\) 11.2318i 0.360818i
\(970\) 0 0
\(971\) −0.649386 + 0.148218i −0.0208398 + 0.00475655i −0.232928 0.972494i \(-0.574831\pi\)
0.212088 + 0.977251i \(0.431974\pi\)
\(972\) 0 0
\(973\) −1.54330 1.93523i −0.0494759 0.0620408i
\(974\) 0 0
\(975\) −50.0695 + 39.9291i −1.60351 + 1.27875i
\(976\) 0 0
\(977\) −13.4359 + 16.8480i −0.429851 + 0.539016i −0.948837 0.315767i \(-0.897738\pi\)
0.518986 + 0.854783i \(0.326310\pi\)
\(978\) 0 0
\(979\) 18.0706 8.70235i 0.577540 0.278128i
\(980\) 0 0
\(981\) 8.08547 35.4248i 0.258149 1.13103i
\(982\) 0 0
\(983\) −5.28115 10.9664i −0.168443 0.349775i 0.799611 0.600518i \(-0.205039\pi\)
−0.968053 + 0.250744i \(0.919325\pi\)
\(984\) 0 0
\(985\) 0.911023 0.0290276
\(986\) 0 0
\(987\) −3.75207 −0.119430
\(988\) 0 0
\(989\) −16.3374 33.9250i −0.519500 1.07875i
\(990\) 0 0
\(991\) −6.40285 + 28.0527i −0.203393 + 0.891125i 0.765459 + 0.643485i \(0.222512\pi\)
−0.968852 + 0.247640i \(0.920345\pi\)
\(992\) 0 0
\(993\) 14.3455 6.90842i 0.455240 0.219232i
\(994\) 0 0
\(995\) −3.79287 + 4.75611i −0.120242 + 0.150779i
\(996\) 0 0
\(997\) 46.0909 36.7562i 1.45971 1.16408i 0.506321 0.862345i \(-0.331005\pi\)
0.953391 0.301736i \(-0.0975663\pi\)
\(998\) 0 0
\(999\) 53.5617 + 67.1643i 1.69462 + 2.12498i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.y.e.33.1 48
4.3 odd 2 232.2.q.a.33.8 48
29.22 even 14 inner 464.2.y.e.225.1 48
116.15 even 28 6728.2.a.bf.1.23 24
116.43 even 28 6728.2.a.be.1.2 24
116.51 odd 14 232.2.q.a.225.8 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
232.2.q.a.33.8 48 4.3 odd 2
232.2.q.a.225.8 yes 48 116.51 odd 14
464.2.y.e.33.1 48 1.1 even 1 trivial
464.2.y.e.225.1 48 29.22 even 14 inner
6728.2.a.be.1.2 24 116.43 even 28
6728.2.a.bf.1.23 24 116.15 even 28