Properties

Label 464.2.y.e.33.7
Level $464$
Weight $2$
Character 464.33
Analytic conductor $3.705$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(33,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.y (of order \(14\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(8\) over \(\Q(\zeta_{14})\)
Twist minimal: no (minimal twist has level 232)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 33.7
Character \(\chi\) \(=\) 464.33
Dual form 464.2.y.e.225.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19841 + 2.48852i) q^{3} +(-0.882074 + 3.86462i) q^{5} +(3.53526 - 1.70249i) q^{7} +(-2.88609 + 3.61904i) q^{9} +O(q^{10})\) \(q+(1.19841 + 2.48852i) q^{3} +(-0.882074 + 3.86462i) q^{5} +(3.53526 - 1.70249i) q^{7} +(-2.88609 + 3.61904i) q^{9} +(-0.271373 + 0.216412i) q^{11} +(0.821082 + 1.02960i) q^{13} +(-10.6743 + 2.43633i) q^{15} -2.99085i q^{17} +(3.67661 - 7.63456i) q^{19} +(8.47339 + 6.75730i) q^{21} +(0.478566 + 2.09674i) q^{23} +(-9.65238 - 4.64834i) q^{25} +(-4.38638 - 1.00116i) q^{27} +(-5.29395 + 0.986986i) q^{29} +(-6.53121 - 1.49071i) q^{31} +(-0.863762 - 0.415966i) q^{33} +(3.46112 + 15.1642i) q^{35} +(0.178638 + 0.142459i) q^{37} +(-1.57820 + 3.27717i) q^{39} -2.13590i q^{41} +(6.35224 - 1.44986i) q^{43} +(-11.4405 - 14.3459i) q^{45} +(2.52882 - 2.01667i) q^{47} +(5.23518 - 6.56471i) q^{49} +(7.44280 - 3.58426i) q^{51} +(-0.144112 + 0.631397i) q^{53} +(-0.596981 - 1.23964i) q^{55} +23.4049 q^{57} -2.65805 q^{59} +(4.89841 + 10.1717i) q^{61} +(-4.04169 + 17.7078i) q^{63} +(-4.70328 + 2.26498i) q^{65} +(-2.26842 + 2.84451i) q^{67} +(-4.64426 + 3.70367i) q^{69} +(3.89410 + 4.88305i) q^{71} +(11.7893 - 2.69082i) q^{73} -29.5908i q^{75} +(-0.590933 + 1.22708i) q^{77} +(-4.78218 - 3.81366i) q^{79} +(0.324838 + 1.42321i) q^{81} +(-4.94016 - 2.37906i) q^{83} +(11.5585 + 2.63815i) q^{85} +(-8.80045 - 11.9913i) q^{87} +(-10.2826 - 2.34694i) q^{89} +(4.65564 + 2.24204i) q^{91} +(-4.11741 - 18.0395i) q^{93} +(26.2616 + 20.9430i) q^{95} +(2.77758 - 5.76770i) q^{97} -1.60669i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{5} + 4 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 48 q - 2 q^{5} + 4 q^{7} + 6 q^{9} + 10 q^{13} - 14 q^{15} + 14 q^{21} - 4 q^{23} - 48 q^{25} - 4 q^{29} + 10 q^{33} - 8 q^{35} - 38 q^{45} + 14 q^{47} - 18 q^{49} + 56 q^{51} - 48 q^{53} + 28 q^{55} - 12 q^{57} + 128 q^{59} - 28 q^{61} - 42 q^{63} - 28 q^{65} + 4 q^{67} + 28 q^{69} + 14 q^{71} - 28 q^{73} + 14 q^{77} - 32 q^{81} - 80 q^{83} + 112 q^{87} + 42 q^{89} + 28 q^{91} + 6 q^{93} + 70 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.19841 + 2.48852i 0.691902 + 1.43675i 0.889718 + 0.456510i \(0.150901\pi\)
−0.197816 + 0.980239i \(0.563385\pi\)
\(4\) 0 0
\(5\) −0.882074 + 3.86462i −0.394475 + 1.72831i 0.254116 + 0.967174i \(0.418215\pi\)
−0.648592 + 0.761136i \(0.724642\pi\)
\(6\) 0 0
\(7\) 3.53526 1.70249i 1.33620 0.643482i 0.377004 0.926211i \(-0.376954\pi\)
0.959200 + 0.282729i \(0.0912399\pi\)
\(8\) 0 0
\(9\) −2.88609 + 3.61904i −0.962030 + 1.20635i
\(10\) 0 0
\(11\) −0.271373 + 0.216412i −0.0818219 + 0.0652508i −0.663547 0.748135i \(-0.730950\pi\)
0.581725 + 0.813386i \(0.302378\pi\)
\(12\) 0 0
\(13\) 0.821082 + 1.02960i 0.227727 + 0.285561i 0.882547 0.470224i \(-0.155827\pi\)
−0.654820 + 0.755785i \(0.727256\pi\)
\(14\) 0 0
\(15\) −10.6743 + 2.43633i −2.75609 + 0.629059i
\(16\) 0 0
\(17\) 2.99085i 0.725388i −0.931908 0.362694i \(-0.881857\pi\)
0.931908 0.362694i \(-0.118143\pi\)
\(18\) 0 0
\(19\) 3.67661 7.63456i 0.843473 1.75149i 0.210037 0.977693i \(-0.432642\pi\)
0.633435 0.773796i \(-0.281644\pi\)
\(20\) 0 0
\(21\) 8.47339 + 6.75730i 1.84904 + 1.47456i
\(22\) 0 0
\(23\) 0.478566 + 2.09674i 0.0997880 + 0.437200i 0.999998 + 0.00174471i \(0.000555359\pi\)
−0.900210 + 0.435455i \(0.856587\pi\)
\(24\) 0 0
\(25\) −9.65238 4.64834i −1.93048 0.929668i
\(26\) 0 0
\(27\) −4.38638 1.00116i −0.844159 0.192674i
\(28\) 0 0
\(29\) −5.29395 + 0.986986i −0.983061 + 0.183279i
\(30\) 0 0
\(31\) −6.53121 1.49071i −1.17304 0.267739i −0.408772 0.912637i \(-0.634043\pi\)
−0.764269 + 0.644898i \(0.776900\pi\)
\(32\) 0 0
\(33\) −0.863762 0.415966i −0.150362 0.0724104i
\(34\) 0 0
\(35\) 3.46112 + 15.1642i 0.585037 + 2.56321i
\(36\) 0 0
\(37\) 0.178638 + 0.142459i 0.0293679 + 0.0234201i 0.638064 0.769984i \(-0.279736\pi\)
−0.608696 + 0.793404i \(0.708307\pi\)
\(38\) 0 0
\(39\) −1.57820 + 3.27717i −0.252714 + 0.524767i
\(40\) 0 0
\(41\) 2.13590i 0.333572i −0.985993 0.166786i \(-0.946661\pi\)
0.985993 0.166786i \(-0.0533389\pi\)
\(42\) 0 0
\(43\) 6.35224 1.44986i 0.968708 0.221101i 0.291237 0.956651i \(-0.405933\pi\)
0.677471 + 0.735550i \(0.263076\pi\)
\(44\) 0 0
\(45\) −11.4405 14.3459i −1.70544 2.13856i
\(46\) 0 0
\(47\) 2.52882 2.01667i 0.368866 0.294161i −0.421460 0.906847i \(-0.638482\pi\)
0.790326 + 0.612686i \(0.209911\pi\)
\(48\) 0 0
\(49\) 5.23518 6.56471i 0.747883 0.937815i
\(50\) 0 0
\(51\) 7.44280 3.58426i 1.04220 0.501897i
\(52\) 0 0
\(53\) −0.144112 + 0.631397i −0.0197953 + 0.0867290i −0.983861 0.178936i \(-0.942734\pi\)
0.964065 + 0.265665i \(0.0855916\pi\)
\(54\) 0 0
\(55\) −0.596981 1.23964i −0.0804968 0.167153i
\(56\) 0 0
\(57\) 23.4049 3.10005
\(58\) 0 0
\(59\) −2.65805 −0.346049 −0.173024 0.984918i \(-0.555354\pi\)
−0.173024 + 0.984918i \(0.555354\pi\)
\(60\) 0 0
\(61\) 4.89841 + 10.1717i 0.627178 + 1.30235i 0.936258 + 0.351312i \(0.114264\pi\)
−0.309081 + 0.951036i \(0.600021\pi\)
\(62\) 0 0
\(63\) −4.04169 + 17.7078i −0.509205 + 2.23097i
\(64\) 0 0
\(65\) −4.70328 + 2.26498i −0.583370 + 0.280936i
\(66\) 0 0
\(67\) −2.26842 + 2.84451i −0.277132 + 0.347512i −0.900845 0.434141i \(-0.857052\pi\)
0.623713 + 0.781653i \(0.285623\pi\)
\(68\) 0 0
\(69\) −4.64426 + 3.70367i −0.559103 + 0.445870i
\(70\) 0 0
\(71\) 3.89410 + 4.88305i 0.462145 + 0.579512i 0.957228 0.289334i \(-0.0934338\pi\)
−0.495083 + 0.868846i \(0.664862\pi\)
\(72\) 0 0
\(73\) 11.7893 2.69082i 1.37983 0.314937i 0.532690 0.846310i \(-0.321181\pi\)
0.847138 + 0.531374i \(0.178324\pi\)
\(74\) 0 0
\(75\) 29.5908i 3.41685i
\(76\) 0 0
\(77\) −0.590933 + 1.22708i −0.0673431 + 0.139839i
\(78\) 0 0
\(79\) −4.78218 3.81366i −0.538037 0.429070i 0.316400 0.948626i \(-0.397526\pi\)
−0.854436 + 0.519556i \(0.826097\pi\)
\(80\) 0 0
\(81\) 0.324838 + 1.42321i 0.0360932 + 0.158134i
\(82\) 0 0
\(83\) −4.94016 2.37906i −0.542253 0.261135i 0.142645 0.989774i \(-0.454439\pi\)
−0.684898 + 0.728639i \(0.740153\pi\)
\(84\) 0 0
\(85\) 11.5585 + 2.63815i 1.25370 + 0.286148i
\(86\) 0 0
\(87\) −8.80045 11.9913i −0.943507 1.28560i
\(88\) 0 0
\(89\) −10.2826 2.34694i −1.08996 0.248776i −0.360470 0.932771i \(-0.617384\pi\)
−0.729487 + 0.683995i \(0.760241\pi\)
\(90\) 0 0
\(91\) 4.65564 + 2.24204i 0.488043 + 0.235029i
\(92\) 0 0
\(93\) −4.11741 18.0395i −0.426955 1.87061i
\(94\) 0 0
\(95\) 26.2616 + 20.9430i 2.69439 + 2.14870i
\(96\) 0 0
\(97\) 2.77758 5.76770i 0.282020 0.585621i −0.711050 0.703141i \(-0.751780\pi\)
0.993070 + 0.117520i \(0.0374945\pi\)
\(98\) 0 0
\(99\) 1.60669i 0.161479i
\(100\) 0 0
\(101\) 13.7536 3.13917i 1.36853 0.312359i 0.525762 0.850631i \(-0.323780\pi\)
0.842771 + 0.538273i \(0.180923\pi\)
\(102\) 0 0
\(103\) 1.19222 + 1.49500i 0.117473 + 0.147306i 0.837091 0.547064i \(-0.184254\pi\)
−0.719618 + 0.694370i \(0.755683\pi\)
\(104\) 0 0
\(105\) −33.5885 + 26.7860i −3.27791 + 2.61404i
\(106\) 0 0
\(107\) 6.93636 8.69792i 0.670563 0.840859i −0.323884 0.946097i \(-0.604989\pi\)
0.994447 + 0.105237i \(0.0335603\pi\)
\(108\) 0 0
\(109\) −13.5539 + 6.52720i −1.29823 + 0.625192i −0.950009 0.312222i \(-0.898927\pi\)
−0.348216 + 0.937414i \(0.613213\pi\)
\(110\) 0 0
\(111\) −0.140431 + 0.615269i −0.0133291 + 0.0583988i
\(112\) 0 0
\(113\) −1.87579 3.89512i −0.176460 0.366422i 0.793915 0.608029i \(-0.208040\pi\)
−0.970374 + 0.241607i \(0.922325\pi\)
\(114\) 0 0
\(115\) −8.52522 −0.794981
\(116\) 0 0
\(117\) −6.09590 −0.563566
\(118\) 0 0
\(119\) −5.09191 10.5735i −0.466774 0.969267i
\(120\) 0 0
\(121\) −2.42092 + 10.6068i −0.220084 + 0.964250i
\(122\) 0 0
\(123\) 5.31524 2.55968i 0.479259 0.230799i
\(124\) 0 0
\(125\) 14.1206 17.7067i 1.26298 1.58373i
\(126\) 0 0
\(127\) 1.28840 1.02747i 0.114327 0.0911728i −0.564658 0.825325i \(-0.690992\pi\)
0.678985 + 0.734153i \(0.262420\pi\)
\(128\) 0 0
\(129\) 11.2206 + 14.0702i 0.987918 + 1.23881i
\(130\) 0 0
\(131\) −10.2944 + 2.34963i −0.899424 + 0.205288i −0.647145 0.762367i \(-0.724037\pi\)
−0.252279 + 0.967655i \(0.581180\pi\)
\(132\) 0 0
\(133\) 33.2496i 2.88311i
\(134\) 0 0
\(135\) 7.73822 16.0686i 0.666000 1.38296i
\(136\) 0 0
\(137\) 4.77234 + 3.80582i 0.407729 + 0.325153i 0.805785 0.592208i \(-0.201744\pi\)
−0.398056 + 0.917361i \(0.630315\pi\)
\(138\) 0 0
\(139\) −2.03282 8.90636i −0.172421 0.755427i −0.984997 0.172572i \(-0.944792\pi\)
0.812576 0.582856i \(-0.198065\pi\)
\(140\) 0 0
\(141\) 8.04908 + 3.87623i 0.677854 + 0.326437i
\(142\) 0 0
\(143\) −0.445638 0.101714i −0.0372661 0.00850575i
\(144\) 0 0
\(145\) 0.855328 21.3297i 0.0710312 1.77133i
\(146\) 0 0
\(147\) 22.6103 + 5.16065i 1.86487 + 0.425644i
\(148\) 0 0
\(149\) 9.10581 + 4.38512i 0.745977 + 0.359243i 0.767945 0.640515i \(-0.221279\pi\)
−0.0219688 + 0.999759i \(0.506993\pi\)
\(150\) 0 0
\(151\) −3.78171 16.5688i −0.307751 1.34835i −0.858130 0.513432i \(-0.828374\pi\)
0.550379 0.834915i \(-0.314483\pi\)
\(152\) 0 0
\(153\) 10.8240 + 8.63187i 0.875070 + 0.697845i
\(154\) 0 0
\(155\) 11.5220 23.9257i 0.925471 1.92176i
\(156\) 0 0
\(157\) 17.9470i 1.43233i 0.697932 + 0.716164i \(0.254104\pi\)
−0.697932 + 0.716164i \(0.745896\pi\)
\(158\) 0 0
\(159\) −1.74395 + 0.398045i −0.138304 + 0.0315670i
\(160\) 0 0
\(161\) 5.26154 + 6.59776i 0.414667 + 0.519976i
\(162\) 0 0
\(163\) −7.04064 + 5.61473i −0.551466 + 0.439779i −0.859161 0.511706i \(-0.829014\pi\)
0.307695 + 0.951485i \(0.400442\pi\)
\(164\) 0 0
\(165\) 2.36945 2.97120i 0.184462 0.231308i
\(166\) 0 0
\(167\) −2.05911 + 0.991615i −0.159339 + 0.0767335i −0.511853 0.859073i \(-0.671041\pi\)
0.352515 + 0.935806i \(0.385327\pi\)
\(168\) 0 0
\(169\) 2.50686 10.9833i 0.192836 0.844868i
\(170\) 0 0
\(171\) 17.0188 + 35.3398i 1.30146 + 2.70251i
\(172\) 0 0
\(173\) −13.0060 −0.988828 −0.494414 0.869227i \(-0.664617\pi\)
−0.494414 + 0.869227i \(0.664617\pi\)
\(174\) 0 0
\(175\) −42.0375 −3.17773
\(176\) 0 0
\(177\) −3.18543 6.61462i −0.239432 0.497185i
\(178\) 0 0
\(179\) 1.77801 7.78997i 0.132895 0.582249i −0.863999 0.503493i \(-0.832048\pi\)
0.996894 0.0787563i \(-0.0250949\pi\)
\(180\) 0 0
\(181\) −18.6684 + 8.99023i −1.38761 + 0.668239i −0.970608 0.240666i \(-0.922634\pi\)
−0.417004 + 0.908905i \(0.636920\pi\)
\(182\) 0 0
\(183\) −19.4421 + 24.3796i −1.43720 + 1.80219i
\(184\) 0 0
\(185\) −0.708122 + 0.564708i −0.0520622 + 0.0415182i
\(186\) 0 0
\(187\) 0.647257 + 0.811635i 0.0473322 + 0.0593526i
\(188\) 0 0
\(189\) −17.2115 + 3.92841i −1.25195 + 0.285750i
\(190\) 0 0
\(191\) 0.829838i 0.0600450i −0.999549 0.0300225i \(-0.990442\pi\)
0.999549 0.0300225i \(-0.00955789\pi\)
\(192\) 0 0
\(193\) −8.66005 + 17.9828i −0.623364 + 1.29443i 0.315102 + 0.949058i \(0.397961\pi\)
−0.938466 + 0.345371i \(0.887753\pi\)
\(194\) 0 0
\(195\) −11.2729 8.98985i −0.807270 0.643776i
\(196\) 0 0
\(197\) −5.00645 21.9347i −0.356695 1.56278i −0.761368 0.648320i \(-0.775472\pi\)
0.404674 0.914461i \(-0.367385\pi\)
\(198\) 0 0
\(199\) 2.01486 + 0.970308i 0.142830 + 0.0687833i 0.503934 0.863742i \(-0.331886\pi\)
−0.361104 + 0.932526i \(0.617600\pi\)
\(200\) 0 0
\(201\) −9.79712 2.23613i −0.691036 0.157724i
\(202\) 0 0
\(203\) −17.0352 + 12.5022i −1.19563 + 0.877480i
\(204\) 0 0
\(205\) 8.25445 + 1.88402i 0.576516 + 0.131586i
\(206\) 0 0
\(207\) −8.96936 4.31942i −0.623414 0.300220i
\(208\) 0 0
\(209\) 0.654482 + 2.86748i 0.0452715 + 0.198347i
\(210\) 0 0
\(211\) 7.20631 + 5.74684i 0.496103 + 0.395629i 0.839329 0.543624i \(-0.182948\pi\)
−0.343226 + 0.939253i \(0.611520\pi\)
\(212\) 0 0
\(213\) −7.48485 + 15.5425i −0.512854 + 1.06495i
\(214\) 0 0
\(215\) 25.8279i 1.76145i
\(216\) 0 0
\(217\) −25.6275 + 5.84930i −1.73971 + 0.397077i
\(218\) 0 0
\(219\) 20.8245 + 26.1131i 1.40719 + 1.76456i
\(220\) 0 0
\(221\) 3.07939 2.45573i 0.207142 0.165191i
\(222\) 0 0
\(223\) 13.2886 16.6634i 0.889871 1.11586i −0.102762 0.994706i \(-0.532768\pi\)
0.992633 0.121157i \(-0.0386604\pi\)
\(224\) 0 0
\(225\) 44.6802 21.5168i 2.97868 1.43446i
\(226\) 0 0
\(227\) −4.53810 + 19.8827i −0.301204 + 1.31966i 0.567108 + 0.823644i \(0.308062\pi\)
−0.868312 + 0.496018i \(0.834795\pi\)
\(228\) 0 0
\(229\) 4.39554 + 9.12742i 0.290465 + 0.603157i 0.994229 0.107277i \(-0.0342130\pi\)
−0.703764 + 0.710434i \(0.748499\pi\)
\(230\) 0 0
\(231\) −3.76181 −0.247509
\(232\) 0 0
\(233\) 2.98711 0.195692 0.0978460 0.995202i \(-0.468805\pi\)
0.0978460 + 0.995202i \(0.468805\pi\)
\(234\) 0 0
\(235\) 5.56304 + 11.5518i 0.362893 + 0.753554i
\(236\) 0 0
\(237\) 3.75937 16.4709i 0.244197 1.06990i
\(238\) 0 0
\(239\) 17.9304 8.63484i 1.15982 0.558541i 0.247853 0.968798i \(-0.420275\pi\)
0.911970 + 0.410257i \(0.134561\pi\)
\(240\) 0 0
\(241\) −4.02175 + 5.04312i −0.259064 + 0.324856i −0.894305 0.447458i \(-0.852329\pi\)
0.635241 + 0.772314i \(0.280901\pi\)
\(242\) 0 0
\(243\) −13.7052 + 10.9295i −0.879190 + 0.701130i
\(244\) 0 0
\(245\) 20.7523 + 26.0225i 1.32581 + 1.66252i
\(246\) 0 0
\(247\) 10.8794 2.48315i 0.692238 0.157999i
\(248\) 0 0
\(249\) 15.1448i 0.959761i
\(250\) 0 0
\(251\) −8.20982 + 17.0479i −0.518200 + 1.07605i 0.463585 + 0.886053i \(0.346563\pi\)
−0.981784 + 0.190000i \(0.939151\pi\)
\(252\) 0 0
\(253\) −0.583629 0.465429i −0.0366925 0.0292613i
\(254\) 0 0
\(255\) 7.28671 + 31.9252i 0.456312 + 1.99923i
\(256\) 0 0
\(257\) −0.397722 0.191533i −0.0248092 0.0119475i 0.421438 0.906857i \(-0.361526\pi\)
−0.446247 + 0.894910i \(0.647240\pi\)
\(258\) 0 0
\(259\) 0.874068 + 0.199500i 0.0543120 + 0.0123964i
\(260\) 0 0
\(261\) 11.7069 22.0075i 0.724636 1.36223i
\(262\) 0 0
\(263\) −5.56407 1.26996i −0.343095 0.0783092i 0.0475015 0.998871i \(-0.484874\pi\)
−0.390597 + 0.920562i \(0.627731\pi\)
\(264\) 0 0
\(265\) −2.31299 1.11388i −0.142086 0.0684249i
\(266\) 0 0
\(267\) −6.48238 28.4012i −0.396715 1.73812i
\(268\) 0 0
\(269\) 2.97231 + 2.37034i 0.181225 + 0.144522i 0.709901 0.704302i \(-0.248740\pi\)
−0.528676 + 0.848824i \(0.677311\pi\)
\(270\) 0 0
\(271\) 1.56733 3.25459i 0.0952084 0.197702i −0.847925 0.530115i \(-0.822149\pi\)
0.943134 + 0.332413i \(0.107863\pi\)
\(272\) 0 0
\(273\) 14.2725i 0.863813i
\(274\) 0 0
\(275\) 3.62535 0.827462i 0.218617 0.0498978i
\(276\) 0 0
\(277\) −12.7584 15.9985i −0.766578 0.961258i 0.233361 0.972390i \(-0.425028\pi\)
−0.999938 + 0.0111325i \(0.996456\pi\)
\(278\) 0 0
\(279\) 24.2446 19.3344i 1.45149 1.15752i
\(280\) 0 0
\(281\) 7.40379 9.28406i 0.441673 0.553841i −0.510310 0.859990i \(-0.670469\pi\)
0.951983 + 0.306150i \(0.0990408\pi\)
\(282\) 0 0
\(283\) −14.3967 + 6.93309i −0.855795 + 0.412129i −0.809725 0.586809i \(-0.800384\pi\)
−0.0460699 + 0.998938i \(0.514670\pi\)
\(284\) 0 0
\(285\) −20.6448 + 90.4509i −1.22289 + 5.35785i
\(286\) 0 0
\(287\) −3.63636 7.55098i −0.214647 0.445720i
\(288\) 0 0
\(289\) 8.05480 0.473812
\(290\) 0 0
\(291\) 17.6817 1.03652
\(292\) 0 0
\(293\) 6.44302 + 13.3791i 0.376405 + 0.781614i 1.00000 0.000134140i \(-4.26980e-5\pi\)
−0.623595 + 0.781748i \(0.714328\pi\)
\(294\) 0 0
\(295\) 2.34460 10.2724i 0.136508 0.598080i
\(296\) 0 0
\(297\) 1.40701 0.677579i 0.0816428 0.0393171i
\(298\) 0 0
\(299\) −1.76587 + 2.21433i −0.102123 + 0.128058i
\(300\) 0 0
\(301\) 19.9885 15.9403i 1.15212 0.918783i
\(302\) 0 0
\(303\) 24.2943 + 30.4641i 1.39567 + 1.75012i
\(304\) 0 0
\(305\) −43.6304 + 9.95834i −2.49827 + 0.570213i
\(306\) 0 0
\(307\) 18.3492i 1.04725i −0.851950 0.523623i \(-0.824580\pi\)
0.851950 0.523623i \(-0.175420\pi\)
\(308\) 0 0
\(309\) −2.29157 + 4.75849i −0.130363 + 0.270701i
\(310\) 0 0
\(311\) 17.6888 + 14.1064i 1.00304 + 0.799900i 0.979830 0.199831i \(-0.0640393\pi\)
0.0232121 + 0.999731i \(0.492611\pi\)
\(312\) 0 0
\(313\) −1.78033 7.80015i −0.100630 0.440891i −0.999993 0.00368753i \(-0.998826\pi\)
0.899363 0.437203i \(-0.144031\pi\)
\(314\) 0 0
\(315\) −64.8689 31.2392i −3.65495 1.76013i
\(316\) 0 0
\(317\) −32.4897 7.41556i −1.82480 0.416500i −0.833995 0.551772i \(-0.813952\pi\)
−0.990808 + 0.135272i \(0.956809\pi\)
\(318\) 0 0
\(319\) 1.22304 1.41352i 0.0684768 0.0791417i
\(320\) 0 0
\(321\) 29.9576 + 6.83762i 1.67207 + 0.381638i
\(322\) 0 0
\(323\) −22.8339 10.9962i −1.27051 0.611845i
\(324\) 0 0
\(325\) −3.13944 13.7548i −0.174145 0.762979i
\(326\) 0 0
\(327\) −32.4862 25.9069i −1.79649 1.43265i
\(328\) 0 0
\(329\) 5.50668 11.4347i 0.303593 0.630418i
\(330\) 0 0
\(331\) 22.8782i 1.25750i −0.777609 0.628749i \(-0.783568\pi\)
0.777609 0.628749i \(-0.216432\pi\)
\(332\) 0 0
\(333\) −1.03113 + 0.235349i −0.0565056 + 0.0128970i
\(334\) 0 0
\(335\) −8.99203 11.2756i −0.491287 0.616055i
\(336\) 0 0
\(337\) 3.37596 2.69224i 0.183900 0.146656i −0.527213 0.849733i \(-0.676763\pi\)
0.711113 + 0.703078i \(0.248191\pi\)
\(338\) 0 0
\(339\) 7.44513 9.33590i 0.404364 0.507056i
\(340\) 0 0
\(341\) 2.09500 1.00890i 0.113451 0.0546349i
\(342\) 0 0
\(343\) 1.21940 5.34255i 0.0658415 0.288471i
\(344\) 0 0
\(345\) −10.2167 21.2152i −0.550049 1.14219i
\(346\) 0 0
\(347\) 8.94927 0.480422 0.240211 0.970721i \(-0.422783\pi\)
0.240211 + 0.970721i \(0.422783\pi\)
\(348\) 0 0
\(349\) −13.9992 −0.749361 −0.374680 0.927154i \(-0.622248\pi\)
−0.374680 + 0.927154i \(0.622248\pi\)
\(350\) 0 0
\(351\) −2.57077 5.33827i −0.137218 0.284936i
\(352\) 0 0
\(353\) −6.89228 + 30.1970i −0.366839 + 1.60723i 0.368568 + 0.929601i \(0.379848\pi\)
−0.735407 + 0.677626i \(0.763009\pi\)
\(354\) 0 0
\(355\) −22.3060 + 10.7420i −1.18388 + 0.570127i
\(356\) 0 0
\(357\) 20.2101 25.3426i 1.06963 1.34127i
\(358\) 0 0
\(359\) −6.91612 + 5.51542i −0.365019 + 0.291093i −0.788773 0.614684i \(-0.789283\pi\)
0.423754 + 0.905777i \(0.360712\pi\)
\(360\) 0 0
\(361\) −32.9228 41.2839i −1.73278 2.17283i
\(362\) 0 0
\(363\) −29.2964 + 6.68671i −1.53766 + 0.350961i
\(364\) 0 0
\(365\) 47.9345i 2.50900i
\(366\) 0 0
\(367\) −4.51615 + 9.37789i −0.235741 + 0.489522i −0.984956 0.172805i \(-0.944717\pi\)
0.749215 + 0.662327i \(0.230431\pi\)
\(368\) 0 0
\(369\) 7.72992 + 6.16440i 0.402403 + 0.320906i
\(370\) 0 0
\(371\) 0.565474 + 2.47750i 0.0293580 + 0.128626i
\(372\) 0 0
\(373\) 6.38622 + 3.07544i 0.330666 + 0.159240i 0.591849 0.806049i \(-0.298398\pi\)
−0.261183 + 0.965289i \(0.584113\pi\)
\(374\) 0 0
\(375\) 60.9857 + 13.9196i 3.14929 + 0.718804i
\(376\) 0 0
\(377\) −5.36297 4.64027i −0.276207 0.238986i
\(378\) 0 0
\(379\) 23.0164 + 5.25334i 1.18227 + 0.269846i 0.768087 0.640346i \(-0.221209\pi\)
0.414186 + 0.910192i \(0.364066\pi\)
\(380\) 0 0
\(381\) 4.10090 + 1.97489i 0.210096 + 0.101177i
\(382\) 0 0
\(383\) −7.11367 31.1670i −0.363492 1.59256i −0.744260 0.667890i \(-0.767198\pi\)
0.380768 0.924670i \(-0.375660\pi\)
\(384\) 0 0
\(385\) −4.22097 3.36611i −0.215120 0.171553i
\(386\) 0 0
\(387\) −13.0860 + 27.1735i −0.665201 + 1.38130i
\(388\) 0 0
\(389\) 4.55010i 0.230699i 0.993325 + 0.115350i \(0.0367989\pi\)
−0.993325 + 0.115350i \(0.963201\pi\)
\(390\) 0 0
\(391\) 6.27103 1.43132i 0.317140 0.0723850i
\(392\) 0 0
\(393\) −18.1840 22.8020i −0.917260 1.15021i
\(394\) 0 0
\(395\) 18.9566 15.1174i 0.953808 0.760637i
\(396\) 0 0
\(397\) 3.11300 3.90358i 0.156237 0.195915i −0.697552 0.716534i \(-0.745727\pi\)
0.853789 + 0.520619i \(0.174299\pi\)
\(398\) 0 0
\(399\) 82.7424 39.8466i 4.14230 1.99483i
\(400\) 0 0
\(401\) 5.43917 23.8306i 0.271619 1.19004i −0.636482 0.771291i \(-0.719611\pi\)
0.908102 0.418750i \(-0.137532\pi\)
\(402\) 0 0
\(403\) −3.82782 7.94856i −0.190677 0.395946i
\(404\) 0 0
\(405\) −5.78670 −0.287543
\(406\) 0 0
\(407\) −0.0793074 −0.00393112
\(408\) 0 0
\(409\) −0.246731 0.512342i −0.0122001 0.0253337i 0.894780 0.446508i \(-0.147332\pi\)
−0.906980 + 0.421174i \(0.861618\pi\)
\(410\) 0 0
\(411\) −3.75164 + 16.4370i −0.185055 + 0.810778i
\(412\) 0 0
\(413\) −9.39691 + 4.52531i −0.462392 + 0.222676i
\(414\) 0 0
\(415\) 13.5517 16.9933i 0.665228 0.834170i
\(416\) 0 0
\(417\) 19.7275 15.7322i 0.966061 0.770408i
\(418\) 0 0
\(419\) −21.6536 27.1527i −1.05785 1.32650i −0.942882 0.333127i \(-0.891896\pi\)
−0.114964 0.993370i \(-0.536675\pi\)
\(420\) 0 0
\(421\) 16.7516 3.82343i 0.816421 0.186343i 0.206134 0.978524i \(-0.433912\pi\)
0.610286 + 0.792181i \(0.291054\pi\)
\(422\) 0 0
\(423\) 14.9722i 0.727972i
\(424\) 0 0
\(425\) −13.9025 + 28.8688i −0.674370 + 1.40034i
\(426\) 0 0
\(427\) 34.6344 + 27.6200i 1.67607 + 1.33662i
\(428\) 0 0
\(429\) −0.280939 1.23088i −0.0135639 0.0594272i
\(430\) 0 0
\(431\) −28.1363 13.5497i −1.35528 0.652667i −0.391698 0.920094i \(-0.628112\pi\)
−0.963578 + 0.267427i \(0.913827\pi\)
\(432\) 0 0
\(433\) −5.42511 1.23825i −0.260714 0.0595063i 0.0901658 0.995927i \(-0.471260\pi\)
−0.350880 + 0.936420i \(0.614117\pi\)
\(434\) 0 0
\(435\) 54.1044 23.4332i 2.59411 1.12353i
\(436\) 0 0
\(437\) 17.7672 + 4.05524i 0.849919 + 0.193988i
\(438\) 0 0
\(439\) −9.24934 4.45425i −0.441447 0.212590i 0.199939 0.979808i \(-0.435926\pi\)
−0.641385 + 0.767219i \(0.721640\pi\)
\(440\) 0 0
\(441\) 8.64875 + 37.8927i 0.411845 + 1.80441i
\(442\) 0 0
\(443\) 6.65783 + 5.30944i 0.316323 + 0.252259i 0.768760 0.639537i \(-0.220874\pi\)
−0.452437 + 0.891796i \(0.649445\pi\)
\(444\) 0 0
\(445\) 18.1401 37.6683i 0.859923 1.78565i
\(446\) 0 0
\(447\) 27.9152i 1.32034i
\(448\) 0 0
\(449\) 15.2580 3.48254i 0.720069 0.164351i 0.153243 0.988189i \(-0.451028\pi\)
0.566826 + 0.823838i \(0.308171\pi\)
\(450\) 0 0
\(451\) 0.462236 + 0.579625i 0.0217658 + 0.0272935i
\(452\) 0 0
\(453\) 36.6997 29.2670i 1.72430 1.37508i
\(454\) 0 0
\(455\) −12.7712 + 16.0146i −0.598724 + 0.750777i
\(456\) 0 0
\(457\) −7.81040 + 3.76129i −0.365355 + 0.175946i −0.607549 0.794282i \(-0.707847\pi\)
0.242194 + 0.970228i \(0.422133\pi\)
\(458\) 0 0
\(459\) −2.99433 + 13.1190i −0.139763 + 0.612343i
\(460\) 0 0
\(461\) −9.23188 19.1702i −0.429971 0.892845i −0.997579 0.0695453i \(-0.977845\pi\)
0.567607 0.823299i \(-0.307869\pi\)
\(462\) 0 0
\(463\) −13.7875 −0.640757 −0.320379 0.947290i \(-0.603810\pi\)
−0.320379 + 0.947290i \(0.603810\pi\)
\(464\) 0 0
\(465\) 73.3478 3.40142
\(466\) 0 0
\(467\) −10.5053 21.8145i −0.486128 1.00945i −0.989385 0.145318i \(-0.953580\pi\)
0.503257 0.864137i \(-0.332135\pi\)
\(468\) 0 0
\(469\) −3.17671 + 13.9181i −0.146687 + 0.642677i
\(470\) 0 0
\(471\) −44.6615 + 21.5079i −2.05790 + 0.991030i
\(472\) 0 0
\(473\) −1.41006 + 1.76816i −0.0648345 + 0.0812999i
\(474\) 0 0
\(475\) −70.9761 + 56.6015i −3.25661 + 2.59706i
\(476\) 0 0
\(477\) −1.86913 2.34382i −0.0855816 0.107316i
\(478\) 0 0
\(479\) −4.71733 + 1.07670i −0.215540 + 0.0491956i −0.328927 0.944355i \(-0.606687\pi\)
0.113387 + 0.993551i \(0.463830\pi\)
\(480\) 0 0
\(481\) 0.300897i 0.0137197i
\(482\) 0 0
\(483\) −10.1132 + 21.0003i −0.460166 + 0.955545i
\(484\) 0 0
\(485\) 19.8399 + 15.8218i 0.900884 + 0.718431i
\(486\) 0 0
\(487\) −2.72853 11.9545i −0.123642 0.541710i −0.998369 0.0570938i \(-0.981817\pi\)
0.874727 0.484616i \(-0.161041\pi\)
\(488\) 0 0
\(489\) −22.4099 10.7921i −1.01341 0.488034i
\(490\) 0 0
\(491\) 29.2181 + 6.66883i 1.31859 + 0.300960i 0.823221 0.567721i \(-0.192175\pi\)
0.495372 + 0.868681i \(0.335032\pi\)
\(492\) 0 0
\(493\) 2.95193 + 15.8334i 0.132948 + 0.713101i
\(494\) 0 0
\(495\) 6.20926 + 1.41722i 0.279085 + 0.0636994i
\(496\) 0 0
\(497\) 22.0800 + 10.6332i 0.990425 + 0.476964i
\(498\) 0 0
\(499\) 4.40767 + 19.3113i 0.197315 + 0.864492i 0.972527 + 0.232791i \(0.0747858\pi\)
−0.775212 + 0.631701i \(0.782357\pi\)
\(500\) 0 0
\(501\) −4.93531 3.93578i −0.220494 0.175838i
\(502\) 0 0
\(503\) 15.0797 31.3134i 0.672371 1.39619i −0.233380 0.972386i \(-0.574979\pi\)
0.905752 0.423808i \(-0.139307\pi\)
\(504\) 0 0
\(505\) 55.9214i 2.48847i
\(506\) 0 0
\(507\) 30.3364 6.92408i 1.34729 0.307509i
\(508\) 0 0
\(509\) 17.9656 + 22.5282i 0.796312 + 0.998544i 0.999810 + 0.0194689i \(0.00619752\pi\)
−0.203498 + 0.979075i \(0.565231\pi\)
\(510\) 0 0
\(511\) 37.0970 29.5839i 1.64108 1.30871i
\(512\) 0 0
\(513\) −23.7704 + 29.8072i −1.04949 + 1.31602i
\(514\) 0 0
\(515\) −6.82922 + 3.28878i −0.300931 + 0.144921i
\(516\) 0 0
\(517\) −0.249821 + 1.09454i −0.0109871 + 0.0481376i
\(518\) 0 0
\(519\) −15.5865 32.3657i −0.684172 1.42070i
\(520\) 0 0
\(521\) −29.3404 −1.28542 −0.642712 0.766108i \(-0.722191\pi\)
−0.642712 + 0.766108i \(0.722191\pi\)
\(522\) 0 0
\(523\) 0.574665 0.0251283 0.0125642 0.999921i \(-0.496001\pi\)
0.0125642 + 0.999921i \(0.496001\pi\)
\(524\) 0 0
\(525\) −50.3781 104.611i −2.19868 4.56561i
\(526\) 0 0
\(527\) −4.45848 + 19.5339i −0.194215 + 0.850910i
\(528\) 0 0
\(529\) 16.5550 7.97247i 0.719783 0.346629i
\(530\) 0 0
\(531\) 7.67137 9.61960i 0.332909 0.417455i
\(532\) 0 0
\(533\) 2.19913 1.75375i 0.0952550 0.0759634i
\(534\) 0 0
\(535\) 27.4957 + 34.4786i 1.18874 + 1.49064i
\(536\) 0 0
\(537\) 21.5163 4.91095i 0.928496 0.211923i
\(538\) 0 0
\(539\) 2.91444i 0.125534i
\(540\) 0 0
\(541\) 14.6370 30.3941i 0.629294 1.30674i −0.305716 0.952123i \(-0.598896\pi\)
0.935010 0.354620i \(-0.115390\pi\)
\(542\) 0 0
\(543\) −44.7448 35.6828i −1.92018 1.53129i
\(544\) 0 0
\(545\) −13.2696 58.1380i −0.568408 2.49036i
\(546\) 0 0
\(547\) 35.6448 + 17.1656i 1.52406 + 0.733949i 0.993514 0.113707i \(-0.0362726\pi\)
0.530546 + 0.847656i \(0.321987\pi\)
\(548\) 0 0
\(549\) −50.9489 11.6288i −2.17445 0.496303i
\(550\) 0 0
\(551\) −11.9286 + 44.0457i −0.508175 + 1.87641i
\(552\) 0 0
\(553\) −23.3990 5.34067i −0.995026 0.227108i
\(554\) 0 0
\(555\) −2.25391 1.08543i −0.0956731 0.0460738i
\(556\) 0 0
\(557\) 2.27888 + 9.98443i 0.0965593 + 0.423054i 0.999984 0.00569332i \(-0.00181225\pi\)
−0.903425 + 0.428747i \(0.858955\pi\)
\(558\) 0 0
\(559\) 6.70849 + 5.34984i 0.283739 + 0.226274i
\(560\) 0 0
\(561\) −1.24409 + 2.58339i −0.0525256 + 0.109071i
\(562\) 0 0
\(563\) 35.0173i 1.47581i −0.674907 0.737903i \(-0.735816\pi\)
0.674907 0.737903i \(-0.264184\pi\)
\(564\) 0 0
\(565\) 16.7077 3.81343i 0.702900 0.160432i
\(566\) 0 0
\(567\) 3.57140 + 4.47839i 0.149985 + 0.188075i
\(568\) 0 0
\(569\) 21.7619 17.3546i 0.912307 0.727541i −0.0502166 0.998738i \(-0.515991\pi\)
0.962524 + 0.271198i \(0.0874197\pi\)
\(570\) 0 0
\(571\) −7.40142 + 9.28108i −0.309740 + 0.388401i −0.912198 0.409749i \(-0.865616\pi\)
0.602459 + 0.798150i \(0.294188\pi\)
\(572\) 0 0
\(573\) 2.06507 0.994486i 0.0862696 0.0415452i
\(574\) 0 0
\(575\) 5.12704 22.4630i 0.213812 0.936773i
\(576\) 0 0
\(577\) −0.699259 1.45203i −0.0291106 0.0604487i 0.885906 0.463864i \(-0.153537\pi\)
−0.915017 + 0.403415i \(0.867823\pi\)
\(578\) 0 0
\(579\) −55.1288 −2.29108
\(580\) 0 0
\(581\) −21.5151 −0.892596
\(582\) 0 0
\(583\) −0.0975340 0.202531i −0.00403945 0.00838799i
\(584\) 0 0
\(585\) 5.37703 23.5583i 0.222313 0.974016i
\(586\) 0 0
\(587\) −23.4422 + 11.2892i −0.967563 + 0.465954i −0.849810 0.527089i \(-0.823283\pi\)
−0.117753 + 0.993043i \(0.537569\pi\)
\(588\) 0 0
\(589\) −35.3936 + 44.3822i −1.45837 + 1.82874i
\(590\) 0 0
\(591\) 48.5852 38.7454i 1.99853 1.59377i
\(592\) 0 0
\(593\) 1.77984 + 2.23185i 0.0730892 + 0.0916509i 0.817032 0.576592i \(-0.195618\pi\)
−0.743943 + 0.668243i \(0.767047\pi\)
\(594\) 0 0
\(595\) 45.3538 10.3517i 1.85932 0.424379i
\(596\) 0 0
\(597\) 6.17686i 0.252802i
\(598\) 0 0
\(599\) −11.9731 + 24.8624i −0.489208 + 1.01585i 0.499544 + 0.866288i \(0.333501\pi\)
−0.988752 + 0.149562i \(0.952214\pi\)
\(600\) 0 0
\(601\) 13.9087 + 11.0918i 0.567349 + 0.452445i 0.864676 0.502330i \(-0.167524\pi\)
−0.297327 + 0.954776i \(0.596095\pi\)
\(602\) 0 0
\(603\) −3.74753 16.4190i −0.152611 0.668634i
\(604\) 0 0
\(605\) −38.8556 18.7119i −1.57971 0.760746i
\(606\) 0 0
\(607\) −24.7550 5.65016i −1.00477 0.229333i −0.311685 0.950186i \(-0.600893\pi\)
−0.693088 + 0.720853i \(0.743750\pi\)
\(608\) 0 0
\(609\) −51.5270 27.4097i −2.08798 1.11070i
\(610\) 0 0
\(611\) 4.15273 + 0.947834i 0.168002 + 0.0383453i
\(612\) 0 0
\(613\) 1.62008 + 0.780188i 0.0654343 + 0.0315115i 0.466315 0.884619i \(-0.345581\pi\)
−0.400880 + 0.916130i \(0.631296\pi\)
\(614\) 0 0
\(615\) 5.20377 + 22.7992i 0.209836 + 0.919353i
\(616\) 0 0
\(617\) 33.5723 + 26.7730i 1.35157 + 1.07784i 0.989320 + 0.145761i \(0.0465630\pi\)
0.362251 + 0.932081i \(0.382008\pi\)
\(618\) 0 0
\(619\) −18.2923 + 37.9843i −0.735229 + 1.52672i 0.110953 + 0.993826i \(0.464610\pi\)
−0.846182 + 0.532894i \(0.821104\pi\)
\(620\) 0 0
\(621\) 9.67620i 0.388293i
\(622\) 0 0
\(623\) −40.3475 + 9.20905i −1.61649 + 0.368953i
\(624\) 0 0
\(625\) 22.5758 + 28.3092i 0.903033 + 1.13237i
\(626\) 0 0
\(627\) −6.35144 + 5.06510i −0.253652 + 0.202281i
\(628\) 0 0
\(629\) 0.426074 0.534280i 0.0169887 0.0213031i
\(630\) 0 0
\(631\) 11.1827 5.38533i 0.445178 0.214386i −0.197845 0.980233i \(-0.563394\pi\)
0.643023 + 0.765847i \(0.277680\pi\)
\(632\) 0 0
\(633\) −5.66503 + 24.8201i −0.225165 + 0.986511i
\(634\) 0 0
\(635\) 2.83430 + 5.88548i 0.112476 + 0.233558i
\(636\) 0 0
\(637\) 11.0576 0.438116
\(638\) 0 0
\(639\) −28.9107 −1.14369
\(640\) 0 0
\(641\) −7.84481 16.2899i −0.309851 0.643413i 0.686650 0.726988i \(-0.259080\pi\)
−0.996501 + 0.0835749i \(0.973366\pi\)
\(642\) 0 0
\(643\) −3.70011 + 16.2113i −0.145918 + 0.639309i 0.848076 + 0.529875i \(0.177761\pi\)
−0.993994 + 0.109434i \(0.965096\pi\)
\(644\) 0 0
\(645\) −64.2733 + 30.9524i −2.53076 + 1.21875i
\(646\) 0 0
\(647\) 7.28179 9.13107i 0.286277 0.358980i −0.617811 0.786327i \(-0.711980\pi\)
0.904088 + 0.427347i \(0.140552\pi\)
\(648\) 0 0
\(649\) 0.721322 0.575235i 0.0283144 0.0225800i
\(650\) 0 0
\(651\) −45.2683 56.7647i −1.77421 2.22478i
\(652\) 0 0
\(653\) −19.7738 + 4.51325i −0.773810 + 0.176617i −0.591153 0.806560i \(-0.701327\pi\)
−0.182657 + 0.983177i \(0.558470\pi\)
\(654\) 0 0
\(655\) 41.8564i 1.63546i
\(656\) 0 0
\(657\) −24.2866 + 50.4317i −0.947512 + 1.96753i
\(658\) 0 0
\(659\) −25.9989 20.7334i −1.01277 0.807659i −0.0313479 0.999509i \(-0.509980\pi\)
−0.981424 + 0.191850i \(0.938551\pi\)
\(660\) 0 0
\(661\) −3.06435 13.4258i −0.119190 0.522204i −0.998909 0.0467096i \(-0.985126\pi\)
0.879719 0.475494i \(-0.157731\pi\)
\(662\) 0 0
\(663\) 9.80152 + 4.72016i 0.380660 + 0.183316i
\(664\) 0 0
\(665\) 128.497 + 29.3286i 4.98290 + 1.13731i
\(666\) 0 0
\(667\) −4.60295 10.6277i −0.178227 0.411505i
\(668\) 0 0
\(669\) 57.3924 + 13.0994i 2.21892 + 0.506454i
\(670\) 0 0
\(671\) −3.53057 1.70023i −0.136296 0.0656367i
\(672\) 0 0
\(673\) 8.01804 + 35.1293i 0.309073 + 1.35414i 0.856009 + 0.516962i \(0.172937\pi\)
−0.546936 + 0.837175i \(0.684206\pi\)
\(674\) 0 0
\(675\) 37.6852 + 30.0530i 1.45051 + 1.15674i
\(676\) 0 0
\(677\) −1.67144 + 3.47077i −0.0642385 + 0.133393i −0.930616 0.365997i \(-0.880728\pi\)
0.866378 + 0.499390i \(0.166442\pi\)
\(678\) 0 0
\(679\) 25.1191i 0.963984i
\(680\) 0 0
\(681\) −54.9171 + 12.5345i −2.10443 + 0.480322i
\(682\) 0 0
\(683\) 19.6677 + 24.6625i 0.752562 + 0.943683i 0.999680 0.0253021i \(-0.00805475\pi\)
−0.247117 + 0.968986i \(0.579483\pi\)
\(684\) 0 0
\(685\) −18.9176 + 15.0863i −0.722804 + 0.576417i
\(686\) 0 0
\(687\) −17.4461 + 21.8768i −0.665612 + 0.834651i
\(688\) 0 0
\(689\) −0.768417 + 0.370050i −0.0292743 + 0.0140978i
\(690\) 0 0
\(691\) 3.73670 16.3716i 0.142151 0.622804i −0.852782 0.522266i \(-0.825087\pi\)
0.994933 0.100537i \(-0.0320562\pi\)
\(692\) 0 0
\(693\) −2.73539 5.68009i −0.103909 0.215769i
\(694\) 0 0
\(695\) 36.2128 1.37363
\(696\) 0 0
\(697\) −6.38817 −0.241969
\(698\) 0 0
\(699\) 3.57978 + 7.43349i 0.135400 + 0.281160i
\(700\) 0 0
\(701\) 9.69740 42.4871i 0.366266 1.60471i −0.370679 0.928761i \(-0.620875\pi\)
0.736944 0.675953i \(-0.236268\pi\)
\(702\) 0 0
\(703\) 1.74440 0.840057i 0.0657911 0.0316833i
\(704\) 0 0
\(705\) −22.0800 + 27.6875i −0.831582 + 1.04277i
\(706\) 0 0
\(707\) 43.2782 34.5132i 1.62764 1.29800i
\(708\) 0 0
\(709\) 31.3087 + 39.2598i 1.17582 + 1.47443i 0.848241 + 0.529611i \(0.177662\pi\)
0.327581 + 0.944823i \(0.393766\pi\)
\(710\) 0 0
\(711\) 27.6036 6.30034i 1.03521 0.236281i
\(712\) 0 0
\(713\) 14.4076i 0.539570i
\(714\) 0 0
\(715\) 0.786172 1.63250i 0.0294011 0.0610521i
\(716\) 0 0
\(717\) 42.9760 + 34.2722i 1.60497 + 1.27992i
\(718\) 0 0
\(719\) 9.51002 + 41.6661i 0.354664 + 1.55388i 0.766268 + 0.642521i \(0.222112\pi\)
−0.411604 + 0.911363i \(0.635031\pi\)
\(720\) 0 0
\(721\) 6.76004 + 3.25546i 0.251757 + 0.121240i
\(722\) 0 0
\(723\) −17.3696 3.96450i −0.645983 0.147441i
\(724\) 0 0
\(725\) 55.6870 + 15.0813i 2.06816 + 0.560105i
\(726\) 0 0
\(727\) −10.5722 2.41303i −0.392101 0.0894945i 0.0219248 0.999760i \(-0.493021\pi\)
−0.414026 + 0.910265i \(0.635878\pi\)
\(728\) 0 0
\(729\) −39.6771 19.1075i −1.46952 0.707685i
\(730\) 0 0
\(731\) −4.33631 18.9986i −0.160384 0.702689i
\(732\) 0 0
\(733\) 9.93437 + 7.92239i 0.366934 + 0.292620i 0.789547 0.613690i \(-0.210316\pi\)
−0.422613 + 0.906310i \(0.638887\pi\)
\(734\) 0 0
\(735\) −39.8879 + 82.8281i −1.47129 + 3.05516i
\(736\) 0 0
\(737\) 1.26284i 0.0465172i
\(738\) 0 0
\(739\) −6.42228 + 1.46584i −0.236247 + 0.0539219i −0.339005 0.940784i \(-0.610090\pi\)
0.102758 + 0.994706i \(0.467233\pi\)
\(740\) 0 0
\(741\) 19.2173 + 24.0977i 0.705966 + 0.885253i
\(742\) 0 0
\(743\) −16.2740 + 12.9781i −0.597034 + 0.476119i −0.874770 0.484539i \(-0.838987\pi\)
0.277736 + 0.960657i \(0.410416\pi\)
\(744\) 0 0
\(745\) −24.9788 + 31.3225i −0.915153 + 1.14757i
\(746\) 0 0
\(747\) 22.8676 11.0125i 0.836683 0.402925i
\(748\) 0 0
\(749\) 9.71371 42.5585i 0.354931 1.55505i
\(750\) 0 0
\(751\) 0.0310632 + 0.0645034i 0.00113351 + 0.00235376i 0.901535 0.432706i \(-0.142441\pi\)
−0.900401 + 0.435060i \(0.856727\pi\)
\(752\) 0 0
\(753\) −52.2628 −1.90456
\(754\) 0 0
\(755\) 67.3677 2.45176
\(756\) 0 0
\(757\) −2.88553 5.99186i −0.104876 0.217778i 0.841927 0.539592i \(-0.181422\pi\)
−0.946803 + 0.321814i \(0.895707\pi\)
\(758\) 0 0
\(759\) 0.458803 2.01015i 0.0166535 0.0729638i
\(760\) 0 0
\(761\) −14.2490 + 6.86198i −0.516527 + 0.248747i −0.673940 0.738786i \(-0.735399\pi\)
0.157412 + 0.987533i \(0.449685\pi\)
\(762\) 0 0
\(763\) −36.8040 + 46.1508i −1.33239 + 1.67077i
\(764\) 0 0
\(765\) −42.9065 + 34.2168i −1.55129 + 1.23711i
\(766\) 0 0
\(767\) −2.18248 2.73674i −0.0788047 0.0988180i
\(768\) 0 0
\(769\) 35.0399 7.99763i 1.26357 0.288402i 0.462311 0.886718i \(-0.347020\pi\)
0.801260 + 0.598316i \(0.204163\pi\)
\(770\) 0 0
\(771\) 1.21927i 0.0439111i
\(772\) 0 0
\(773\) 8.20735 17.0427i 0.295198 0.612984i −0.699636 0.714499i \(-0.746655\pi\)
0.994834 + 0.101515i \(0.0323689\pi\)
\(774\) 0 0
\(775\) 56.1124 + 44.7482i 2.01562 + 1.60740i
\(776\) 0 0
\(777\) 0.551030 + 2.41422i 0.0197681 + 0.0866097i
\(778\) 0 0
\(779\) −16.3067 7.85288i −0.584247 0.281359i
\(780\) 0 0
\(781\) −2.11351 0.482394i −0.0756272 0.0172614i
\(782\) 0 0
\(783\) 24.2094 + 0.970806i 0.865173 + 0.0346938i
\(784\) 0 0
\(785\) −69.3584 15.8306i −2.47551 0.565018i
\(786\) 0 0
\(787\) −5.51936 2.65798i −0.196744 0.0947469i 0.332918 0.942956i \(-0.391967\pi\)
−0.529662 + 0.848209i \(0.677681\pi\)
\(788\) 0 0
\(789\) −3.50770 15.3682i −0.124877 0.547124i
\(790\) 0 0
\(791\) −13.2628 10.5768i −0.471572 0.376066i
\(792\) 0 0
\(793\) −6.45078 + 13.3952i −0.229074 + 0.475677i
\(794\) 0 0
\(795\) 7.09081i 0.251485i
\(796\) 0 0
\(797\) −43.7973 + 9.99645i −1.55138 + 0.354093i −0.910487 0.413537i \(-0.864293\pi\)
−0.640893 + 0.767630i \(0.721436\pi\)
\(798\) 0 0
\(799\) −6.03155 7.56332i −0.213381 0.267571i
\(800\) 0 0
\(801\) 38.1703 30.4398i 1.34868 1.07554i
\(802\) 0 0
\(803\) −2.61695 + 3.28155i −0.0923503 + 0.115804i
\(804\) 0 0
\(805\) −30.1389 + 14.5141i −1.06226 + 0.511556i
\(806\) 0 0
\(807\) −2.33660 + 10.2373i −0.0822520 + 0.360370i
\(808\) 0 0
\(809\) 20.9328 + 43.4673i 0.735957 + 1.52823i 0.845339 + 0.534230i \(0.179398\pi\)
−0.109383 + 0.994000i \(0.534887\pi\)
\(810\) 0 0
\(811\) −22.7846 −0.800076 −0.400038 0.916498i \(-0.631003\pi\)
−0.400038 + 0.916498i \(0.631003\pi\)
\(812\) 0 0
\(813\) 9.97742 0.349923
\(814\) 0 0
\(815\) −15.4884 32.1620i −0.542535 1.12659i
\(816\) 0 0
\(817\) 12.2857 53.8272i 0.429822 1.88317i
\(818\) 0 0
\(819\) −21.5506 + 10.3782i −0.753039 + 0.362644i
\(820\) 0 0
\(821\) 5.74122 7.19926i 0.200370 0.251256i −0.671487 0.741016i \(-0.734344\pi\)
0.871857 + 0.489760i \(0.162916\pi\)
\(822\) 0 0
\(823\) −16.8041 + 13.4008i −0.585753 + 0.467122i −0.870967 0.491342i \(-0.836507\pi\)
0.285214 + 0.958464i \(0.407935\pi\)
\(824\) 0 0
\(825\) 6.40381 + 8.03012i 0.222952 + 0.279573i
\(826\) 0 0
\(827\) 32.0586 7.31716i 1.11479 0.254443i 0.374827 0.927095i \(-0.377702\pi\)
0.739959 + 0.672652i \(0.234845\pi\)
\(828\) 0 0
\(829\) 2.56419i 0.0890579i −0.999008 0.0445290i \(-0.985821\pi\)
0.999008 0.0445290i \(-0.0141787\pi\)
\(830\) 0 0
\(831\) 24.5229 50.9223i 0.850690 1.76648i
\(832\) 0 0
\(833\) −19.6341 15.6576i −0.680280 0.542505i
\(834\) 0 0
\(835\) −2.01593 8.83235i −0.0697640 0.305656i
\(836\) 0 0
\(837\) 27.1559 + 13.0776i 0.938646 + 0.452028i
\(838\) 0 0
\(839\) −4.17819 0.953645i −0.144247 0.0329235i 0.149788 0.988718i \(-0.452141\pi\)
−0.294035 + 0.955795i \(0.594998\pi\)
\(840\) 0 0
\(841\) 27.0517 10.4501i 0.932818 0.360348i
\(842\) 0 0
\(843\) 31.9764 + 7.29840i 1.10132 + 0.251370i
\(844\) 0 0
\(845\) 40.2350 + 19.3761i 1.38412 + 0.666559i
\(846\) 0 0
\(847\) 9.49933 + 41.6193i 0.326401 + 1.43005i
\(848\) 0 0
\(849\) −34.5063 27.5178i −1.18425 0.944410i
\(850\) 0 0
\(851\) −0.213209 + 0.442733i −0.00730871 + 0.0151767i
\(852\) 0 0
\(853\) 36.8402i 1.26138i −0.776033 0.630692i \(-0.782771\pi\)
0.776033 0.630692i \(-0.217229\pi\)
\(854\) 0 0
\(855\) −151.587 + 34.5987i −5.18416 + 1.18325i
\(856\) 0 0
\(857\) −19.6464 24.6358i −0.671109 0.841544i 0.323392 0.946265i \(-0.395177\pi\)
−0.994502 + 0.104721i \(0.966605\pi\)
\(858\) 0 0
\(859\) −2.83907 + 2.26408i −0.0968677 + 0.0772494i −0.670726 0.741705i \(-0.734017\pi\)
0.573858 + 0.818955i \(0.305446\pi\)
\(860\) 0 0
\(861\) 14.4329 18.0983i 0.491873 0.616789i
\(862\) 0 0
\(863\) −2.80299 + 1.34985i −0.0954150 + 0.0459494i −0.480983 0.876730i \(-0.659720\pi\)
0.385568 + 0.922680i \(0.374006\pi\)
\(864\) 0 0
\(865\) 11.4723 50.2632i 0.390068 1.70900i
\(866\) 0 0
\(867\) 9.65295 + 20.0446i 0.327831 + 0.680749i
\(868\) 0 0
\(869\) 2.12307 0.0720204
\(870\) 0 0
\(871\) −4.79128 −0.162346
\(872\) 0 0
\(873\) 12.8572 + 26.6982i 0.435150 + 0.903599i
\(874\) 0 0
\(875\) 19.7745 86.6379i 0.668502 2.92890i
\(876\) 0 0
\(877\) 3.75498 1.80830i 0.126797 0.0610620i −0.369410 0.929267i \(-0.620440\pi\)
0.496207 + 0.868205i \(0.334726\pi\)
\(878\) 0 0
\(879\) −25.5727 + 32.0672i −0.862547 + 1.08160i
\(880\) 0 0
\(881\) −1.34671 + 1.07397i −0.0453719 + 0.0361829i −0.645913 0.763411i \(-0.723523\pi\)
0.600541 + 0.799594i \(0.294952\pi\)
\(882\) 0 0
\(883\) 27.1802 + 34.0829i 0.914688 + 1.14698i 0.988727 + 0.149727i \(0.0478393\pi\)
−0.0740399 + 0.997255i \(0.523589\pi\)
\(884\) 0 0
\(885\) 28.3728 6.47590i 0.953740 0.217685i
\(886\) 0 0
\(887\) 20.8160i 0.698934i −0.936949 0.349467i \(-0.886363\pi\)
0.936949 0.349467i \(-0.113637\pi\)
\(888\) 0 0
\(889\) 2.80558 5.82585i 0.0940962 0.195393i
\(890\) 0 0
\(891\) −0.396153 0.315921i −0.0132716 0.0105838i
\(892\) 0 0
\(893\) −6.09888 26.7209i −0.204091 0.894181i
\(894\) 0 0
\(895\) 28.5369 + 13.7427i 0.953884 + 0.459366i
\(896\) 0 0
\(897\) −7.62663 1.74073i −0.254646 0.0581212i
\(898\) 0 0
\(899\) 36.0472 + 1.44551i 1.20224 + 0.0482103i
\(900\) 0 0
\(901\) 1.88841 + 0.431018i 0.0629122 + 0.0143593i
\(902\) 0 0
\(903\) 63.6221 + 30.6388i 2.11721 + 1.01960i
\(904\) 0 0
\(905\) −18.2769 80.0763i −0.607545 2.66183i
\(906\) 0 0
\(907\) 7.29710 + 5.81924i 0.242296 + 0.193225i 0.737107 0.675776i \(-0.236191\pi\)
−0.494811 + 0.869001i \(0.664763\pi\)
\(908\) 0 0
\(909\) −28.3333 + 58.8347i −0.939757 + 1.95142i
\(910\) 0 0
\(911\) 31.8278i 1.05450i 0.849710 + 0.527251i \(0.176777\pi\)
−0.849710 + 0.527251i \(0.823223\pi\)
\(912\) 0 0
\(913\) 1.85548 0.423501i 0.0614074 0.0140158i
\(914\) 0 0
\(915\) −77.0686 96.6409i −2.54781 3.19485i
\(916\) 0 0
\(917\) −32.3931 + 25.8327i −1.06972 + 0.853070i
\(918\) 0 0
\(919\) −19.0786 + 23.9238i −0.629346 + 0.789175i −0.989626 0.143670i \(-0.954110\pi\)
0.360280 + 0.932844i \(0.382681\pi\)
\(920\) 0 0
\(921\) 45.6624 21.9899i 1.50463 0.724591i
\(922\) 0 0
\(923\) −1.83023 + 8.01877i −0.0602428 + 0.263941i
\(924\) 0 0
\(925\) −1.06208 2.20544i −0.0349211 0.0725144i
\(926\) 0 0
\(927\) −8.85131 −0.290715
\(928\) 0 0
\(929\) 13.2904 0.436044 0.218022 0.975944i \(-0.430040\pi\)
0.218022 + 0.975944i \(0.430040\pi\)
\(930\) 0 0
\(931\) −30.8709 64.1042i −1.01175 2.10093i
\(932\) 0 0
\(933\) −13.9056 + 60.9243i −0.455248 + 1.99457i
\(934\) 0 0
\(935\) −3.70759 + 1.78548i −0.121251 + 0.0583915i
\(936\) 0 0
\(937\) −34.5906 + 43.3752i −1.13003 + 1.41701i −0.234433 + 0.972132i \(0.575323\pi\)
−0.895593 + 0.444875i \(0.853248\pi\)
\(938\) 0 0
\(939\) 17.2773 13.7782i 0.563823 0.449634i
\(940\) 0 0
\(941\) 24.7463 + 31.0309i 0.806707 + 1.01158i 0.999539 + 0.0303470i \(0.00966124\pi\)
−0.192832 + 0.981232i \(0.561767\pi\)
\(942\) 0 0
\(943\) 4.47842 1.02217i 0.145838 0.0332865i
\(944\) 0 0
\(945\) 69.9809i 2.27648i
\(946\) 0 0
\(947\) −20.3311 + 42.2181i −0.660674 + 1.37190i 0.253800 + 0.967257i \(0.418320\pi\)
−0.914473 + 0.404646i \(0.867395\pi\)
\(948\) 0 0
\(949\) 12.4504 + 9.92888i 0.404158 + 0.322305i
\(950\) 0 0
\(951\) −20.4822 89.7382i −0.664180 2.90996i
\(952\) 0 0
\(953\) 16.7715 + 8.07673i 0.543283 + 0.261631i 0.685335 0.728228i \(-0.259656\pi\)
−0.142052 + 0.989859i \(0.545370\pi\)
\(954\) 0 0
\(955\) 3.20701 + 0.731979i 0.103776 + 0.0236863i
\(956\) 0 0
\(957\) 4.98326 + 1.34958i 0.161086 + 0.0436257i
\(958\) 0 0
\(959\) 23.3509 + 5.32968i 0.754039 + 0.172104i
\(960\) 0 0
\(961\) 12.5045 + 6.02185i 0.403371 + 0.194253i
\(962\) 0 0
\(963\) 11.4592 + 50.2059i 0.369267 + 1.61786i
\(964\) 0 0
\(965\) −61.8578 49.3299i −1.99127 1.58799i
\(966\) 0 0
\(967\) 10.4391 21.6771i 0.335700 0.697089i −0.662970 0.748646i \(-0.730704\pi\)
0.998670 + 0.0515574i \(0.0164185\pi\)
\(968\) 0 0
\(969\) 70.0005i 2.24874i
\(970\) 0 0
\(971\) −7.73249 + 1.76489i −0.248147 + 0.0566380i −0.344785 0.938682i \(-0.612048\pi\)
0.0966379 + 0.995320i \(0.469191\pi\)
\(972\) 0 0
\(973\) −22.3496 28.0255i −0.716494 0.898455i
\(974\) 0 0
\(975\) 30.4668 24.2964i 0.975718 0.778109i
\(976\) 0 0
\(977\) −16.4895 + 20.6772i −0.527547 + 0.661523i −0.972192 0.234183i \(-0.924758\pi\)
0.444645 + 0.895707i \(0.353330\pi\)
\(978\) 0 0
\(979\) 3.29833 1.58839i 0.105415 0.0507653i
\(980\) 0 0
\(981\) 15.4955 67.8901i 0.494732 2.16756i
\(982\) 0 0
\(983\) −1.09637 2.27663i −0.0349686 0.0726131i 0.882753 0.469838i \(-0.155688\pi\)
−0.917721 + 0.397225i \(0.869973\pi\)
\(984\) 0 0
\(985\) 89.1852 2.84168
\(986\) 0 0
\(987\) 35.0549 1.11581
\(988\) 0 0
\(989\) 6.07994 + 12.6251i 0.193331 + 0.401456i
\(990\) 0 0
\(991\) −2.95857 + 12.9624i −0.0939822 + 0.411763i −0.999932 0.0116213i \(-0.996301\pi\)
0.905950 + 0.423384i \(0.139158\pi\)
\(992\) 0 0
\(993\) 56.9328 27.4174i 1.80671 0.870065i
\(994\) 0 0
\(995\) −5.52713 + 6.93080i −0.175222 + 0.219721i
\(996\) 0 0
\(997\) −13.1125 + 10.4569i −0.415277 + 0.331172i −0.808738 0.588169i \(-0.799849\pi\)
0.393461 + 0.919341i \(0.371278\pi\)
\(998\) 0 0
\(999\) −0.640949 0.803725i −0.0202787 0.0254287i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.y.e.33.7 48
4.3 odd 2 232.2.q.a.33.2 48
29.22 even 14 inner 464.2.y.e.225.7 48
116.15 even 28 6728.2.a.bf.1.3 24
116.43 even 28 6728.2.a.be.1.22 24
116.51 odd 14 232.2.q.a.225.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
232.2.q.a.33.2 48 4.3 odd 2
232.2.q.a.225.2 yes 48 116.51 odd 14
464.2.y.e.33.7 48 1.1 even 1 trivial
464.2.y.e.225.7 48 29.22 even 14 inner
6728.2.a.be.1.22 24 116.43 even 28
6728.2.a.bf.1.3 24 116.15 even 28