Properties

Label 464.4.a.h
Level $464$
Weight $4$
Character orbit 464.a
Self dual yes
Analytic conductor $27.377$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,4,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.3768862427\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.4481.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + (\beta_{2} + \beta_1 + 4) q^{5} + (\beta_{2} - \beta_1 + 13) q^{7} + (2 \beta_{2} + 20) q^{9} + (2 \beta_{2} + 3 \beta_1 - 21) q^{11} + (\beta_{2} - 5 \beta_1 + 10) q^{13} + ( - \beta_{2} + 14 \beta_1 + 28) q^{15}+ \cdots + ( - 54 \beta_{2} + 50 \beta_1 + 436) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 11 q^{5} + 38 q^{7} + 58 q^{9} - 65 q^{11} + 29 q^{13} + 85 q^{15} + 244 q^{17} - 312 q^{19} - 214 q^{21} + 24 q^{23} + 436 q^{25} - 57 q^{27} - 87 q^{29} - 249 q^{31} + 393 q^{33} + 718 q^{35}+ \cdots + 1362 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 17x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 2\nu - 23 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 23 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.86388
−0.476971
4.34085
0 −8.72775 0 10.8591 0 35.3146 0 49.1737 0
1.2 0 −1.95394 0 −18.5450 0 −7.63711 0 −23.1821 0
1.3 0 7.68170 0 18.6859 0 10.3225 0 32.0084 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.4.a.h 3
4.b odd 2 1 232.4.a.a 3
8.b even 2 1 1856.4.a.t 3
8.d odd 2 1 1856.4.a.q 3
12.b even 2 1 2088.4.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
232.4.a.a 3 4.b odd 2 1
464.4.a.h 3 1.a even 1 1 trivial
1856.4.a.q 3 8.d odd 2 1
1856.4.a.t 3 8.b even 2 1
2088.4.a.a 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 3T_{3}^{2} - 65T_{3} - 131 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(464))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 3 T^{2} + \cdots - 131 \) Copy content Toggle raw display
$5$ \( T^{3} - 11 T^{2} + \cdots + 3763 \) Copy content Toggle raw display
$7$ \( T^{3} - 38 T^{2} + \cdots + 2784 \) Copy content Toggle raw display
$11$ \( T^{3} + 65 T^{2} + \cdots - 17161 \) Copy content Toggle raw display
$13$ \( T^{3} - 29 T^{2} + \cdots - 11819 \) Copy content Toggle raw display
$17$ \( T^{3} - 244 T^{2} + \cdots - 462496 \) Copy content Toggle raw display
$19$ \( T^{3} + 312 T^{2} + \cdots + 856448 \) Copy content Toggle raw display
$23$ \( T^{3} - 24 T^{2} + \cdots - 76432 \) Copy content Toggle raw display
$29$ \( (T + 29)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + 249 T^{2} + \cdots + 3931 \) Copy content Toggle raw display
$37$ \( T^{3} - 200 T^{2} + \cdots - 732672 \) Copy content Toggle raw display
$41$ \( T^{3} + 470 T^{2} + \cdots + 670464 \) Copy content Toggle raw display
$43$ \( T^{3} + 97 T^{2} + \cdots - 15326777 \) Copy content Toggle raw display
$47$ \( T^{3} + 377 T^{2} + \cdots - 2208837 \) Copy content Toggle raw display
$53$ \( T^{3} - 1007 T^{2} + \cdots + 67774943 \) Copy content Toggle raw display
$59$ \( T^{3} - 364 T^{2} + \cdots + 91904896 \) Copy content Toggle raw display
$61$ \( T^{3} + 524 T^{2} + \cdots - 68889888 \) Copy content Toggle raw display
$67$ \( T^{3} - 820 T^{2} + \cdots + 521984 \) Copy content Toggle raw display
$71$ \( T^{3} - 782 T^{2} + \cdots - 10922248 \) Copy content Toggle raw display
$73$ \( T^{3} - 1620 T^{2} + \cdots - 75323392 \) Copy content Toggle raw display
$79$ \( T^{3} + 427 T^{2} + \cdots + 63730809 \) Copy content Toggle raw display
$83$ \( T^{3} + 1520 T^{2} + \cdots - 77896912 \) Copy content Toggle raw display
$89$ \( T^{3} + 2474 T^{2} + \cdots + 261171936 \) Copy content Toggle raw display
$97$ \( T^{3} + 170 T^{2} + \cdots + 692649728 \) Copy content Toggle raw display
show more
show less