Properties

Label 464.4.a.n
Level $464$
Weight $4$
Character orbit 464.a
Self dual yes
Analytic conductor $27.377$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,4,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.3768862427\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 40x^{4} - 88x^{3} - 8x^{2} + 48x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + 1) q^{3} + ( - \beta_{4} - \beta_{3} - 1) q^{5} + ( - \beta_{4} + \beta_{3} + \beta_1 + 6) q^{7} + (2 \beta_{4} - 3 \beta_{3} - \beta_{2} + \cdots + 9) q^{9} + (\beta_{5} - 3 \beta_{4} - 3 \beta_{2} + \cdots + 1) q^{11}+ \cdots + (15 \beta_{5} + 71 \beta_{4} + \cdots - 342) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 5 q^{5} + 38 q^{7} + 47 q^{9} + 19 q^{11} + 13 q^{13} + 191 q^{15} - 218 q^{17} + 290 q^{19} - 266 q^{21} + 196 q^{23} - 13 q^{25} + 437 q^{27} - 174 q^{29} + 675 q^{31} + 291 q^{33} + 466 q^{35}+ \cdots - 2264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 40x^{4} - 88x^{3} - 8x^{2} + 48x - 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} - 9\nu^{4} + 43\nu^{3} + 447\nu^{2} + 671\nu - 113 ) / 14 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 12\nu^{4} + 22\nu^{3} - 365\nu^{2} - 400\nu + 321 ) / 21 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{5} - 3\nu^{4} + 201\nu^{3} + 555\nu^{2} + 261\nu - 159 ) / 14 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -11\nu^{5} + 6\nu^{4} + 431\nu^{3} + 731\nu^{2} - 32\nu - 123 ) / 21 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -41\nu^{5} + 9\nu^{4} + 1595\nu^{3} + 3347\nu^{2} + 1093\nu - 1035 ) / 42 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{4} - 3\beta_{3} - \beta_{2} + \beta _1 + 1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 6\beta_{5} - 15\beta_{3} - 9\beta_{2} - \beta _1 + 107 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{5} + 17\beta_{4} - 32\beta_{3} - 16\beta_{2} + 5\beta _1 + 95 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 244\beta_{5} + 170\beta_{4} - 861\beta_{3} - 455\beta_{2} + 27\beta _1 + 4403 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 1002\beta_{5} + 2736\beta_{4} - 6473\beta_{3} - 3351\beta_{2} + 729\beta _1 + 24309 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.488896
−1.90366
−4.70501
−1.32108
0.215317
7.22553
0 −7.88819 0 −14.0062 0 34.0826 0 35.2236 0
1.2 0 −2.88453 0 −3.33508 0 −0.0162797 0 −18.6795 0
1.3 0 −0.586661 0 15.4201 0 28.5777 0 −26.6558 0
1.4 0 0.116789 0 −14.4485 0 −30.0998 0 −26.9864 0
1.5 0 6.36242 0 8.72860 0 8.76166 0 13.4804 0
1.6 0 9.88017 0 2.64112 0 −3.30580 0 70.6177 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.4.a.n 6
4.b odd 2 1 232.4.a.e 6
8.b even 2 1 1856.4.a.bc 6
8.d odd 2 1 1856.4.a.bd 6
12.b even 2 1 2088.4.a.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
232.4.a.e 6 4.b odd 2 1
464.4.a.n 6 1.a even 1 1 trivial
1856.4.a.bc 6 8.b even 2 1
1856.4.a.bd 6 8.d odd 2 1
2088.4.a.l 6 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 5T_{3}^{5} - 92T_{3}^{4} + 266T_{3}^{3} + 1581T_{3}^{2} + 651T_{3} - 98 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(464))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 5 T^{5} + \cdots - 98 \) Copy content Toggle raw display
$5$ \( T^{6} + 5 T^{5} + \cdots - 239922 \) Copy content Toggle raw display
$7$ \( T^{6} - 38 T^{5} + \cdots - 13824 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 2827812238 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 7992521554 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 200391946752 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 1256352636928 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 4069096656896 \) Copy content Toggle raw display
$29$ \( (T + 29)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 766872337410 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 38445998866432 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 64375103462400 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 905147314238 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 154765125165962 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 36699799804014 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 110093808390144 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 40\!\cdots\!72 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 681378807496704 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 16\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 21\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 10\!\cdots\!74 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 47\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 83\!\cdots\!28 \) Copy content Toggle raw display
show more
show less