Properties

Label 464.4.a.n
Level 464464
Weight 44
Character orbit 464.a
Self dual yes
Analytic conductor 27.37727.377
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,4,Mod(1,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 464=2429 464 = 2^{4} \cdot 29
Weight: k k == 4 4
Character orbit: [χ][\chi] == 464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 27.376886242727.3768862427
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x640x488x38x2+48x9 x^{6} - 40x^{4} - 88x^{3} - 8x^{2} + 48x - 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 27 2^{7}
Twist minimal: no (minimal twist has level 232)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+1)q3+(β4β31)q5+(β4+β3+β1+6)q7+(2β43β3β2++9)q9+(β53β43β2++1)q11++(15β5+71β4+342)q99+O(q100) q + ( - \beta_{3} + 1) q^{3} + ( - \beta_{4} - \beta_{3} - 1) q^{5} + ( - \beta_{4} + \beta_{3} + \beta_1 + 6) q^{7} + (2 \beta_{4} - 3 \beta_{3} - \beta_{2} + \cdots + 9) q^{9} + (\beta_{5} - 3 \beta_{4} - 3 \beta_{2} + \cdots + 1) q^{11}+ \cdots + (15 \beta_{5} + 71 \beta_{4} + \cdots - 342) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+5q35q5+38q7+47q9+19q11+13q13+191q15218q17+290q19266q21+196q2313q25+437q27174q29+675q31+291q33+466q35+2264q99+O(q100) 6 q + 5 q^{3} - 5 q^{5} + 38 q^{7} + 47 q^{9} + 19 q^{11} + 13 q^{13} + 191 q^{15} - 218 q^{17} + 290 q^{19} - 266 q^{21} + 196 q^{23} - 13 q^{25} + 437 q^{27} - 174 q^{29} + 675 q^{31} + 291 q^{33} + 466 q^{35}+ \cdots - 2264 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x640x488x38x2+48x9 x^{6} - 40x^{4} - 88x^{3} - 8x^{2} + 48x - 9 : Copy content Toggle raw display

β1\beta_{1}== (ν59ν4+43ν3+447ν2+671ν113)/14 ( -\nu^{5} - 9\nu^{4} + 43\nu^{3} + 447\nu^{2} + 671\nu - 113 ) / 14 Copy content Toggle raw display
β2\beta_{2}== (ν5+12ν4+22ν3365ν2400ν+321)/21 ( -\nu^{5} + 12\nu^{4} + 22\nu^{3} - 365\nu^{2} - 400\nu + 321 ) / 21 Copy content Toggle raw display
β3\beta_{3}== (5ν53ν4+201ν3+555ν2+261ν159)/14 ( -5\nu^{5} - 3\nu^{4} + 201\nu^{3} + 555\nu^{2} + 261\nu - 159 ) / 14 Copy content Toggle raw display
β4\beta_{4}== (11ν5+6ν4+431ν3+731ν232ν123)/21 ( -11\nu^{5} + 6\nu^{4} + 431\nu^{3} + 731\nu^{2} - 32\nu - 123 ) / 21 Copy content Toggle raw display
β5\beta_{5}== (41ν5+9ν4+1595ν3+3347ν2+1093ν1035)/42 ( -41\nu^{5} + 9\nu^{4} + 1595\nu^{3} + 3347\nu^{2} + 1093\nu - 1035 ) / 42 Copy content Toggle raw display
ν\nu== (2β43β3β2+β1+1)/8 ( 2\beta_{4} - 3\beta_{3} - \beta_{2} + \beta _1 + 1 ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (6β515β39β2β1+107)/8 ( 6\beta_{5} - 15\beta_{3} - 9\beta_{2} - \beta _1 + 107 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (3β5+17β432β316β2+5β1+95)/2 ( 3\beta_{5} + 17\beta_{4} - 32\beta_{3} - 16\beta_{2} + 5\beta _1 + 95 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (244β5+170β4861β3455β2+27β1+4403)/8 ( 244\beta_{5} + 170\beta_{4} - 861\beta_{3} - 455\beta_{2} + 27\beta _1 + 4403 ) / 8 Copy content Toggle raw display
ν5\nu^{5}== (1002β5+2736β46473β33351β2+729β1+24309)/8 ( 1002\beta_{5} + 2736\beta_{4} - 6473\beta_{3} - 3351\beta_{2} + 729\beta _1 + 24309 ) / 8 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.488896
−1.90366
−4.70501
−1.32108
0.215317
7.22553
0 −7.88819 0 −14.0062 0 34.0826 0 35.2236 0
1.2 0 −2.88453 0 −3.33508 0 −0.0162797 0 −18.6795 0
1.3 0 −0.586661 0 15.4201 0 28.5777 0 −26.6558 0
1.4 0 0.116789 0 −14.4485 0 −30.0998 0 −26.9864 0
1.5 0 6.36242 0 8.72860 0 8.76166 0 13.4804 0
1.6 0 9.88017 0 2.64112 0 −3.30580 0 70.6177 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
2929 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 464.4.a.n 6
4.b odd 2 1 232.4.a.e 6
8.b even 2 1 1856.4.a.bc 6
8.d odd 2 1 1856.4.a.bd 6
12.b even 2 1 2088.4.a.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
232.4.a.e 6 4.b odd 2 1
464.4.a.n 6 1.a even 1 1 trivial
1856.4.a.bc 6 8.b even 2 1
1856.4.a.bd 6 8.d odd 2 1
2088.4.a.l 6 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T365T3592T34+266T33+1581T32+651T398 T_{3}^{6} - 5T_{3}^{5} - 92T_{3}^{4} + 266T_{3}^{3} + 1581T_{3}^{2} + 651T_{3} - 98 acting on S4new(Γ0(464))S_{4}^{\mathrm{new}}(\Gamma_0(464)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T65T5+98 T^{6} - 5 T^{5} + \cdots - 98 Copy content Toggle raw display
55 T6+5T5+239922 T^{6} + 5 T^{5} + \cdots - 239922 Copy content Toggle raw display
77 T638T5+13824 T^{6} - 38 T^{5} + \cdots - 13824 Copy content Toggle raw display
1111 T6+2827812238 T^{6} + \cdots - 2827812238 Copy content Toggle raw display
1313 T6+7992521554 T^{6} + \cdots - 7992521554 Copy content Toggle raw display
1717 T6++200391946752 T^{6} + \cdots + 200391946752 Copy content Toggle raw display
1919 T6++1256352636928 T^{6} + \cdots + 1256352636928 Copy content Toggle raw display
2323 T6++4069096656896 T^{6} + \cdots + 4069096656896 Copy content Toggle raw display
2929 (T+29)6 (T + 29)^{6} Copy content Toggle raw display
3131 T6++766872337410 T^{6} + \cdots + 766872337410 Copy content Toggle raw display
3737 T6+38445998866432 T^{6} + \cdots - 38445998866432 Copy content Toggle raw display
4141 T6++64375103462400 T^{6} + \cdots + 64375103462400 Copy content Toggle raw display
4343 T6+905147314238 T^{6} + \cdots - 905147314238 Copy content Toggle raw display
4747 T6+154765125165962 T^{6} + \cdots - 154765125165962 Copy content Toggle raw display
5353 T6+36699799804014 T^{6} + \cdots - 36699799804014 Copy content Toggle raw display
5959 T6+110093808390144 T^{6} + \cdots - 110093808390144 Copy content Toggle raw display
6161 T6++40 ⁣ ⁣72 T^{6} + \cdots + 40\!\cdots\!72 Copy content Toggle raw display
6767 T6++681378807496704 T^{6} + \cdots + 681378807496704 Copy content Toggle raw display
7171 T6+16 ⁣ ⁣00 T^{6} + \cdots - 16\!\cdots\!00 Copy content Toggle raw display
7373 T6++21 ⁣ ⁣72 T^{6} + \cdots + 21\!\cdots\!72 Copy content Toggle raw display
7979 T6+10 ⁣ ⁣74 T^{6} + \cdots - 10\!\cdots\!74 Copy content Toggle raw display
8383 T6++47 ⁣ ⁣44 T^{6} + \cdots + 47\!\cdots\!44 Copy content Toggle raw display
8989 T6++10 ⁣ ⁣00 T^{6} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
9797 T6++83 ⁣ ⁣28 T^{6} + \cdots + 83\!\cdots\!28 Copy content Toggle raw display
show more
show less