Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [464,4,Mod(1,464)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(464, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("464.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 464.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 232) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −7.88819 | 0 | −14.0062 | 0 | 34.0826 | 0 | 35.2236 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | 0 | −2.88453 | 0 | −3.33508 | 0 | −0.0162797 | 0 | −18.6795 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | 0 | −0.586661 | 0 | 15.4201 | 0 | 28.5777 | 0 | −26.6558 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 0 | 0.116789 | 0 | −14.4485 | 0 | −30.0998 | 0 | −26.9864 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 0 | 6.36242 | 0 | 8.72860 | 0 | 8.76166 | 0 | 13.4804 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 0 | 9.88017 | 0 | 2.64112 | 0 | −3.30580 | 0 | 70.6177 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 464.4.a.n | 6 | |
4.b | odd | 2 | 1 | 232.4.a.e | ✓ | 6 | |
8.b | even | 2 | 1 | 1856.4.a.bc | 6 | ||
8.d | odd | 2 | 1 | 1856.4.a.bd | 6 | ||
12.b | even | 2 | 1 | 2088.4.a.l | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
232.4.a.e | ✓ | 6 | 4.b | odd | 2 | 1 | |
464.4.a.n | 6 | 1.a | even | 1 | 1 | trivial | |
1856.4.a.bc | 6 | 8.b | even | 2 | 1 | ||
1856.4.a.bd | 6 | 8.d | odd | 2 | 1 | ||
2088.4.a.l | 6 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .