Properties

Label 4650.2.d.bh
Level 46504650
Weight 22
Character orbit 4650.d
Analytic conductor 37.13037.130
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(3349,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.3349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4650=235231 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4650.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 37.130436939937.1304369399
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,33)\Q(i, \sqrt{33})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+17x2+64 x^{4} + 17x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2+β2q3q4+q6+β1q7+β2q8q9+(β3+3)q11β2q122β2q13+(β31)q14+q16+(2β22β1)q17++(β33)q99+O(q100) q - \beta_{2} q^{2} + \beta_{2} q^{3} - q^{4} + q^{6} + \beta_1 q^{7} + \beta_{2} q^{8} - q^{9} + (\beta_{3} + 3) q^{11} - \beta_{2} q^{12} - 2 \beta_{2} q^{13} + (\beta_{3} - 1) q^{14} + q^{16} + ( - 2 \beta_{2} - 2 \beta_1) q^{17}+ \cdots + ( - \beta_{3} - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+4q64q9+14q112q14+4q16+14q19+2q214q248q26+12q294q314q34+4q36+8q3920q4114q44+2q46+14q99+O(q100) 4 q - 4 q^{4} + 4 q^{6} - 4 q^{9} + 14 q^{11} - 2 q^{14} + 4 q^{16} + 14 q^{19} + 2 q^{21} - 4 q^{24} - 8 q^{26} + 12 q^{29} - 4 q^{31} - 4 q^{34} + 4 q^{36} + 8 q^{39} - 20 q^{41} - 14 q^{44} + 2 q^{46}+ \cdots - 14 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+17x2+64 x^{4} + 17x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+9ν)/8 ( \nu^{3} + 9\nu ) / 8 Copy content Toggle raw display
β3\beta_{3}== ν2+9 \nu^{2} + 9 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β39 \beta_{3} - 9 Copy content Toggle raw display
ν3\nu^{3}== 8β29β1 8\beta_{2} - 9\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4650Z)×\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times.

nn 18011801 29772977 31013101
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3349.1
3.37228i
2.37228i
2.37228i
3.37228i
1.00000i 1.00000i −1.00000 0 1.00000 3.37228i 1.00000i −1.00000 0
3349.2 1.00000i 1.00000i −1.00000 0 1.00000 2.37228i 1.00000i −1.00000 0
3349.3 1.00000i 1.00000i −1.00000 0 1.00000 2.37228i 1.00000i −1.00000 0
3349.4 1.00000i 1.00000i −1.00000 0 1.00000 3.37228i 1.00000i −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4650.2.d.bh 4
5.b even 2 1 inner 4650.2.d.bh 4
5.c odd 4 1 930.2.a.r 2
5.c odd 4 1 4650.2.a.by 2
15.e even 4 1 2790.2.a.bd 2
20.e even 4 1 7440.2.a.bg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.a.r 2 5.c odd 4 1
2790.2.a.bd 2 15.e even 4 1
4650.2.a.by 2 5.c odd 4 1
4650.2.d.bh 4 1.a even 1 1 trivial
4650.2.d.bh 4 5.b even 2 1 inner
7440.2.a.bg 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4650,[χ])S_{2}^{\mathrm{new}}(4650, [\chi]):

T74+17T72+64 T_{7}^{4} + 17T_{7}^{2} + 64 Copy content Toggle raw display
T1127T11+4 T_{11}^{2} - 7T_{11} + 4 Copy content Toggle raw display
T132+4 T_{13}^{2} + 4 Copy content Toggle raw display
T174+68T172+1024 T_{17}^{4} + 68T_{17}^{2} + 1024 Copy content Toggle raw display
T1927T19+4 T_{19}^{2} - 7T_{19} + 4 Copy content Toggle raw display
T2926T2924 T_{29}^{2} - 6T_{29} - 24 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+17T2+64 T^{4} + 17T^{2} + 64 Copy content Toggle raw display
1111 (T27T+4)2 (T^{2} - 7 T + 4)^{2} Copy content Toggle raw display
1313 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1717 T4+68T2+1024 T^{4} + 68T^{2} + 1024 Copy content Toggle raw display
1919 (T27T+4)2 (T^{2} - 7 T + 4)^{2} Copy content Toggle raw display
2323 T4+17T2+64 T^{4} + 17T^{2} + 64 Copy content Toggle raw display
2929 (T26T24)2 (T^{2} - 6 T - 24)^{2} Copy content Toggle raw display
3131 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
3737 T4+116T2+64 T^{4} + 116T^{2} + 64 Copy content Toggle raw display
4141 (T2+10T8)2 (T^{2} + 10 T - 8)^{2} Copy content Toggle raw display
4343 T4+41T2+16 T^{4} + 41T^{2} + 16 Copy content Toggle raw display
4747 T4+68T2+1024 T^{4} + 68T^{2} + 1024 Copy content Toggle raw display
5353 T4+21T2+36 T^{4} + 21T^{2} + 36 Copy content Toggle raw display
5959 (T26T24)2 (T^{2} - 6 T - 24)^{2} Copy content Toggle raw display
6161 (T2132)2 (T^{2} - 132)^{2} Copy content Toggle raw display
6767 T4+116T2+64 T^{4} + 116T^{2} + 64 Copy content Toggle raw display
7171 (T2T8)2 (T^{2} - T - 8)^{2} Copy content Toggle raw display
7373 T4+149T2+5476 T^{4} + 149T^{2} + 5476 Copy content Toggle raw display
7979 (T215T+48)2 (T^{2} - 15 T + 48)^{2} Copy content Toggle raw display
8383 (T2+144)2 (T^{2} + 144)^{2} Copy content Toggle raw display
8989 (T2+3T6)2 (T^{2} + 3 T - 6)^{2} Copy content Toggle raw display
9797 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
show more
show less