Properties

Label 4650.2.d.g.3349.1
Level 46504650
Weight 22
Character 4650.3349
Analytic conductor 37.13037.130
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(3349,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.3349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4650=235231 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4650.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 37.130436939937.1304369399
Analytic rank: 11
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 3349.1
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 4650.3349
Dual form 4650.2.d.g.3349.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000iq31.00000q41.00000q6+2.00000iq7+1.00000iq81.00000q9+1.00000iq12+4.00000iq13+2.00000q14+1.00000q166.00000iq17+1.00000iq18+2.00000q21+1.00000q24+4.00000q26+1.00000iq272.00000iq288.00000q291.00000q311.00000iq326.00000q34+1.00000q364.00000iq37+4.00000q39+10.0000q412.00000iq42+8.00000iq43+4.00000iq471.00000iq48+3.00000q496.00000q514.00000iq5214.0000iq53+1.00000q542.00000q56+8.00000iq5814.0000q596.00000q61+1.00000iq622.00000iq631.00000q64+10.0000iq67+6.00000iq68+6.00000q711.00000iq728.00000iq734.00000q744.00000iq788.00000q79+1.00000q8110.0000iq8212.0000iq832.00000q84+8.00000q86+8.00000iq8716.0000q898.00000q91+1.00000iq93+4.00000q941.00000q96+10.0000iq973.00000iq98+O(q100)q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +2.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +1.00000i q^{12} +4.00000i q^{13} +2.00000 q^{14} +1.00000 q^{16} -6.00000i q^{17} +1.00000i q^{18} +2.00000 q^{21} +1.00000 q^{24} +4.00000 q^{26} +1.00000i q^{27} -2.00000i q^{28} -8.00000 q^{29} -1.00000 q^{31} -1.00000i q^{32} -6.00000 q^{34} +1.00000 q^{36} -4.00000i q^{37} +4.00000 q^{39} +10.0000 q^{41} -2.00000i q^{42} +8.00000i q^{43} +4.00000i q^{47} -1.00000i q^{48} +3.00000 q^{49} -6.00000 q^{51} -4.00000i q^{52} -14.0000i q^{53} +1.00000 q^{54} -2.00000 q^{56} +8.00000i q^{58} -14.0000 q^{59} -6.00000 q^{61} +1.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} +10.0000i q^{67} +6.00000i q^{68} +6.00000 q^{71} -1.00000i q^{72} -8.00000i q^{73} -4.00000 q^{74} -4.00000i q^{78} -8.00000 q^{79} +1.00000 q^{81} -10.0000i q^{82} -12.0000i q^{83} -2.00000 q^{84} +8.00000 q^{86} +8.00000i q^{87} -16.0000 q^{89} -8.00000 q^{91} +1.00000i q^{93} +4.00000 q^{94} -1.00000 q^{96} +10.0000i q^{97} -3.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q42q62q9+4q14+2q16+4q21+2q24+8q2616q292q3112q34+2q36+8q39+20q41+6q4912q51+2q544q56+2q96+O(q100) 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 4 q^{14} + 2 q^{16} + 4 q^{21} + 2 q^{24} + 8 q^{26} - 16 q^{29} - 2 q^{31} - 12 q^{34} + 2 q^{36} + 8 q^{39} + 20 q^{41} + 6 q^{49} - 12 q^{51} + 2 q^{54} - 4 q^{56}+ \cdots - 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4650Z)×\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times.

nn 18011801 29772977 31013101
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 0.707107i
33 − 1.00000i − 0.577350i
44 −1.00000 −0.500000
55 0 0
66 −1.00000 −0.408248
77 2.00000i 0.755929i 0.925820 + 0.377964i 0.123376π0.123376\pi
−0.925820 + 0.377964i 0.876624π0.876624\pi
88 1.00000i 0.353553i
99 −1.00000 −0.333333
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 1.00000i 0.288675i
1313 4.00000i 1.10940i 0.832050 + 0.554700i 0.187167π0.187167\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 2.00000 0.534522
1515 0 0
1616 1.00000 0.250000
1717 − 6.00000i − 1.45521i −0.685994 0.727607i 0.740633π-0.740633\pi
0.685994 0.727607i 0.259367π-0.259367\pi
1818 1.00000i 0.235702i
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 2.00000 0.436436
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 1.00000 0.204124
2525 0 0
2626 4.00000 0.784465
2727 1.00000i 0.192450i
2828 − 2.00000i − 0.377964i
2929 −8.00000 −1.48556 −0.742781 0.669534i 0.766494π-0.766494\pi
−0.742781 + 0.669534i 0.766494π0.766494\pi
3030 0 0
3131 −1.00000 −0.179605
3232 − 1.00000i − 0.176777i
3333 0 0
3434 −6.00000 −1.02899
3535 0 0
3636 1.00000 0.166667
3737 − 4.00000i − 0.657596i −0.944400 0.328798i 0.893356π-0.893356\pi
0.944400 0.328798i 0.106644π-0.106644\pi
3838 0 0
3939 4.00000 0.640513
4040 0 0
4141 10.0000 1.56174 0.780869 0.624695i 0.214777π-0.214777\pi
0.780869 + 0.624695i 0.214777π0.214777\pi
4242 − 2.00000i − 0.308607i
4343 8.00000i 1.21999i 0.792406 + 0.609994i 0.208828π0.208828\pi
−0.792406 + 0.609994i 0.791172π0.791172\pi
4444 0 0
4545 0 0
4646 0 0
4747 4.00000i 0.583460i 0.956501 + 0.291730i 0.0942309π0.0942309\pi
−0.956501 + 0.291730i 0.905769π0.905769\pi
4848 − 1.00000i − 0.144338i
4949 3.00000 0.428571
5050 0 0
5151 −6.00000 −0.840168
5252 − 4.00000i − 0.554700i
5353 − 14.0000i − 1.92305i −0.274721 0.961524i 0.588586π-0.588586\pi
0.274721 0.961524i 0.411414π-0.411414\pi
5454 1.00000 0.136083
5555 0 0
5656 −2.00000 −0.267261
5757 0 0
5858 8.00000i 1.05045i
5959 −14.0000 −1.82264 −0.911322 0.411693i 0.864937π-0.864937\pi
−0.911322 + 0.411693i 0.864937π0.864937\pi
6060 0 0
6161 −6.00000 −0.768221 −0.384111 0.923287i 0.625492π-0.625492\pi
−0.384111 + 0.923287i 0.625492π0.625492\pi
6262 1.00000i 0.127000i
6363 − 2.00000i − 0.251976i
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 10.0000i 1.22169i 0.791748 + 0.610847i 0.209171π0.209171\pi
−0.791748 + 0.610847i 0.790829π0.790829\pi
6868 6.00000i 0.727607i
6969 0 0
7070 0 0
7171 6.00000 0.712069 0.356034 0.934473i 0.384129π-0.384129\pi
0.356034 + 0.934473i 0.384129π0.384129\pi
7272 − 1.00000i − 0.117851i
7373 − 8.00000i − 0.936329i −0.883641 0.468165i 0.844915π-0.844915\pi
0.883641 0.468165i 0.155085π-0.155085\pi
7474 −4.00000 −0.464991
7575 0 0
7676 0 0
7777 0 0
7878 − 4.00000i − 0.452911i
7979 −8.00000 −0.900070 −0.450035 0.893011i 0.648589π-0.648589\pi
−0.450035 + 0.893011i 0.648589π0.648589\pi
8080 0 0
8181 1.00000 0.111111
8282 − 10.0000i − 1.10432i
8383 − 12.0000i − 1.31717i −0.752506 0.658586i 0.771155π-0.771155\pi
0.752506 0.658586i 0.228845π-0.228845\pi
8484 −2.00000 −0.218218
8585 0 0
8686 8.00000 0.862662
8787 8.00000i 0.857690i
8888 0 0
8989 −16.0000 −1.69600 −0.847998 0.529999i 0.822192π-0.822192\pi
−0.847998 + 0.529999i 0.822192π0.822192\pi
9090 0 0
9191 −8.00000 −0.838628
9292 0 0
9393 1.00000i 0.103695i
9494 4.00000 0.412568
9595 0 0
9696 −1.00000 −0.102062
9797 10.0000i 1.01535i 0.861550 + 0.507673i 0.169494π0.169494\pi
−0.861550 + 0.507673i 0.830506π0.830506\pi
9898 − 3.00000i − 0.303046i
9999 0 0
100100 0 0
101101 −6.00000 −0.597022 −0.298511 0.954406i 0.596490π-0.596490\pi
−0.298511 + 0.954406i 0.596490π0.596490\pi
102102 6.00000i 0.594089i
103103 − 6.00000i − 0.591198i −0.955312 0.295599i 0.904481π-0.904481\pi
0.955312 0.295599i 0.0955191π-0.0955191\pi
104104 −4.00000 −0.392232
105105 0 0
106106 −14.0000 −1.35980
107107 − 8.00000i − 0.773389i −0.922208 0.386695i 0.873617π-0.873617\pi
0.922208 0.386695i 0.126383π-0.126383\pi
108108 − 1.00000i − 0.0962250i
109109 −18.0000 −1.72409 −0.862044 0.506834i 0.830816π-0.830816\pi
−0.862044 + 0.506834i 0.830816π0.830816\pi
110110 0 0
111111 −4.00000 −0.379663
112112 2.00000i 0.188982i
113113 14.0000i 1.31701i 0.752577 + 0.658505i 0.228811π0.228811\pi
−0.752577 + 0.658505i 0.771189π0.771189\pi
114114 0 0
115115 0 0
116116 8.00000 0.742781
117117 − 4.00000i − 0.369800i
118118 14.0000i 1.28880i
119119 12.0000 1.10004
120120 0 0
121121 −11.0000 −1.00000
122122 6.00000i 0.543214i
123123 − 10.0000i − 0.901670i
124124 1.00000 0.0898027
125125 0 0
126126 −2.00000 −0.178174
127127 0 0 1.00000 00
−1.00000 π\pi
128128 1.00000i 0.0883883i
129129 8.00000 0.704361
130130 0 0
131131 −18.0000 −1.57267 −0.786334 0.617802i 0.788023π-0.788023\pi
−0.786334 + 0.617802i 0.788023π0.788023\pi
132132 0 0
133133 0 0
134134 10.0000 0.863868
135135 0 0
136136 6.00000 0.514496
137137 6.00000i 0.512615i 0.966595 + 0.256307i 0.0825059π0.0825059\pi
−0.966595 + 0.256307i 0.917494π0.917494\pi
138138 0 0
139139 −4.00000 −0.339276 −0.169638 0.985506i 0.554260π-0.554260\pi
−0.169638 + 0.985506i 0.554260π0.554260\pi
140140 0 0
141141 4.00000 0.336861
142142 − 6.00000i − 0.503509i
143143 0 0
144144 −1.00000 −0.0833333
145145 0 0
146146 −8.00000 −0.662085
147147 − 3.00000i − 0.247436i
148148 4.00000i 0.328798i
149149 −18.0000 −1.47462 −0.737309 0.675556i 0.763904π-0.763904\pi
−0.737309 + 0.675556i 0.763904π0.763904\pi
150150 0 0
151151 −8.00000 −0.651031 −0.325515 0.945537i 0.605538π-0.605538\pi
−0.325515 + 0.945537i 0.605538π0.605538\pi
152152 0 0
153153 6.00000i 0.485071i
154154 0 0
155155 0 0
156156 −4.00000 −0.320256
157157 18.0000i 1.43656i 0.695756 + 0.718278i 0.255069π0.255069\pi
−0.695756 + 0.718278i 0.744931π0.744931\pi
158158 8.00000i 0.636446i
159159 −14.0000 −1.11027
160160 0 0
161161 0 0
162162 − 1.00000i − 0.0785674i
163163 6.00000i 0.469956i 0.972001 + 0.234978i 0.0755019π0.0755019\pi
−0.972001 + 0.234978i 0.924498π0.924498\pi
164164 −10.0000 −0.780869
165165 0 0
166166 −12.0000 −0.931381
167167 8.00000i 0.619059i 0.950890 + 0.309529i 0.100171π0.100171\pi
−0.950890 + 0.309529i 0.899829π0.899829\pi
168168 2.00000i 0.154303i
169169 −3.00000 −0.230769
170170 0 0
171171 0 0
172172 − 8.00000i − 0.609994i
173173 10.0000i 0.760286i 0.924928 + 0.380143i 0.124125π0.124125\pi
−0.924928 + 0.380143i 0.875875π0.875875\pi
174174 8.00000 0.606478
175175 0 0
176176 0 0
177177 14.0000i 1.05230i
178178 16.0000i 1.19925i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −6.00000 −0.445976 −0.222988 0.974821i 0.571581π-0.571581\pi
−0.222988 + 0.974821i 0.571581π0.571581\pi
182182 8.00000i 0.592999i
183183 6.00000i 0.443533i
184184 0 0
185185 0 0
186186 1.00000 0.0733236
187187 0 0
188188 − 4.00000i − 0.291730i
189189 −2.00000 −0.145479
190190 0 0
191191 −14.0000 −1.01300 −0.506502 0.862239i 0.669062π-0.669062\pi
−0.506502 + 0.862239i 0.669062π0.669062\pi
192192 1.00000i 0.0721688i
193193 − 2.00000i − 0.143963i −0.997406 0.0719816i 0.977068π-0.977068\pi
0.997406 0.0719816i 0.0229323π-0.0229323\pi
194194 10.0000 0.717958
195195 0 0
196196 −3.00000 −0.214286
197197 2.00000i 0.142494i 0.997459 + 0.0712470i 0.0226979π0.0226979\pi
−0.997459 + 0.0712470i 0.977302π0.977302\pi
198198 0 0
199199 24.0000 1.70131 0.850657 0.525720i 0.176204π-0.176204\pi
0.850657 + 0.525720i 0.176204π0.176204\pi
200200 0 0
201201 10.0000 0.705346
202202 6.00000i 0.422159i
203203 − 16.0000i − 1.12298i
204204 6.00000 0.420084
205205 0 0
206206 −6.00000 −0.418040
207207 0 0
208208 4.00000i 0.277350i
209209 0 0
210210 0 0
211211 16.0000 1.10149 0.550743 0.834675i 0.314345π-0.314345\pi
0.550743 + 0.834675i 0.314345π0.314345\pi
212212 14.0000i 0.961524i
213213 − 6.00000i − 0.411113i
214214 −8.00000 −0.546869
215215 0 0
216216 −1.00000 −0.0680414
217217 − 2.00000i − 0.135769i
218218 18.0000i 1.21911i
219219 −8.00000 −0.540590
220220 0 0
221221 24.0000 1.61441
222222 4.00000i 0.268462i
223223 − 20.0000i − 1.33930i −0.742677 0.669650i 0.766444π-0.766444\pi
0.742677 0.669650i 0.233556π-0.233556\pi
224224 2.00000 0.133631
225225 0 0
226226 14.0000 0.931266
227227 − 12.0000i − 0.796468i −0.917284 0.398234i 0.869623π-0.869623\pi
0.917284 0.398234i 0.130377π-0.130377\pi
228228 0 0
229229 10.0000 0.660819 0.330409 0.943838i 0.392813π-0.392813\pi
0.330409 + 0.943838i 0.392813π0.392813\pi
230230 0 0
231231 0 0
232232 − 8.00000i − 0.525226i
233233 − 14.0000i − 0.917170i −0.888650 0.458585i 0.848356π-0.848356\pi
0.888650 0.458585i 0.151644π-0.151644\pi
234234 −4.00000 −0.261488
235235 0 0
236236 14.0000 0.911322
237237 8.00000i 0.519656i
238238 − 12.0000i − 0.777844i
239239 12.0000 0.776215 0.388108 0.921614i 0.373129π-0.373129\pi
0.388108 + 0.921614i 0.373129π0.373129\pi
240240 0 0
241241 −14.0000 −0.901819 −0.450910 0.892570i 0.648900π-0.648900\pi
−0.450910 + 0.892570i 0.648900π0.648900\pi
242242 11.0000i 0.707107i
243243 − 1.00000i − 0.0641500i
244244 6.00000 0.384111
245245 0 0
246246 −10.0000 −0.637577
247247 0 0
248248 − 1.00000i − 0.0635001i
249249 −12.0000 −0.760469
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 2.00000i 0.125988i
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 0.0625000
257257 − 2.00000i − 0.124757i −0.998053 0.0623783i 0.980131π-0.980131\pi
0.998053 0.0623783i 0.0198685π-0.0198685\pi
258258 − 8.00000i − 0.498058i
259259 8.00000 0.497096
260260 0 0
261261 8.00000 0.495188
262262 18.0000i 1.11204i
263263 16.0000i 0.986602i 0.869859 + 0.493301i 0.164210π0.164210\pi
−0.869859 + 0.493301i 0.835790π0.835790\pi
264264 0 0
265265 0 0
266266 0 0
267267 16.0000i 0.979184i
268268 − 10.0000i − 0.610847i
269269 −24.0000 −1.46331 −0.731653 0.681677i 0.761251π-0.761251\pi
−0.731653 + 0.681677i 0.761251π0.761251\pi
270270 0 0
271271 −16.0000 −0.971931 −0.485965 0.873978i 0.661532π-0.661532\pi
−0.485965 + 0.873978i 0.661532π0.661532\pi
272272 − 6.00000i − 0.363803i
273273 8.00000i 0.484182i
274274 6.00000 0.362473
275275 0 0
276276 0 0
277277 − 16.0000i − 0.961347i −0.876900 0.480673i 0.840392π-0.840392\pi
0.876900 0.480673i 0.159608π-0.159608\pi
278278 4.00000i 0.239904i
279279 1.00000 0.0598684
280280 0 0
281281 30.0000 1.78965 0.894825 0.446417i 0.147300π-0.147300\pi
0.894825 + 0.446417i 0.147300π0.147300\pi
282282 − 4.00000i − 0.238197i
283283 14.0000i 0.832214i 0.909316 + 0.416107i 0.136606π0.136606\pi
−0.909316 + 0.416107i 0.863394π0.863394\pi
284284 −6.00000 −0.356034
285285 0 0
286286 0 0
287287 20.0000i 1.18056i
288288 1.00000i 0.0589256i
289289 −19.0000 −1.11765
290290 0 0
291291 10.0000 0.586210
292292 8.00000i 0.468165i
293293 6.00000i 0.350524i 0.984522 + 0.175262i 0.0560772π0.0560772\pi
−0.984522 + 0.175262i 0.943923π0.943923\pi
294294 −3.00000 −0.174964
295295 0 0
296296 4.00000 0.232495
297297 0 0
298298 18.0000i 1.04271i
299299 0 0
300300 0 0
301301 −16.0000 −0.922225
302302 8.00000i 0.460348i
303303 6.00000i 0.344691i
304304 0 0
305305 0 0
306306 6.00000 0.342997
307307 − 10.0000i − 0.570730i −0.958419 0.285365i 0.907885π-0.907885\pi
0.958419 0.285365i 0.0921148π-0.0921148\pi
308308 0 0
309309 −6.00000 −0.341328
310310 0 0
311311 18.0000 1.02069 0.510343 0.859971i 0.329518π-0.329518\pi
0.510343 + 0.859971i 0.329518π0.329518\pi
312312 4.00000i 0.226455i
313313 − 16.0000i − 0.904373i −0.891923 0.452187i 0.850644π-0.850644\pi
0.891923 0.452187i 0.149356π-0.149356\pi
314314 18.0000 1.01580
315315 0 0
316316 8.00000 0.450035
317317 10.0000i 0.561656i 0.959758 + 0.280828i 0.0906090π0.0906090\pi
−0.959758 + 0.280828i 0.909391π0.909391\pi
318318 14.0000i 0.785081i
319319 0 0
320320 0 0
321321 −8.00000 −0.446516
322322 0 0
323323 0 0
324324 −1.00000 −0.0555556
325325 0 0
326326 6.00000 0.332309
327327 18.0000i 0.995402i
328328 10.0000i 0.552158i
329329 −8.00000 −0.441054
330330 0 0
331331 −12.0000 −0.659580 −0.329790 0.944054i 0.606978π-0.606978\pi
−0.329790 + 0.944054i 0.606978π0.606978\pi
332332 12.0000i 0.658586i
333333 4.00000i 0.219199i
334334 8.00000 0.437741
335335 0 0
336336 2.00000 0.109109
337337 − 4.00000i − 0.217894i −0.994048 0.108947i 0.965252π-0.965252\pi
0.994048 0.108947i 0.0347479π-0.0347479\pi
338338 3.00000i 0.163178i
339339 14.0000 0.760376
340340 0 0
341341 0 0
342342 0 0
343343 20.0000i 1.07990i
344344 −8.00000 −0.431331
345345 0 0
346346 10.0000 0.537603
347347 − 20.0000i − 1.07366i −0.843692 0.536828i 0.819622π-0.819622\pi
0.843692 0.536828i 0.180378π-0.180378\pi
348348 − 8.00000i − 0.428845i
349349 −2.00000 −0.107058 −0.0535288 0.998566i 0.517047π-0.517047\pi
−0.0535288 + 0.998566i 0.517047π0.517047\pi
350350 0 0
351351 −4.00000 −0.213504
352352 0 0
353353 14.0000i 0.745145i 0.928003 + 0.372572i 0.121524π0.121524\pi
−0.928003 + 0.372572i 0.878476π0.878476\pi
354354 14.0000 0.744092
355355 0 0
356356 16.0000 0.847998
357357 − 12.0000i − 0.635107i
358358 0 0
359359 −18.0000 −0.950004 −0.475002 0.879985i 0.657553π-0.657553\pi
−0.475002 + 0.879985i 0.657553π0.657553\pi
360360 0 0
361361 −19.0000 −1.00000
362362 6.00000i 0.315353i
363363 11.0000i 0.577350i
364364 8.00000 0.419314
365365 0 0
366366 6.00000 0.313625
367367 36.0000i 1.87918i 0.342296 + 0.939592i 0.388796π0.388796\pi
−0.342296 + 0.939592i 0.611204π0.611204\pi
368368 0 0
369369 −10.0000 −0.520579
370370 0 0
371371 28.0000 1.45369
372372 − 1.00000i − 0.0518476i
373373 6.00000i 0.310668i 0.987862 + 0.155334i 0.0496454π0.0496454\pi
−0.987862 + 0.155334i 0.950355π0.950355\pi
374374 0 0
375375 0 0
376376 −4.00000 −0.206284
377377 − 32.0000i − 1.64808i
378378 2.00000i 0.102869i
379379 −8.00000 −0.410932 −0.205466 0.978664i 0.565871π-0.565871\pi
−0.205466 + 0.978664i 0.565871π0.565871\pi
380380 0 0
381381 0 0
382382 14.0000i 0.716302i
383383 0 0 1.00000 00
−1.00000 π\pi
384384 1.00000 0.0510310
385385 0 0
386386 −2.00000 −0.101797
387387 − 8.00000i − 0.406663i
388388 − 10.0000i − 0.507673i
389389 32.0000 1.62246 0.811232 0.584724i 0.198797π-0.198797\pi
0.811232 + 0.584724i 0.198797π0.198797\pi
390390 0 0
391391 0 0
392392 3.00000i 0.151523i
393393 18.0000i 0.907980i
394394 2.00000 0.100759
395395 0 0
396396 0 0
397397 − 18.0000i − 0.903394i −0.892171 0.451697i 0.850819π-0.850819\pi
0.892171 0.451697i 0.149181π-0.149181\pi
398398 − 24.0000i − 1.20301i
399399 0 0
400400 0 0
401401 4.00000 0.199750 0.0998752 0.995000i 0.468156π-0.468156\pi
0.0998752 + 0.995000i 0.468156π0.468156\pi
402402 − 10.0000i − 0.498755i
403403 − 4.00000i − 0.199254i
404404 6.00000 0.298511
405405 0 0
406406 −16.0000 −0.794067
407407 0 0
408408 − 6.00000i − 0.297044i
409409 −30.0000 −1.48340 −0.741702 0.670729i 0.765981π-0.765981\pi
−0.741702 + 0.670729i 0.765981π0.765981\pi
410410 0 0
411411 6.00000 0.295958
412412 6.00000i 0.295599i
413413 − 28.0000i − 1.37779i
414414 0 0
415415 0 0
416416 4.00000 0.196116
417417 4.00000i 0.195881i
418418 0 0
419419 6.00000 0.293119 0.146560 0.989202i 0.453180π-0.453180\pi
0.146560 + 0.989202i 0.453180π0.453180\pi
420420 0 0
421421 −6.00000 −0.292422 −0.146211 0.989253i 0.546708π-0.546708\pi
−0.146211 + 0.989253i 0.546708π0.546708\pi
422422 − 16.0000i − 0.778868i
423423 − 4.00000i − 0.194487i
424424 14.0000 0.679900
425425 0 0
426426 −6.00000 −0.290701
427427 − 12.0000i − 0.580721i
428428 8.00000i 0.386695i
429429 0 0
430430 0 0
431431 −6.00000 −0.289010 −0.144505 0.989504i 0.546159π-0.546159\pi
−0.144505 + 0.989504i 0.546159π0.546159\pi
432432 1.00000i 0.0481125i
433433 − 16.0000i − 0.768911i −0.923144 0.384455i 0.874389π-0.874389\pi
0.923144 0.384455i 0.125611π-0.125611\pi
434434 −2.00000 −0.0960031
435435 0 0
436436 18.0000 0.862044
437437 0 0
438438 8.00000i 0.382255i
439439 −24.0000 −1.14546 −0.572729 0.819745i 0.694115π-0.694115\pi
−0.572729 + 0.819745i 0.694115π0.694115\pi
440440 0 0
441441 −3.00000 −0.142857
442442 − 24.0000i − 1.14156i
443443 − 36.0000i − 1.71041i −0.518289 0.855206i 0.673431π-0.673431\pi
0.518289 0.855206i 0.326569π-0.326569\pi
444444 4.00000 0.189832
445445 0 0
446446 −20.0000 −0.947027
447447 18.0000i 0.851371i
448448 − 2.00000i − 0.0944911i
449449 20.0000 0.943858 0.471929 0.881636i 0.343558π-0.343558\pi
0.471929 + 0.881636i 0.343558π0.343558\pi
450450 0 0
451451 0 0
452452 − 14.0000i − 0.658505i
453453 8.00000i 0.375873i
454454 −12.0000 −0.563188
455455 0 0
456456 0 0
457457 − 8.00000i − 0.374224i −0.982339 0.187112i 0.940087π-0.940087\pi
0.982339 0.187112i 0.0599128π-0.0599128\pi
458458 − 10.0000i − 0.467269i
459459 6.00000 0.280056
460460 0 0
461461 −12.0000 −0.558896 −0.279448 0.960161i 0.590151π-0.590151\pi
−0.279448 + 0.960161i 0.590151π0.590151\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 −8.00000 −0.371391
465465 0 0
466466 −14.0000 −0.648537
467467 32.0000i 1.48078i 0.672176 + 0.740392i 0.265360π0.265360\pi
−0.672176 + 0.740392i 0.734640π0.734640\pi
468468 4.00000i 0.184900i
469469 −20.0000 −0.923514
470470 0 0
471471 18.0000 0.829396
472472 − 14.0000i − 0.644402i
473473 0 0
474474 8.00000 0.367452
475475 0 0
476476 −12.0000 −0.550019
477477 14.0000i 0.641016i
478478 − 12.0000i − 0.548867i
479479 42.0000 1.91903 0.959514 0.281659i 0.0908848π-0.0908848\pi
0.959514 + 0.281659i 0.0908848π0.0908848\pi
480480 0 0
481481 16.0000 0.729537
482482 14.0000i 0.637683i
483483 0 0
484484 11.0000 0.500000
485485 0 0
486486 −1.00000 −0.0453609
487487 8.00000i 0.362515i 0.983436 + 0.181257i 0.0580167π0.0580167\pi
−0.983436 + 0.181257i 0.941983π0.941983\pi
488488 − 6.00000i − 0.271607i
489489 6.00000 0.271329
490490 0 0
491491 36.0000 1.62466 0.812329 0.583200i 0.198200π-0.198200\pi
0.812329 + 0.583200i 0.198200π0.198200\pi
492492 10.0000i 0.450835i
493493 48.0000i 2.16181i
494494 0 0
495495 0 0
496496 −1.00000 −0.0449013
497497 12.0000i 0.538274i
498498 12.0000i 0.537733i
499499 −20.0000 −0.895323 −0.447661 0.894203i 0.647743π-0.647743\pi
−0.447661 + 0.894203i 0.647743π0.647743\pi
500500 0 0
501501 8.00000 0.357414
502502 0 0
503503 − 20.0000i − 0.891756i −0.895094 0.445878i 0.852892π-0.852892\pi
0.895094 0.445878i 0.147108π-0.147108\pi
504504 2.00000 0.0890871
505505 0 0
506506 0 0
507507 3.00000i 0.133235i
508508 0 0
509509 −4.00000 −0.177297 −0.0886484 0.996063i 0.528255π-0.528255\pi
−0.0886484 + 0.996063i 0.528255π0.528255\pi
510510 0 0
511511 16.0000 0.707798
512512 − 1.00000i − 0.0441942i
513513 0 0
514514 −2.00000 −0.0882162
515515 0 0
516516 −8.00000 −0.352180
517517 0 0
518518 − 8.00000i − 0.351500i
519519 10.0000 0.438951
520520 0 0
521521 −6.00000 −0.262865 −0.131432 0.991325i 0.541958π-0.541958\pi
−0.131432 + 0.991325i 0.541958π0.541958\pi
522522 − 8.00000i − 0.350150i
523523 24.0000i 1.04945i 0.851273 + 0.524723i 0.175831π0.175831\pi
−0.851273 + 0.524723i 0.824169π0.824169\pi
524524 18.0000 0.786334
525525 0 0
526526 16.0000 0.697633
527527 6.00000i 0.261364i
528528 0 0
529529 23.0000 1.00000
530530 0 0
531531 14.0000 0.607548
532532 0 0
533533 40.0000i 1.73259i
534534 16.0000 0.692388
535535 0 0
536536 −10.0000 −0.431934
537537 0 0
538538 24.0000i 1.03471i
539539 0 0
540540 0 0
541541 18.0000 0.773880 0.386940 0.922105i 0.373532π-0.373532\pi
0.386940 + 0.922105i 0.373532π0.373532\pi
542542 16.0000i 0.687259i
543543 6.00000i 0.257485i
544544 −6.00000 −0.257248
545545 0 0
546546 8.00000 0.342368
547547 − 6.00000i − 0.256541i −0.991739 0.128271i 0.959057π-0.959057\pi
0.991739 0.128271i 0.0409426π-0.0409426\pi
548548 − 6.00000i − 0.256307i
549549 6.00000 0.256074
550550 0 0
551551 0 0
552552 0 0
553553 − 16.0000i − 0.680389i
554554 −16.0000 −0.679775
555555 0 0
556556 4.00000 0.169638
557557 30.0000i 1.27114i 0.772043 + 0.635570i 0.219235π0.219235\pi
−0.772043 + 0.635570i 0.780765π0.780765\pi
558558 − 1.00000i − 0.0423334i
559559 −32.0000 −1.35346
560560 0 0
561561 0 0
562562 − 30.0000i − 1.26547i
563563 − 32.0000i − 1.34864i −0.738440 0.674320i 0.764437π-0.764437\pi
0.738440 0.674320i 0.235563π-0.235563\pi
564564 −4.00000 −0.168430
565565 0 0
566566 14.0000 0.588464
567567 2.00000i 0.0839921i
568568 6.00000i 0.251754i
569569 −4.00000 −0.167689 −0.0838444 0.996479i 0.526720π-0.526720\pi
−0.0838444 + 0.996479i 0.526720π0.526720\pi
570570 0 0
571571 −4.00000 −0.167395 −0.0836974 0.996491i 0.526673π-0.526673\pi
−0.0836974 + 0.996491i 0.526673π0.526673\pi
572572 0 0
573573 14.0000i 0.584858i
574574 20.0000 0.834784
575575 0 0
576576 1.00000 0.0416667
577577 6.00000i 0.249783i 0.992170 + 0.124892i 0.0398583π0.0398583\pi
−0.992170 + 0.124892i 0.960142π0.960142\pi
578578 19.0000i 0.790296i
579579 −2.00000 −0.0831172
580580 0 0
581581 24.0000 0.995688
582582 − 10.0000i − 0.414513i
583583 0 0
584584 8.00000 0.331042
585585 0 0
586586 6.00000 0.247858
587587 − 12.0000i − 0.495293i −0.968850 0.247647i 0.920343π-0.920343\pi
0.968850 0.247647i 0.0796572π-0.0796572\pi
588588 3.00000i 0.123718i
589589 0 0
590590 0 0
591591 2.00000 0.0822690
592592 − 4.00000i − 0.164399i
593593 6.00000i 0.246390i 0.992382 + 0.123195i 0.0393141π0.0393141\pi
−0.992382 + 0.123195i 0.960686π0.960686\pi
594594 0 0
595595 0 0
596596 18.0000 0.737309
597597 − 24.0000i − 0.982255i
598598 0 0
599599 −42.0000 −1.71607 −0.858037 0.513588i 0.828316π-0.828316\pi
−0.858037 + 0.513588i 0.828316π0.828316\pi
600600 0 0
601601 −10.0000 −0.407909 −0.203954 0.978980i 0.565379π-0.565379\pi
−0.203954 + 0.978980i 0.565379π0.565379\pi
602602 16.0000i 0.652111i
603603 − 10.0000i − 0.407231i
604604 8.00000 0.325515
605605 0 0
606606 6.00000 0.243733
607607 − 2.00000i − 0.0811775i −0.999176 0.0405887i 0.987077π-0.987077\pi
0.999176 0.0405887i 0.0129233π-0.0129233\pi
608608 0 0
609609 −16.0000 −0.648353
610610 0 0
611611 −16.0000 −0.647291
612612 − 6.00000i − 0.242536i
613613 16.0000i 0.646234i 0.946359 + 0.323117i 0.104731π0.104731\pi
−0.946359 + 0.323117i 0.895269π0.895269\pi
614614 −10.0000 −0.403567
615615 0 0
616616 0 0
617617 − 38.0000i − 1.52982i −0.644136 0.764911i 0.722783π-0.722783\pi
0.644136 0.764911i 0.277217π-0.277217\pi
618618 6.00000i 0.241355i
619619 −4.00000 −0.160774 −0.0803868 0.996764i 0.525616π-0.525616\pi
−0.0803868 + 0.996764i 0.525616π0.525616\pi
620620 0 0
621621 0 0
622622 − 18.0000i − 0.721734i
623623 − 32.0000i − 1.28205i
624624 4.00000 0.160128
625625 0 0
626626 −16.0000 −0.639489
627627 0 0
628628 − 18.0000i − 0.718278i
629629 −24.0000 −0.956943
630630 0 0
631631 −8.00000 −0.318475 −0.159237 0.987240i 0.550904π-0.550904\pi
−0.159237 + 0.987240i 0.550904π0.550904\pi
632632 − 8.00000i − 0.318223i
633633 − 16.0000i − 0.635943i
634634 10.0000 0.397151
635635 0 0
636636 14.0000 0.555136
637637 12.0000i 0.475457i
638638 0 0
639639 −6.00000 −0.237356
640640 0 0
641641 −44.0000 −1.73790 −0.868948 0.494904i 0.835203π-0.835203\pi
−0.868948 + 0.494904i 0.835203π0.835203\pi
642642 8.00000i 0.315735i
643643 − 16.0000i − 0.630978i −0.948929 0.315489i 0.897831π-0.897831\pi
0.948929 0.315489i 0.102169π-0.102169\pi
644644 0 0
645645 0 0
646646 0 0
647647 16.0000i 0.629025i 0.949253 + 0.314512i 0.101841π0.101841\pi
−0.949253 + 0.314512i 0.898159π0.898159\pi
648648 1.00000i 0.0392837i
649649 0 0
650650 0 0
651651 −2.00000 −0.0783862
652652 − 6.00000i − 0.234978i
653653 − 10.0000i − 0.391330i −0.980671 0.195665i 0.937313π-0.937313\pi
0.980671 0.195665i 0.0626866π-0.0626866\pi
654654 18.0000 0.703856
655655 0 0
656656 10.0000 0.390434
657657 8.00000i 0.312110i
658658 8.00000i 0.311872i
659659 30.0000 1.16863 0.584317 0.811525i 0.301362π-0.301362\pi
0.584317 + 0.811525i 0.301362π0.301362\pi
660660 0 0
661661 −42.0000 −1.63361 −0.816805 0.576913i 0.804257π-0.804257\pi
−0.816805 + 0.576913i 0.804257π0.804257\pi
662662 12.0000i 0.466393i
663663 − 24.0000i − 0.932083i
664664 12.0000 0.465690
665665 0 0
666666 4.00000 0.154997
667667 0 0
668668 − 8.00000i − 0.309529i
669669 −20.0000 −0.773245
670670 0 0
671671 0 0
672672 − 2.00000i − 0.0771517i
673673 − 20.0000i − 0.770943i −0.922720 0.385472i 0.874039π-0.874039\pi
0.922720 0.385472i 0.125961π-0.125961\pi
674674 −4.00000 −0.154074
675675 0 0
676676 3.00000 0.115385
677677 22.0000i 0.845529i 0.906240 + 0.422764i 0.138940π0.138940\pi
−0.906240 + 0.422764i 0.861060π0.861060\pi
678678 − 14.0000i − 0.537667i
679679 −20.0000 −0.767530
680680 0 0
681681 −12.0000 −0.459841
682682 0 0
683683 12.0000i 0.459167i 0.973289 + 0.229584i 0.0737364π0.0737364\pi
−0.973289 + 0.229584i 0.926264π0.926264\pi
684684 0 0
685685 0 0
686686 20.0000 0.763604
687687 − 10.0000i − 0.381524i
688688 8.00000i 0.304997i
689689 56.0000 2.13343
690690 0 0
691691 −4.00000 −0.152167 −0.0760836 0.997101i 0.524242π-0.524242\pi
−0.0760836 + 0.997101i 0.524242π0.524242\pi
692692 − 10.0000i − 0.380143i
693693 0 0
694694 −20.0000 −0.759190
695695 0 0
696696 −8.00000 −0.303239
697697 − 60.0000i − 2.27266i
698698 2.00000i 0.0757011i
699699 −14.0000 −0.529529
700700 0 0
701701 30.0000 1.13308 0.566542 0.824033i 0.308281π-0.308281\pi
0.566542 + 0.824033i 0.308281π0.308281\pi
702702 4.00000i 0.150970i
703703 0 0
704704 0 0
705705 0 0
706706 14.0000 0.526897
707707 − 12.0000i − 0.451306i
708708 − 14.0000i − 0.526152i
709709 −46.0000 −1.72757 −0.863783 0.503864i 0.831911π-0.831911\pi
−0.863783 + 0.503864i 0.831911π0.831911\pi
710710 0 0
711711 8.00000 0.300023
712712 − 16.0000i − 0.599625i
713713 0 0
714714 −12.0000 −0.449089
715715 0 0
716716 0 0
717717 − 12.0000i − 0.448148i
718718 18.0000i 0.671754i
719719 40.0000 1.49175 0.745874 0.666087i 0.232032π-0.232032\pi
0.745874 + 0.666087i 0.232032π0.232032\pi
720720 0 0
721721 12.0000 0.446903
722722 19.0000i 0.707107i
723723 14.0000i 0.520666i
724724 6.00000 0.222988
725725 0 0
726726 11.0000 0.408248
727727 10.0000i 0.370879i 0.982656 + 0.185440i 0.0593710π0.0593710\pi
−0.982656 + 0.185440i 0.940629π0.940629\pi
728728 − 8.00000i − 0.296500i
729729 −1.00000 −0.0370370
730730 0 0
731731 48.0000 1.77534
732732 − 6.00000i − 0.221766i
733733 − 22.0000i − 0.812589i −0.913742 0.406294i 0.866821π-0.866821\pi
0.913742 0.406294i 0.133179π-0.133179\pi
734734 36.0000 1.32878
735735 0 0
736736 0 0
737737 0 0
738738 10.0000i 0.368105i
739739 −20.0000 −0.735712 −0.367856 0.929883i 0.619908π-0.619908\pi
−0.367856 + 0.929883i 0.619908π0.619908\pi
740740 0 0
741741 0 0
742742 − 28.0000i − 1.02791i
743743 24.0000i 0.880475i 0.897881 + 0.440237i 0.145106π0.145106\pi
−0.897881 + 0.440237i 0.854894π0.854894\pi
744744 −1.00000 −0.0366618
745745 0 0
746746 6.00000 0.219676
747747 12.0000i 0.439057i
748748 0 0
749749 16.0000 0.584627
750750 0 0
751751 −32.0000 −1.16770 −0.583848 0.811863i 0.698454π-0.698454\pi
−0.583848 + 0.811863i 0.698454π0.698454\pi
752752 4.00000i 0.145865i
753753 0 0
754754 −32.0000 −1.16537
755755 0 0
756756 2.00000 0.0727393
757757 12.0000i 0.436147i 0.975932 + 0.218074i 0.0699773π0.0699773\pi
−0.975932 + 0.218074i 0.930023π0.930023\pi
758758 8.00000i 0.290573i
759759 0 0
760760 0 0
761761 −20.0000 −0.724999 −0.362500 0.931984i 0.618077π-0.618077\pi
−0.362500 + 0.931984i 0.618077π0.618077\pi
762762 0 0
763763 − 36.0000i − 1.30329i
764764 14.0000 0.506502
765765 0 0
766766 0 0
767767 − 56.0000i − 2.02204i
768768 − 1.00000i − 0.0360844i
769769 −30.0000 −1.08183 −0.540914 0.841078i 0.681921π-0.681921\pi
−0.540914 + 0.841078i 0.681921π0.681921\pi
770770 0 0
771771 −2.00000 −0.0720282
772772 2.00000i 0.0719816i
773773 − 46.0000i − 1.65451i −0.561830 0.827253i 0.689903π-0.689903\pi
0.561830 0.827253i 0.310097π-0.310097\pi
774774 −8.00000 −0.287554
775775 0 0
776776 −10.0000 −0.358979
777777 − 8.00000i − 0.286998i
778778 − 32.0000i − 1.14726i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 − 8.00000i − 0.285897i
784784 3.00000 0.107143
785785 0 0
786786 18.0000 0.642039
787787 − 44.0000i − 1.56843i −0.620489 0.784215i 0.713066π-0.713066\pi
0.620489 0.784215i 0.286934π-0.286934\pi
788788 − 2.00000i − 0.0712470i
789789 16.0000 0.569615
790790 0 0
791791 −28.0000 −0.995565
792792 0 0
793793 − 24.0000i − 0.852265i
794794 −18.0000 −0.638796
795795 0 0
796796 −24.0000 −0.850657
797797 2.00000i 0.0708436i 0.999372 + 0.0354218i 0.0112775π0.0112775\pi
−0.999372 + 0.0354218i 0.988723π0.988723\pi
798798 0 0
799799 24.0000 0.849059
800800 0 0
801801 16.0000 0.565332
802802 − 4.00000i − 0.141245i
803803 0 0
804804 −10.0000 −0.352673
805805 0 0
806806 −4.00000 −0.140894
807807 24.0000i 0.844840i
808808 − 6.00000i − 0.211079i
809809 −4.00000 −0.140633 −0.0703163 0.997525i 0.522401π-0.522401\pi
−0.0703163 + 0.997525i 0.522401π0.522401\pi
810810 0 0
811811 56.0000 1.96643 0.983213 0.182462i 0.0584065π-0.0584065\pi
0.983213 + 0.182462i 0.0584065π0.0584065\pi
812812 16.0000i 0.561490i
813813 16.0000i 0.561144i
814814 0 0
815815 0 0
816816 −6.00000 −0.210042
817817 0 0
818818 30.0000i 1.04893i
819819 8.00000 0.279543
820820 0 0
821821 −48.0000 −1.67521 −0.837606 0.546275i 0.816045π-0.816045\pi
−0.837606 + 0.546275i 0.816045π0.816045\pi
822822 − 6.00000i − 0.209274i
823823 0 0 1.00000 00
−1.00000 π\pi
824824 6.00000 0.209020
825825 0 0
826826 −28.0000 −0.974245
827827 − 12.0000i − 0.417281i −0.977992 0.208640i 0.933096π-0.933096\pi
0.977992 0.208640i 0.0669038π-0.0669038\pi
828828 0 0
829829 −2.00000 −0.0694629 −0.0347314 0.999397i 0.511058π-0.511058\pi
−0.0347314 + 0.999397i 0.511058π0.511058\pi
830830 0 0
831831 −16.0000 −0.555034
832832 − 4.00000i − 0.138675i
833833 − 18.0000i − 0.623663i
834834 4.00000 0.138509
835835 0 0
836836 0 0
837837 − 1.00000i − 0.0345651i
838838 − 6.00000i − 0.207267i
839839 30.0000 1.03572 0.517858 0.855467i 0.326730π-0.326730\pi
0.517858 + 0.855467i 0.326730π0.326730\pi
840840 0 0
841841 35.0000 1.20690
842842 6.00000i 0.206774i
843843 − 30.0000i − 1.03325i
844844 −16.0000 −0.550743
845845 0 0
846846 −4.00000 −0.137523
847847 − 22.0000i − 0.755929i
848848 − 14.0000i − 0.480762i
849849 14.0000 0.480479
850850 0 0
851851 0 0
852852 6.00000i 0.205557i
853853 18.0000i 0.616308i 0.951336 + 0.308154i 0.0997113π0.0997113\pi
−0.951336 + 0.308154i 0.900289π0.900289\pi
854854 −12.0000 −0.410632
855855 0 0
856856 8.00000 0.273434
857857 10.0000i 0.341593i 0.985306 + 0.170797i 0.0546341π0.0546341\pi
−0.985306 + 0.170797i 0.945366π0.945366\pi
858858 0 0
859859 20.0000 0.682391 0.341196 0.939992i 0.389168π-0.389168\pi
0.341196 + 0.939992i 0.389168π0.389168\pi
860860 0 0
861861 20.0000 0.681598
862862 6.00000i 0.204361i
863863 0 0 1.00000 00
−1.00000 π\pi
864864 1.00000 0.0340207
865865 0 0
866866 −16.0000 −0.543702
867867 19.0000i 0.645274i
868868 2.00000i 0.0678844i
869869 0 0
870870 0 0
871871 −40.0000 −1.35535
872872 − 18.0000i − 0.609557i
873873 − 10.0000i − 0.338449i
874874 0 0
875875 0 0
876876 8.00000 0.270295
877877 6.00000i 0.202606i 0.994856 + 0.101303i 0.0323011π0.0323011\pi
−0.994856 + 0.101303i 0.967699π0.967699\pi
878878 24.0000i 0.809961i
879879 6.00000 0.202375
880880 0 0
881881 −48.0000 −1.61716 −0.808581 0.588386i 0.799764π-0.799764\pi
−0.808581 + 0.588386i 0.799764π0.799764\pi
882882 3.00000i 0.101015i
883883 − 12.0000i − 0.403832i −0.979403 0.201916i 0.935283π-0.935283\pi
0.979403 0.201916i 0.0647168π-0.0647168\pi
884884 −24.0000 −0.807207
885885 0 0
886886 −36.0000 −1.20944
887887 56.0000i 1.88030i 0.340766 + 0.940148i 0.389313π0.389313\pi
−0.340766 + 0.940148i 0.610687π0.610687\pi
888888 − 4.00000i − 0.134231i
889889 0 0
890890 0 0
891891 0 0
892892 20.0000i 0.669650i
893893 0 0
894894 18.0000 0.602010
895895 0 0
896896 −2.00000 −0.0668153
897897 0 0
898898 − 20.0000i − 0.667409i
899899 8.00000 0.266815
900900 0 0
901901 −84.0000 −2.79845
902902 0 0
903903 16.0000i 0.532447i
904904 −14.0000 −0.465633
905905 0 0
906906 8.00000 0.265782
907907 − 2.00000i − 0.0664089i −0.999449 0.0332045i 0.989429π-0.989429\pi
0.999449 0.0332045i 0.0105712π-0.0105712\pi
908908 12.0000i 0.398234i
909909 6.00000 0.199007
910910 0 0
911911 −24.0000 −0.795155 −0.397578 0.917568i 0.630149π-0.630149\pi
−0.397578 + 0.917568i 0.630149π0.630149\pi
912912 0 0
913913 0 0
914914 −8.00000 −0.264616
915915 0 0
916916 −10.0000 −0.330409
917917 − 36.0000i − 1.18882i
918918 − 6.00000i − 0.198030i
919919 60.0000 1.97922 0.989609 0.143787i 0.0459280π-0.0459280\pi
0.989609 + 0.143787i 0.0459280π0.0459280\pi
920920 0 0
921921 −10.0000 −0.329511
922922 12.0000i 0.395199i
923923 24.0000i 0.789970i
924924 0 0
925925 0 0
926926 0 0
927927 6.00000i 0.197066i
928928 8.00000i 0.262613i
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 0 0
932932 14.0000i 0.458585i
933933 − 18.0000i − 0.589294i
934934 32.0000 1.04707
935935 0 0
936936 4.00000 0.130744
937937 42.0000i 1.37208i 0.727564 + 0.686040i 0.240653π0.240653\pi
−0.727564 + 0.686040i 0.759347π0.759347\pi
938938 20.0000i 0.653023i
939939 −16.0000 −0.522140
940940 0 0
941941 −8.00000 −0.260793 −0.130396 0.991462i 0.541625π-0.541625\pi
−0.130396 + 0.991462i 0.541625π0.541625\pi
942942 − 18.0000i − 0.586472i
943943 0 0
944944 −14.0000 −0.455661
945945 0 0
946946 0 0
947947 28.0000i 0.909878i 0.890523 + 0.454939i 0.150339π0.150339\pi
−0.890523 + 0.454939i 0.849661π0.849661\pi
948948 − 8.00000i − 0.259828i
949949 32.0000 1.03876
950950 0 0
951951 10.0000 0.324272
952952 12.0000i 0.388922i
953953 − 46.0000i − 1.49009i −0.667016 0.745043i 0.732429π-0.732429\pi
0.667016 0.745043i 0.267571π-0.267571\pi
954954 14.0000 0.453267
955955 0 0
956956 −12.0000 −0.388108
957957 0 0
958958 − 42.0000i − 1.35696i
959959 −12.0000 −0.387500
960960 0 0
961961 1.00000 0.0322581
962962 − 16.0000i − 0.515861i
963963 8.00000i 0.257796i
964964 14.0000 0.450910
965965 0 0
966966 0 0
967967 − 52.0000i − 1.67221i −0.548572 0.836104i 0.684828π-0.684828\pi
0.548572 0.836104i 0.315172π-0.315172\pi
968968 − 11.0000i − 0.353553i
969969 0 0
970970 0 0
971971 18.0000 0.577647 0.288824 0.957382i 0.406736π-0.406736\pi
0.288824 + 0.957382i 0.406736π0.406736\pi
972972 1.00000i 0.0320750i
973973 − 8.00000i − 0.256468i
974974 8.00000 0.256337
975975 0 0
976976 −6.00000 −0.192055
977977 18.0000i 0.575871i 0.957650 + 0.287936i 0.0929689π0.0929689\pi
−0.957650 + 0.287936i 0.907031π0.907031\pi
978978 − 6.00000i − 0.191859i
979979 0 0
980980 0 0
981981 18.0000 0.574696
982982 − 36.0000i − 1.14881i
983983 − 40.0000i − 1.27580i −0.770118 0.637901i 0.779803π-0.779803\pi
0.770118 0.637901i 0.220197π-0.220197\pi
984984 10.0000 0.318788
985985 0 0
986986 48.0000 1.52863
987987 8.00000i 0.254643i
988988 0 0
989989 0 0
990990 0 0
991991 −16.0000 −0.508257 −0.254128 0.967170i 0.581789π-0.581789\pi
−0.254128 + 0.967170i 0.581789π0.581789\pi
992992 1.00000i 0.0317500i
993993 12.0000i 0.380808i
994994 12.0000 0.380617
995995 0 0
996996 12.0000 0.380235
997997 − 6.00000i − 0.190022i −0.995476 0.0950110i 0.969711π-0.969711\pi
0.995476 0.0950110i 0.0302886π-0.0302886\pi
998998 20.0000i 0.633089i
999999 4.00000 0.126554
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.d.g.3349.1 2
5.2 odd 4 930.2.a.k.1.1 1
5.3 odd 4 4650.2.a.t.1.1 1
5.4 even 2 inner 4650.2.d.g.3349.2 2
15.2 even 4 2790.2.a.f.1.1 1
20.7 even 4 7440.2.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.k.1.1 1 5.2 odd 4
2790.2.a.f.1.1 1 15.2 even 4
4650.2.a.t.1.1 1 5.3 odd 4
4650.2.d.g.3349.1 2 1.1 even 1 trivial
4650.2.d.g.3349.2 2 5.4 even 2 inner
7440.2.a.u.1.1 1 20.7 even 4