Properties

Label 4650.2.d.g.3349.1
Level $4650$
Weight $2$
Character 4650.3349
Analytic conductor $37.130$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(3349,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.3349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1304369399\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4650.3349
Dual form 4650.2.d.g.3349.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +2.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +1.00000i q^{12} +4.00000i q^{13} +2.00000 q^{14} +1.00000 q^{16} -6.00000i q^{17} +1.00000i q^{18} +2.00000 q^{21} +1.00000 q^{24} +4.00000 q^{26} +1.00000i q^{27} -2.00000i q^{28} -8.00000 q^{29} -1.00000 q^{31} -1.00000i q^{32} -6.00000 q^{34} +1.00000 q^{36} -4.00000i q^{37} +4.00000 q^{39} +10.0000 q^{41} -2.00000i q^{42} +8.00000i q^{43} +4.00000i q^{47} -1.00000i q^{48} +3.00000 q^{49} -6.00000 q^{51} -4.00000i q^{52} -14.0000i q^{53} +1.00000 q^{54} -2.00000 q^{56} +8.00000i q^{58} -14.0000 q^{59} -6.00000 q^{61} +1.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} +10.0000i q^{67} +6.00000i q^{68} +6.00000 q^{71} -1.00000i q^{72} -8.00000i q^{73} -4.00000 q^{74} -4.00000i q^{78} -8.00000 q^{79} +1.00000 q^{81} -10.0000i q^{82} -12.0000i q^{83} -2.00000 q^{84} +8.00000 q^{86} +8.00000i q^{87} -16.0000 q^{89} -8.00000 q^{91} +1.00000i q^{93} +4.00000 q^{94} -1.00000 q^{96} +10.0000i q^{97} -3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 4 q^{14} + 2 q^{16} + 4 q^{21} + 2 q^{24} + 8 q^{26} - 16 q^{29} - 2 q^{31} - 12 q^{34} + 2 q^{36} + 8 q^{39} + 20 q^{41} + 6 q^{49} - 12 q^{51} + 2 q^{54} - 4 q^{56}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 6.00000i − 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 1.00000i 0.192450i
\(28\) − 2.00000i − 0.377964i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) − 2.00000i − 0.308607i
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) − 4.00000i − 0.554700i
\(53\) − 14.0000i − 1.92305i −0.274721 0.961524i \(-0.588586\pi\)
0.274721 0.961524i \(-0.411414\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) 8.00000i 1.05045i
\(59\) −14.0000 −1.82264 −0.911322 0.411693i \(-0.864937\pi\)
−0.911322 + 0.411693i \(0.864937\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 1.00000i 0.127000i
\(63\) − 2.00000i − 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000i 1.22169i 0.791748 + 0.610847i \(0.209171\pi\)
−0.791748 + 0.610847i \(0.790829\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) − 8.00000i − 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) − 4.00000i − 0.452911i
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 10.0000i − 1.10432i
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 8.00000i 0.857690i
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) 1.00000i 0.103695i
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) − 3.00000i − 0.303046i
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 6.00000i 0.594089i
\(103\) − 6.00000i − 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) −14.0000 −1.35980
\(107\) − 8.00000i − 0.773389i −0.922208 0.386695i \(-0.873617\pi\)
0.922208 0.386695i \(-0.126383\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 2.00000i 0.188982i
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.00000 0.742781
\(117\) − 4.00000i − 0.369800i
\(118\) 14.0000i 1.28880i
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 6.00000i 0.543214i
\(123\) − 10.0000i − 0.901670i
\(124\) 1.00000 0.0898027
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 4.00000 0.336861
\(142\) − 6.00000i − 0.503509i
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −8.00000 −0.662085
\(147\) − 3.00000i − 0.247436i
\(148\) 4.00000i 0.328798i
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 8.00000i 0.636446i
\(159\) −14.0000 −1.11027
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.00000i − 0.0785674i
\(163\) 6.00000i 0.469956i 0.972001 + 0.234978i \(0.0755019\pi\)
−0.972001 + 0.234978i \(0.924498\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 2.00000i 0.154303i
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) − 8.00000i − 0.609994i
\(173\) 10.0000i 0.760286i 0.924928 + 0.380143i \(0.124125\pi\)
−0.924928 + 0.380143i \(0.875875\pi\)
\(174\) 8.00000 0.606478
\(175\) 0 0
\(176\) 0 0
\(177\) 14.0000i 1.05230i
\(178\) 16.0000i 1.19925i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 8.00000i 0.592999i
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) 0 0
\(186\) 1.00000 0.0733236
\(187\) 0 0
\(188\) − 4.00000i − 0.291730i
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 2.00000i − 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 10.0000 0.705346
\(202\) 6.00000i 0.422159i
\(203\) − 16.0000i − 1.12298i
\(204\) 6.00000 0.420084
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 0 0
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 14.0000i 0.961524i
\(213\) − 6.00000i − 0.411113i
\(214\) −8.00000 −0.546869
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 2.00000i − 0.135769i
\(218\) 18.0000i 1.21911i
\(219\) −8.00000 −0.540590
\(220\) 0 0
\(221\) 24.0000 1.61441
\(222\) 4.00000i 0.268462i
\(223\) − 20.0000i − 1.33930i −0.742677 0.669650i \(-0.766444\pi\)
0.742677 0.669650i \(-0.233556\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) 14.0000 0.931266
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 8.00000i − 0.525226i
\(233\) − 14.0000i − 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) −4.00000 −0.261488
\(235\) 0 0
\(236\) 14.0000 0.911322
\(237\) 8.00000i 0.519656i
\(238\) − 12.0000i − 0.777844i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 11.0000i 0.707107i
\(243\) − 1.00000i − 0.0641500i
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 0 0
\(248\) − 1.00000i − 0.0635001i
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 2.00000i − 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) − 8.00000i − 0.498058i
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 18.0000i 1.11204i
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.0000i 0.979184i
\(268\) − 10.0000i − 0.610847i
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) − 6.00000i − 0.363803i
\(273\) 8.00000i 0.484182i
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) − 16.0000i − 0.961347i −0.876900 0.480673i \(-0.840392\pi\)
0.876900 0.480673i \(-0.159608\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) − 4.00000i − 0.238197i
\(283\) 14.0000i 0.832214i 0.909316 + 0.416107i \(0.136606\pi\)
−0.909316 + 0.416107i \(0.863394\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) 20.0000i 1.18056i
\(288\) 1.00000i 0.0589256i
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 8.00000i 0.468165i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 0 0
\(298\) 18.0000i 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 8.00000i 0.460348i
\(303\) 6.00000i 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 6.00000 0.342997
\(307\) − 10.0000i − 0.570730i −0.958419 0.285365i \(-0.907885\pi\)
0.958419 0.285365i \(-0.0921148\pi\)
\(308\) 0 0
\(309\) −6.00000 −0.341328
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 4.00000i 0.226455i
\(313\) − 16.0000i − 0.904373i −0.891923 0.452187i \(-0.850644\pi\)
0.891923 0.452187i \(-0.149356\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 10.0000i 0.561656i 0.959758 + 0.280828i \(0.0906090\pi\)
−0.959758 + 0.280828i \(0.909391\pi\)
\(318\) 14.0000i 0.785081i
\(319\) 0 0
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 6.00000 0.332309
\(327\) 18.0000i 0.995402i
\(328\) 10.0000i 0.552158i
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 4.00000i 0.219199i
\(334\) 8.00000 0.437741
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) − 4.00000i − 0.217894i −0.994048 0.108947i \(-0.965252\pi\)
0.994048 0.108947i \(-0.0347479\pi\)
\(338\) 3.00000i 0.163178i
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 10.0000 0.537603
\(347\) − 20.0000i − 1.07366i −0.843692 0.536828i \(-0.819622\pi\)
0.843692 0.536828i \(-0.180378\pi\)
\(348\) − 8.00000i − 0.428845i
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 14.0000 0.744092
\(355\) 0 0
\(356\) 16.0000 0.847998
\(357\) − 12.0000i − 0.635107i
\(358\) 0 0
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 6.00000i 0.315353i
\(363\) 11.0000i 0.577350i
\(364\) 8.00000 0.419314
\(365\) 0 0
\(366\) 6.00000 0.313625
\(367\) 36.0000i 1.87918i 0.342296 + 0.939592i \(0.388796\pi\)
−0.342296 + 0.939592i \(0.611204\pi\)
\(368\) 0 0
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) 28.0000 1.45369
\(372\) − 1.00000i − 0.0518476i
\(373\) 6.00000i 0.310668i 0.987862 + 0.155334i \(0.0496454\pi\)
−0.987862 + 0.155334i \(0.950355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) − 32.0000i − 1.64808i
\(378\) 2.00000i 0.102869i
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 14.0000i 0.716302i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) − 8.00000i − 0.406663i
\(388\) − 10.0000i − 0.507673i
\(389\) 32.0000 1.62246 0.811232 0.584724i \(-0.198797\pi\)
0.811232 + 0.584724i \(0.198797\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000i 0.151523i
\(393\) 18.0000i 0.907980i
\(394\) 2.00000 0.100759
\(395\) 0 0
\(396\) 0 0
\(397\) − 18.0000i − 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) − 24.0000i − 1.20301i
\(399\) 0 0
\(400\) 0 0
\(401\) 4.00000 0.199750 0.0998752 0.995000i \(-0.468156\pi\)
0.0998752 + 0.995000i \(0.468156\pi\)
\(402\) − 10.0000i − 0.498755i
\(403\) − 4.00000i − 0.199254i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −16.0000 −0.794067
\(407\) 0 0
\(408\) − 6.00000i − 0.297044i
\(409\) −30.0000 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 6.00000i 0.295599i
\(413\) − 28.0000i − 1.37779i
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 0.196116
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) − 16.0000i − 0.778868i
\(423\) − 4.00000i − 0.194487i
\(424\) 14.0000 0.679900
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) − 12.0000i − 0.580721i
\(428\) 8.00000i 0.386695i
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 16.0000i − 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 18.0000 0.862044
\(437\) 0 0
\(438\) 8.00000i 0.382255i
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) − 24.0000i − 1.14156i
\(443\) − 36.0000i − 1.71041i −0.518289 0.855206i \(-0.673431\pi\)
0.518289 0.855206i \(-0.326569\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) −20.0000 −0.947027
\(447\) 18.0000i 0.851371i
\(448\) − 2.00000i − 0.0944911i
\(449\) 20.0000 0.943858 0.471929 0.881636i \(-0.343558\pi\)
0.471929 + 0.881636i \(0.343558\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 14.0000i − 0.658505i
\(453\) 8.00000i 0.375873i
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.00000i − 0.374224i −0.982339 0.187112i \(-0.940087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) − 10.0000i − 0.467269i
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) −14.0000 −0.648537
\(467\) 32.0000i 1.48078i 0.672176 + 0.740392i \(0.265360\pi\)
−0.672176 + 0.740392i \(0.734640\pi\)
\(468\) 4.00000i 0.184900i
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) 18.0000 0.829396
\(472\) − 14.0000i − 0.644402i
\(473\) 0 0
\(474\) 8.00000 0.367452
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) 14.0000i 0.641016i
\(478\) − 12.0000i − 0.548867i
\(479\) 42.0000 1.91903 0.959514 0.281659i \(-0.0908848\pi\)
0.959514 + 0.281659i \(0.0908848\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 14.0000i 0.637683i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) − 6.00000i − 0.271607i
\(489\) 6.00000 0.271329
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 10.0000i 0.450835i
\(493\) 48.0000i 2.16181i
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) 12.0000i 0.538274i
\(498\) 12.0000i 0.537733i
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) − 20.0000i − 0.891756i −0.895094 0.445878i \(-0.852892\pi\)
0.895094 0.445878i \(-0.147108\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) 0 0
\(507\) 3.00000i 0.133235i
\(508\) 0 0
\(509\) −4.00000 −0.177297 −0.0886484 0.996063i \(-0.528255\pi\)
−0.0886484 + 0.996063i \(0.528255\pi\)
\(510\) 0 0
\(511\) 16.0000 0.707798
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) −8.00000 −0.352180
\(517\) 0 0
\(518\) − 8.00000i − 0.351500i
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) − 8.00000i − 0.350150i
\(523\) 24.0000i 1.04945i 0.851273 + 0.524723i \(0.175831\pi\)
−0.851273 + 0.524723i \(0.824169\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) 6.00000i 0.261364i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 14.0000 0.607548
\(532\) 0 0
\(533\) 40.0000i 1.73259i
\(534\) 16.0000 0.692388
\(535\) 0 0
\(536\) −10.0000 −0.431934
\(537\) 0 0
\(538\) 24.0000i 1.03471i
\(539\) 0 0
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 16.0000i 0.687259i
\(543\) 6.00000i 0.257485i
\(544\) −6.00000 −0.257248
\(545\) 0 0
\(546\) 8.00000 0.342368
\(547\) − 6.00000i − 0.256541i −0.991739 0.128271i \(-0.959057\pi\)
0.991739 0.128271i \(-0.0409426\pi\)
\(548\) − 6.00000i − 0.256307i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) − 16.0000i − 0.680389i
\(554\) −16.0000 −0.679775
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 30.0000i 1.27114i 0.772043 + 0.635570i \(0.219235\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(558\) − 1.00000i − 0.0423334i
\(559\) −32.0000 −1.35346
\(560\) 0 0
\(561\) 0 0
\(562\) − 30.0000i − 1.26547i
\(563\) − 32.0000i − 1.34864i −0.738440 0.674320i \(-0.764437\pi\)
0.738440 0.674320i \(-0.235563\pi\)
\(564\) −4.00000 −0.168430
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) 2.00000i 0.0839921i
\(568\) 6.00000i 0.251754i
\(569\) −4.00000 −0.167689 −0.0838444 0.996479i \(-0.526720\pi\)
−0.0838444 + 0.996479i \(0.526720\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) 14.0000i 0.584858i
\(574\) 20.0000 0.834784
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 6.00000i 0.249783i 0.992170 + 0.124892i \(0.0398583\pi\)
−0.992170 + 0.124892i \(0.960142\pi\)
\(578\) 19.0000i 0.790296i
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) − 10.0000i − 0.414513i
\(583\) 0 0
\(584\) 8.00000 0.331042
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 3.00000i 0.123718i
\(589\) 0 0
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) − 4.00000i − 0.164399i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) − 24.0000i − 0.982255i
\(598\) 0 0
\(599\) −42.0000 −1.71607 −0.858037 0.513588i \(-0.828316\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 16.0000i 0.652111i
\(603\) − 10.0000i − 0.407231i
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 6.00000 0.243733
\(607\) − 2.00000i − 0.0811775i −0.999176 0.0405887i \(-0.987077\pi\)
0.999176 0.0405887i \(-0.0129233\pi\)
\(608\) 0 0
\(609\) −16.0000 −0.648353
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) − 6.00000i − 0.242536i
\(613\) 16.0000i 0.646234i 0.946359 + 0.323117i \(0.104731\pi\)
−0.946359 + 0.323117i \(0.895269\pi\)
\(614\) −10.0000 −0.403567
\(615\) 0 0
\(616\) 0 0
\(617\) − 38.0000i − 1.52982i −0.644136 0.764911i \(-0.722783\pi\)
0.644136 0.764911i \(-0.277217\pi\)
\(618\) 6.00000i 0.241355i
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 18.0000i − 0.721734i
\(623\) − 32.0000i − 1.28205i
\(624\) 4.00000 0.160128
\(625\) 0 0
\(626\) −16.0000 −0.639489
\(627\) 0 0
\(628\) − 18.0000i − 0.718278i
\(629\) −24.0000 −0.956943
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) − 8.00000i − 0.318223i
\(633\) − 16.0000i − 0.635943i
\(634\) 10.0000 0.397151
\(635\) 0 0
\(636\) 14.0000 0.555136
\(637\) 12.0000i 0.475457i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −44.0000 −1.73790 −0.868948 0.494904i \(-0.835203\pi\)
−0.868948 + 0.494904i \(0.835203\pi\)
\(642\) 8.00000i 0.315735i
\(643\) − 16.0000i − 0.630978i −0.948929 0.315489i \(-0.897831\pi\)
0.948929 0.315489i \(-0.102169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) − 6.00000i − 0.234978i
\(653\) − 10.0000i − 0.391330i −0.980671 0.195665i \(-0.937313\pi\)
0.980671 0.195665i \(-0.0626866\pi\)
\(654\) 18.0000 0.703856
\(655\) 0 0
\(656\) 10.0000 0.390434
\(657\) 8.00000i 0.312110i
\(658\) 8.00000i 0.311872i
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) 12.0000i 0.466393i
\(663\) − 24.0000i − 0.932083i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 0 0
\(668\) − 8.00000i − 0.309529i
\(669\) −20.0000 −0.773245
\(670\) 0 0
\(671\) 0 0
\(672\) − 2.00000i − 0.0771517i
\(673\) − 20.0000i − 0.770943i −0.922720 0.385472i \(-0.874039\pi\)
0.922720 0.385472i \(-0.125961\pi\)
\(674\) −4.00000 −0.154074
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 22.0000i 0.845529i 0.906240 + 0.422764i \(0.138940\pi\)
−0.906240 + 0.422764i \(0.861060\pi\)
\(678\) − 14.0000i − 0.537667i
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) − 10.0000i − 0.381524i
\(688\) 8.00000i 0.304997i
\(689\) 56.0000 2.13343
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) − 10.0000i − 0.380143i
\(693\) 0 0
\(694\) −20.0000 −0.759190
\(695\) 0 0
\(696\) −8.00000 −0.303239
\(697\) − 60.0000i − 2.27266i
\(698\) 2.00000i 0.0757011i
\(699\) −14.0000 −0.529529
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 4.00000i 0.150970i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) − 12.0000i − 0.451306i
\(708\) − 14.0000i − 0.526152i
\(709\) −46.0000 −1.72757 −0.863783 0.503864i \(-0.831911\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) − 16.0000i − 0.599625i
\(713\) 0 0
\(714\) −12.0000 −0.449089
\(715\) 0 0
\(716\) 0 0
\(717\) − 12.0000i − 0.448148i
\(718\) 18.0000i 0.671754i
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 19.0000i 0.707107i
\(723\) 14.0000i 0.520666i
\(724\) 6.00000 0.222988
\(725\) 0 0
\(726\) 11.0000 0.408248
\(727\) 10.0000i 0.370879i 0.982656 + 0.185440i \(0.0593710\pi\)
−0.982656 + 0.185440i \(0.940629\pi\)
\(728\) − 8.00000i − 0.296500i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 48.0000 1.77534
\(732\) − 6.00000i − 0.221766i
\(733\) − 22.0000i − 0.812589i −0.913742 0.406294i \(-0.866821\pi\)
0.913742 0.406294i \(-0.133179\pi\)
\(734\) 36.0000 1.32878
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 10.0000i 0.368105i
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 28.0000i − 1.02791i
\(743\) 24.0000i 0.880475i 0.897881 + 0.440237i \(0.145106\pi\)
−0.897881 + 0.440237i \(0.854894\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 0 0
\(746\) 6.00000 0.219676
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 4.00000i 0.145865i
\(753\) 0 0
\(754\) −32.0000 −1.16537
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) 12.0000i 0.436147i 0.975932 + 0.218074i \(0.0699773\pi\)
−0.975932 + 0.218074i \(0.930023\pi\)
\(758\) 8.00000i 0.290573i
\(759\) 0 0
\(760\) 0 0
\(761\) −20.0000 −0.724999 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(762\) 0 0
\(763\) − 36.0000i − 1.30329i
\(764\) 14.0000 0.506502
\(765\) 0 0
\(766\) 0 0
\(767\) − 56.0000i − 2.02204i
\(768\) − 1.00000i − 0.0360844i
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 2.00000i 0.0719816i
\(773\) − 46.0000i − 1.65451i −0.561830 0.827253i \(-0.689903\pi\)
0.561830 0.827253i \(-0.310097\pi\)
\(774\) −8.00000 −0.287554
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) − 8.00000i − 0.286998i
\(778\) − 32.0000i − 1.14726i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 8.00000i − 0.285897i
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 18.0000 0.642039
\(787\) − 44.0000i − 1.56843i −0.620489 0.784215i \(-0.713066\pi\)
0.620489 0.784215i \(-0.286934\pi\)
\(788\) − 2.00000i − 0.0712470i
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) − 24.0000i − 0.852265i
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) 2.00000i 0.0708436i 0.999372 + 0.0354218i \(0.0112775\pi\)
−0.999372 + 0.0354218i \(0.988723\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 16.0000 0.565332
\(802\) − 4.00000i − 0.141245i
\(803\) 0 0
\(804\) −10.0000 −0.352673
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 24.0000i 0.844840i
\(808\) − 6.00000i − 0.211079i
\(809\) −4.00000 −0.140633 −0.0703163 0.997525i \(-0.522401\pi\)
−0.0703163 + 0.997525i \(0.522401\pi\)
\(810\) 0 0
\(811\) 56.0000 1.96643 0.983213 0.182462i \(-0.0584065\pi\)
0.983213 + 0.182462i \(0.0584065\pi\)
\(812\) 16.0000i 0.561490i
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) 0 0
\(816\) −6.00000 −0.210042
\(817\) 0 0
\(818\) 30.0000i 1.04893i
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) −48.0000 −1.67521 −0.837606 0.546275i \(-0.816045\pi\)
−0.837606 + 0.546275i \(0.816045\pi\)
\(822\) − 6.00000i − 0.209274i
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 6.00000 0.209020
\(825\) 0 0
\(826\) −28.0000 −0.974245
\(827\) − 12.0000i − 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −16.0000 −0.555034
\(832\) − 4.00000i − 0.138675i
\(833\) − 18.0000i − 0.623663i
\(834\) 4.00000 0.138509
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.00000i − 0.0345651i
\(838\) − 6.00000i − 0.207267i
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 6.00000i 0.206774i
\(843\) − 30.0000i − 1.03325i
\(844\) −16.0000 −0.550743
\(845\) 0 0
\(846\) −4.00000 −0.137523
\(847\) − 22.0000i − 0.755929i
\(848\) − 14.0000i − 0.480762i
\(849\) 14.0000 0.480479
\(850\) 0 0
\(851\) 0 0
\(852\) 6.00000i 0.205557i
\(853\) 18.0000i 0.616308i 0.951336 + 0.308154i \(0.0997113\pi\)
−0.951336 + 0.308154i \(0.900289\pi\)
\(854\) −12.0000 −0.410632
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 10.0000i 0.341593i 0.985306 + 0.170797i \(0.0546341\pi\)
−0.985306 + 0.170797i \(0.945366\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 20.0000 0.681598
\(862\) 6.00000i 0.204361i
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −16.0000 −0.543702
\(867\) 19.0000i 0.645274i
\(868\) 2.00000i 0.0678844i
\(869\) 0 0
\(870\) 0 0
\(871\) −40.0000 −1.35535
\(872\) − 18.0000i − 0.609557i
\(873\) − 10.0000i − 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 8.00000 0.270295
\(877\) 6.00000i 0.202606i 0.994856 + 0.101303i \(0.0323011\pi\)
−0.994856 + 0.101303i \(0.967699\pi\)
\(878\) 24.0000i 0.809961i
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −48.0000 −1.61716 −0.808581 0.588386i \(-0.799764\pi\)
−0.808581 + 0.588386i \(0.799764\pi\)
\(882\) 3.00000i 0.101015i
\(883\) − 12.0000i − 0.403832i −0.979403 0.201916i \(-0.935283\pi\)
0.979403 0.201916i \(-0.0647168\pi\)
\(884\) −24.0000 −0.807207
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) 56.0000i 1.88030i 0.340766 + 0.940148i \(0.389313\pi\)
−0.340766 + 0.940148i \(0.610687\pi\)
\(888\) − 4.00000i − 0.134231i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0000i 0.669650i
\(893\) 0 0
\(894\) 18.0000 0.602010
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) − 20.0000i − 0.667409i
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −84.0000 −2.79845
\(902\) 0 0
\(903\) 16.0000i 0.532447i
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) 8.00000 0.265782
\(907\) − 2.00000i − 0.0664089i −0.999449 0.0332045i \(-0.989429\pi\)
0.999449 0.0332045i \(-0.0105712\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −8.00000 −0.264616
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) − 36.0000i − 1.18882i
\(918\) − 6.00000i − 0.198030i
\(919\) 60.0000 1.97922 0.989609 0.143787i \(-0.0459280\pi\)
0.989609 + 0.143787i \(0.0459280\pi\)
\(920\) 0 0
\(921\) −10.0000 −0.329511
\(922\) 12.0000i 0.395199i
\(923\) 24.0000i 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.00000i 0.197066i
\(928\) 8.00000i 0.262613i
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.0000i 0.458585i
\(933\) − 18.0000i − 0.589294i
\(934\) 32.0000 1.04707
\(935\) 0 0
\(936\) 4.00000 0.130744
\(937\) 42.0000i 1.37208i 0.727564 + 0.686040i \(0.240653\pi\)
−0.727564 + 0.686040i \(0.759347\pi\)
\(938\) 20.0000i 0.653023i
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −8.00000 −0.260793 −0.130396 0.991462i \(-0.541625\pi\)
−0.130396 + 0.991462i \(0.541625\pi\)
\(942\) − 18.0000i − 0.586472i
\(943\) 0 0
\(944\) −14.0000 −0.455661
\(945\) 0 0
\(946\) 0 0
\(947\) 28.0000i 0.909878i 0.890523 + 0.454939i \(0.150339\pi\)
−0.890523 + 0.454939i \(0.849661\pi\)
\(948\) − 8.00000i − 0.259828i
\(949\) 32.0000 1.03876
\(950\) 0 0
\(951\) 10.0000 0.324272
\(952\) 12.0000i 0.388922i
\(953\) − 46.0000i − 1.49009i −0.667016 0.745043i \(-0.732429\pi\)
0.667016 0.745043i \(-0.267571\pi\)
\(954\) 14.0000 0.453267
\(955\) 0 0
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) − 42.0000i − 1.35696i
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) − 16.0000i − 0.515861i
\(963\) 8.00000i 0.257796i
\(964\) 14.0000 0.450910
\(965\) 0 0
\(966\) 0 0
\(967\) − 52.0000i − 1.67221i −0.548572 0.836104i \(-0.684828\pi\)
0.548572 0.836104i \(-0.315172\pi\)
\(968\) − 11.0000i − 0.353553i
\(969\) 0 0
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 8.00000i − 0.256468i
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) 18.0000i 0.575871i 0.957650 + 0.287936i \(0.0929689\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(978\) − 6.00000i − 0.191859i
\(979\) 0 0
\(980\) 0 0
\(981\) 18.0000 0.574696
\(982\) − 36.0000i − 1.14881i
\(983\) − 40.0000i − 1.27580i −0.770118 0.637901i \(-0.779803\pi\)
0.770118 0.637901i \(-0.220197\pi\)
\(984\) 10.0000 0.318788
\(985\) 0 0
\(986\) 48.0000 1.52863
\(987\) 8.00000i 0.254643i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 1.00000i 0.0317500i
\(993\) 12.0000i 0.380808i
\(994\) 12.0000 0.380617
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) − 6.00000i − 0.190022i −0.995476 0.0950110i \(-0.969711\pi\)
0.995476 0.0950110i \(-0.0302886\pi\)
\(998\) 20.0000i 0.633089i
\(999\) 4.00000 0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.d.g.3349.1 2
5.2 odd 4 930.2.a.k.1.1 1
5.3 odd 4 4650.2.a.t.1.1 1
5.4 even 2 inner 4650.2.d.g.3349.2 2
15.2 even 4 2790.2.a.f.1.1 1
20.7 even 4 7440.2.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.k.1.1 1 5.2 odd 4
2790.2.a.f.1.1 1 15.2 even 4
4650.2.a.t.1.1 1 5.3 odd 4
4650.2.d.g.3349.1 2 1.1 even 1 trivial
4650.2.d.g.3349.2 2 5.4 even 2 inner
7440.2.a.u.1.1 1 20.7 even 4