Properties

Label 4655.2.a.y.1.3
Level $4655$
Weight $2$
Character 4655.1
Self dual yes
Analytic conductor $37.170$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4655,2,Mod(1,4655)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4655, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4655.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4655 = 5 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4655.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1703621409\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11344.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.51658\) of defining polynomial
Character \(\chi\) \(=\) 4655.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.816594 q^{2} -1.53844 q^{3} -1.33317 q^{4} +1.00000 q^{5} -1.25628 q^{6} -2.72185 q^{8} -0.633188 q^{9} +0.816594 q^{10} -3.03316 q^{11} +2.05101 q^{12} +4.57160 q^{13} -1.53844 q^{15} +0.443701 q^{16} +1.07689 q^{17} -0.517058 q^{18} -1.00000 q^{19} -1.33317 q^{20} -2.47686 q^{22} +4.11005 q^{23} +4.18742 q^{24} +1.00000 q^{25} +3.73315 q^{26} +5.58946 q^{27} -1.07689 q^{29} -1.25628 q^{30} -5.58946 q^{31} +5.80602 q^{32} +4.66635 q^{33} +0.879381 q^{34} +0.844150 q^{36} +0.0947438 q^{37} -0.816594 q^{38} -7.03316 q^{39} -2.72185 q^{40} -10.6663 q^{41} +5.03316 q^{43} +4.04373 q^{44} -0.633188 q^{45} +3.35624 q^{46} +12.2995 q^{47} -0.682609 q^{48} +0.816594 q^{50} -1.65673 q^{51} -6.09474 q^{52} -4.09474 q^{53} +4.56432 q^{54} -3.03316 q^{55} +1.53844 q^{57} -0.879381 q^{58} +1.39997 q^{59} +2.05101 q^{60} +5.69951 q^{61} -4.56432 q^{62} +3.85376 q^{64} +4.57160 q^{65} +3.81051 q^{66} +5.28168 q^{67} -1.43568 q^{68} -6.32308 q^{69} -5.67692 q^{71} +1.72344 q^{72} -9.07689 q^{73} +0.0773672 q^{74} -1.53844 q^{75} +1.33317 q^{76} -5.74324 q^{78} -5.39997 q^{79} +0.443701 q^{80} -6.69951 q^{81} -8.71008 q^{82} -1.95627 q^{83} +1.07689 q^{85} +4.11005 q^{86} +1.65673 q^{87} +8.25581 q^{88} +2.18949 q^{89} -0.517058 q^{90} -5.47941 q^{92} +8.59907 q^{93} +10.0437 q^{94} -1.00000 q^{95} -8.93225 q^{96} +2.16106 q^{97} +1.92056 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} + 8 q^{4} + 4 q^{5} - 12 q^{8} + 8 q^{9} - 2 q^{10} + 4 q^{11} - 6 q^{12} - 2 q^{13} - 2 q^{15} + 4 q^{16} - 4 q^{17} - 34 q^{18} - 4 q^{19} + 8 q^{20} + 4 q^{22} - 8 q^{23} + 24 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.816594 0.577419 0.288710 0.957417i \(-0.406774\pi\)
0.288710 + 0.957417i \(0.406774\pi\)
\(3\) −1.53844 −0.888221 −0.444111 0.895972i \(-0.646480\pi\)
−0.444111 + 0.895972i \(0.646480\pi\)
\(4\) −1.33317 −0.666587
\(5\) 1.00000 0.447214
\(6\) −1.25628 −0.512876
\(7\) 0 0
\(8\) −2.72185 −0.962319
\(9\) −0.633188 −0.211063
\(10\) 0.816594 0.258230
\(11\) −3.03316 −0.914532 −0.457266 0.889330i \(-0.651171\pi\)
−0.457266 + 0.889330i \(0.651171\pi\)
\(12\) 2.05101 0.592077
\(13\) 4.57160 1.26793 0.633967 0.773360i \(-0.281425\pi\)
0.633967 + 0.773360i \(0.281425\pi\)
\(14\) 0 0
\(15\) −1.53844 −0.397225
\(16\) 0.443701 0.110925
\(17\) 1.07689 0.261184 0.130592 0.991436i \(-0.458312\pi\)
0.130592 + 0.991436i \(0.458312\pi\)
\(18\) −0.517058 −0.121872
\(19\) −1.00000 −0.229416
\(20\) −1.33317 −0.298107
\(21\) 0 0
\(22\) −2.47686 −0.528068
\(23\) 4.11005 0.857004 0.428502 0.903541i \(-0.359041\pi\)
0.428502 + 0.903541i \(0.359041\pi\)
\(24\) 4.18742 0.854753
\(25\) 1.00000 0.200000
\(26\) 3.73315 0.732130
\(27\) 5.58946 1.07569
\(28\) 0 0
\(29\) −1.07689 −0.199973 −0.0999866 0.994989i \(-0.531880\pi\)
−0.0999866 + 0.994989i \(0.531880\pi\)
\(30\) −1.25628 −0.229365
\(31\) −5.58946 −1.00390 −0.501948 0.864898i \(-0.667383\pi\)
−0.501948 + 0.864898i \(0.667383\pi\)
\(32\) 5.80602 1.02637
\(33\) 4.66635 0.812307
\(34\) 0.879381 0.150813
\(35\) 0 0
\(36\) 0.844150 0.140692
\(37\) 0.0947438 0.0155758 0.00778789 0.999970i \(-0.497521\pi\)
0.00778789 + 0.999970i \(0.497521\pi\)
\(38\) −0.816594 −0.132469
\(39\) −7.03316 −1.12621
\(40\) −2.72185 −0.430362
\(41\) −10.6663 −1.66580 −0.832902 0.553421i \(-0.813322\pi\)
−0.832902 + 0.553421i \(0.813322\pi\)
\(42\) 0 0
\(43\) 5.03316 0.767550 0.383775 0.923427i \(-0.374624\pi\)
0.383775 + 0.923427i \(0.374624\pi\)
\(44\) 4.04373 0.609615
\(45\) −0.633188 −0.0943901
\(46\) 3.35624 0.494851
\(47\) 12.2995 1.79407 0.897036 0.441958i \(-0.145716\pi\)
0.897036 + 0.441958i \(0.145716\pi\)
\(48\) −0.682609 −0.0985261
\(49\) 0 0
\(50\) 0.816594 0.115484
\(51\) −1.65673 −0.231989
\(52\) −6.09474 −0.845189
\(53\) −4.09474 −0.562456 −0.281228 0.959641i \(-0.590742\pi\)
−0.281228 + 0.959641i \(0.590742\pi\)
\(54\) 4.56432 0.621125
\(55\) −3.03316 −0.408991
\(56\) 0 0
\(57\) 1.53844 0.203772
\(58\) −0.879381 −0.115468
\(59\) 1.39997 0.182261 0.0911304 0.995839i \(-0.470952\pi\)
0.0911304 + 0.995839i \(0.470952\pi\)
\(60\) 2.05101 0.264785
\(61\) 5.69951 0.729747 0.364874 0.931057i \(-0.381112\pi\)
0.364874 + 0.931057i \(0.381112\pi\)
\(62\) −4.56432 −0.579669
\(63\) 0 0
\(64\) 3.85376 0.481720
\(65\) 4.57160 0.567038
\(66\) 3.81051 0.469042
\(67\) 5.28168 0.645260 0.322630 0.946525i \(-0.395433\pi\)
0.322630 + 0.946525i \(0.395433\pi\)
\(68\) −1.43568 −0.174102
\(69\) −6.32308 −0.761210
\(70\) 0 0
\(71\) −5.67692 −0.673726 −0.336863 0.941554i \(-0.609366\pi\)
−0.336863 + 0.941554i \(0.609366\pi\)
\(72\) 1.72344 0.203110
\(73\) −9.07689 −1.06237 −0.531185 0.847256i \(-0.678253\pi\)
−0.531185 + 0.847256i \(0.678253\pi\)
\(74\) 0.0773672 0.00899375
\(75\) −1.53844 −0.177644
\(76\) 1.33317 0.152926
\(77\) 0 0
\(78\) −5.74324 −0.650294
\(79\) −5.39997 −0.607544 −0.303772 0.952745i \(-0.598246\pi\)
−0.303772 + 0.952745i \(0.598246\pi\)
\(80\) 0.443701 0.0496073
\(81\) −6.69951 −0.744390
\(82\) −8.71008 −0.961867
\(83\) −1.95627 −0.214729 −0.107364 0.994220i \(-0.534241\pi\)
−0.107364 + 0.994220i \(0.534241\pi\)
\(84\) 0 0
\(85\) 1.07689 0.116805
\(86\) 4.11005 0.443198
\(87\) 1.65673 0.177621
\(88\) 8.25581 0.880072
\(89\) 2.18949 0.232085 0.116043 0.993244i \(-0.462979\pi\)
0.116043 + 0.993244i \(0.462979\pi\)
\(90\) −0.517058 −0.0545027
\(91\) 0 0
\(92\) −5.47941 −0.571268
\(93\) 8.59907 0.891682
\(94\) 10.0437 1.03593
\(95\) −1.00000 −0.102598
\(96\) −8.93225 −0.911644
\(97\) 2.16106 0.219423 0.109711 0.993963i \(-0.465007\pi\)
0.109711 + 0.993963i \(0.465007\pi\)
\(98\) 0 0
\(99\) 1.92056 0.193024
\(100\) −1.33317 −0.133317
\(101\) −12.5869 −1.25244 −0.626222 0.779645i \(-0.715400\pi\)
−0.626222 + 0.779645i \(0.715400\pi\)
\(102\) −1.35288 −0.133955
\(103\) 6.20479 0.611376 0.305688 0.952132i \(-0.401113\pi\)
0.305688 + 0.952132i \(0.401113\pi\)
\(104\) −12.4432 −1.22016
\(105\) 0 0
\(106\) −3.34374 −0.324773
\(107\) −12.5481 −1.21307 −0.606533 0.795058i \(-0.707440\pi\)
−0.606533 + 0.795058i \(0.707440\pi\)
\(108\) −7.45172 −0.717042
\(109\) −15.8096 −1.51428 −0.757140 0.653252i \(-0.773404\pi\)
−0.757140 + 0.653252i \(0.773404\pi\)
\(110\) −2.47686 −0.236159
\(111\) −0.145758 −0.0138347
\(112\) 0 0
\(113\) −5.49472 −0.516899 −0.258450 0.966025i \(-0.583212\pi\)
−0.258450 + 0.966025i \(0.583212\pi\)
\(114\) 1.25628 0.117662
\(115\) 4.11005 0.383264
\(116\) 1.43568 0.133300
\(117\) −2.89469 −0.267614
\(118\) 1.14321 0.105241
\(119\) 0 0
\(120\) 4.18742 0.382257
\(121\) −1.79994 −0.163631
\(122\) 4.65418 0.421370
\(123\) 16.4096 1.47960
\(124\) 7.45172 0.669184
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.61533 −0.764487 −0.382244 0.924062i \(-0.624848\pi\)
−0.382244 + 0.924062i \(0.624848\pi\)
\(128\) −8.46509 −0.748215
\(129\) −7.74324 −0.681754
\(130\) 3.73315 0.327419
\(131\) 2.15378 0.188176 0.0940882 0.995564i \(-0.470006\pi\)
0.0940882 + 0.995564i \(0.470006\pi\)
\(132\) −6.22105 −0.541473
\(133\) 0 0
\(134\) 4.31299 0.372586
\(135\) 5.58946 0.481064
\(136\) −2.93113 −0.251342
\(137\) 2.18949 0.187061 0.0935303 0.995616i \(-0.470185\pi\)
0.0935303 + 0.995616i \(0.470185\pi\)
\(138\) −5.16339 −0.439537
\(139\) −22.5196 −1.91009 −0.955045 0.296460i \(-0.904194\pi\)
−0.955045 + 0.296460i \(0.904194\pi\)
\(140\) 0 0
\(141\) −18.9222 −1.59353
\(142\) −4.63574 −0.389022
\(143\) −13.8664 −1.15957
\(144\) −0.280946 −0.0234122
\(145\) −1.07689 −0.0894308
\(146\) −7.41213 −0.613433
\(147\) 0 0
\(148\) −0.126310 −0.0103826
\(149\) 9.78697 0.801780 0.400890 0.916126i \(-0.368701\pi\)
0.400890 + 0.916126i \(0.368701\pi\)
\(150\) −1.25628 −0.102575
\(151\) 5.87683 0.478250 0.239125 0.970989i \(-0.423139\pi\)
0.239125 + 0.970989i \(0.423139\pi\)
\(152\) 2.72185 0.220771
\(153\) −0.681874 −0.0551262
\(154\) 0 0
\(155\) −5.58946 −0.448956
\(156\) 9.37643 0.750715
\(157\) −10.1895 −0.813210 −0.406605 0.913604i \(-0.633287\pi\)
−0.406605 + 0.913604i \(0.633287\pi\)
\(158\) −4.40959 −0.350808
\(159\) 6.29954 0.499586
\(160\) 5.80602 0.459007
\(161\) 0 0
\(162\) −5.47078 −0.429825
\(163\) −10.3659 −0.811916 −0.405958 0.913892i \(-0.633062\pi\)
−0.405958 + 0.913892i \(0.633062\pi\)
\(164\) 14.2201 1.11040
\(165\) 4.66635 0.363275
\(166\) −1.59748 −0.123988
\(167\) 15.6048 1.20753 0.603766 0.797161i \(-0.293666\pi\)
0.603766 + 0.797161i \(0.293666\pi\)
\(168\) 0 0
\(169\) 7.89956 0.607659
\(170\) 0.879381 0.0674455
\(171\) 0.633188 0.0484211
\(172\) −6.71008 −0.511639
\(173\) −0.571604 −0.0434583 −0.0217291 0.999764i \(-0.506917\pi\)
−0.0217291 + 0.999764i \(0.506917\pi\)
\(174\) 1.35288 0.102562
\(175\) 0 0
\(176\) −1.34582 −0.101445
\(177\) −2.15378 −0.161888
\(178\) 1.78792 0.134010
\(179\) 24.8864 1.86010 0.930050 0.367433i \(-0.119763\pi\)
0.930050 + 0.367433i \(0.119763\pi\)
\(180\) 0.844150 0.0629192
\(181\) −6.95372 −0.516866 −0.258433 0.966029i \(-0.583206\pi\)
−0.258433 + 0.966029i \(0.583206\pi\)
\(182\) 0 0
\(183\) −8.76838 −0.648177
\(184\) −11.1869 −0.824712
\(185\) 0.0947438 0.00696570
\(186\) 7.02195 0.514875
\(187\) −3.26638 −0.238861
\(188\) −16.3974 −1.19590
\(189\) 0 0
\(190\) −0.816594 −0.0592420
\(191\) −3.91254 −0.283102 −0.141551 0.989931i \(-0.545209\pi\)
−0.141551 + 0.989931i \(0.545209\pi\)
\(192\) −5.92880 −0.427874
\(193\) −9.20734 −0.662759 −0.331379 0.943498i \(-0.607514\pi\)
−0.331379 + 0.943498i \(0.607514\pi\)
\(194\) 1.76471 0.126699
\(195\) −7.03316 −0.503655
\(196\) 0 0
\(197\) −3.84622 −0.274032 −0.137016 0.990569i \(-0.543751\pi\)
−0.137016 + 0.990569i \(0.543751\pi\)
\(198\) 1.56832 0.111456
\(199\) 18.2864 1.29629 0.648145 0.761517i \(-0.275545\pi\)
0.648145 + 0.761517i \(0.275545\pi\)
\(200\) −2.72185 −0.192464
\(201\) −8.12557 −0.573134
\(202\) −10.2784 −0.723185
\(203\) 0 0
\(204\) 2.20871 0.154641
\(205\) −10.6663 −0.744970
\(206\) 5.06680 0.353020
\(207\) −2.60243 −0.180882
\(208\) 2.02842 0.140646
\(209\) 3.03316 0.209808
\(210\) 0 0
\(211\) −19.2970 −1.32846 −0.664230 0.747529i \(-0.731240\pi\)
−0.664230 + 0.747529i \(0.731240\pi\)
\(212\) 5.45901 0.374926
\(213\) 8.73362 0.598418
\(214\) −10.2467 −0.700448
\(215\) 5.03316 0.343259
\(216\) −15.2137 −1.03516
\(217\) 0 0
\(218\) −12.9100 −0.874375
\(219\) 13.9643 0.943619
\(220\) 4.04373 0.272628
\(221\) 4.92311 0.331164
\(222\) −0.119025 −0.00798844
\(223\) −0.615334 −0.0412058 −0.0206029 0.999788i \(-0.506559\pi\)
−0.0206029 + 0.999788i \(0.506559\pi\)
\(224\) 0 0
\(225\) −0.633188 −0.0422126
\(226\) −4.48695 −0.298468
\(227\) −17.4712 −1.15960 −0.579801 0.814758i \(-0.696870\pi\)
−0.579801 + 0.814758i \(0.696870\pi\)
\(228\) −2.05101 −0.135832
\(229\) −9.69951 −0.640962 −0.320481 0.947255i \(-0.603844\pi\)
−0.320481 + 0.947255i \(0.603844\pi\)
\(230\) 3.35624 0.221304
\(231\) 0 0
\(232\) 2.93113 0.192438
\(233\) −8.15378 −0.534172 −0.267086 0.963673i \(-0.586061\pi\)
−0.267086 + 0.963673i \(0.586061\pi\)
\(234\) −2.36378 −0.154525
\(235\) 12.2995 0.802333
\(236\) −1.86641 −0.121493
\(237\) 8.30756 0.539634
\(238\) 0 0
\(239\) 24.5991 1.59118 0.795591 0.605834i \(-0.207161\pi\)
0.795591 + 0.605834i \(0.207161\pi\)
\(240\) −0.682609 −0.0440622
\(241\) −25.7738 −1.66024 −0.830120 0.557585i \(-0.811728\pi\)
−0.830120 + 0.557585i \(0.811728\pi\)
\(242\) −1.46982 −0.0944838
\(243\) −6.46156 −0.414509
\(244\) −7.59844 −0.486440
\(245\) 0 0
\(246\) 13.4000 0.854351
\(247\) −4.57160 −0.290884
\(248\) 15.2137 0.966069
\(249\) 3.00961 0.190727
\(250\) 0.816594 0.0516459
\(251\) −12.5991 −0.795246 −0.397623 0.917549i \(-0.630165\pi\)
−0.397623 + 0.917549i \(0.630165\pi\)
\(252\) 0 0
\(253\) −12.4664 −0.783758
\(254\) −7.03523 −0.441430
\(255\) −1.65673 −0.103749
\(256\) −14.6201 −0.913754
\(257\) −0.182203 −0.0113655 −0.00568275 0.999984i \(-0.501809\pi\)
−0.00568275 + 0.999984i \(0.501809\pi\)
\(258\) −6.32308 −0.393658
\(259\) 0 0
\(260\) −6.09474 −0.377980
\(261\) 0.681874 0.0422069
\(262\) 1.75876 0.108657
\(263\) 7.37643 0.454850 0.227425 0.973796i \(-0.426969\pi\)
0.227425 + 0.973796i \(0.426969\pi\)
\(264\) −12.7011 −0.781699
\(265\) −4.09474 −0.251538
\(266\) 0 0
\(267\) −3.36841 −0.206143
\(268\) −7.04140 −0.430122
\(269\) −4.70206 −0.286689 −0.143345 0.989673i \(-0.545786\pi\)
−0.143345 + 0.989673i \(0.545786\pi\)
\(270\) 4.56432 0.277776
\(271\) −9.92056 −0.602631 −0.301316 0.953524i \(-0.597426\pi\)
−0.301316 + 0.953524i \(0.597426\pi\)
\(272\) 0.477817 0.0289719
\(273\) 0 0
\(274\) 1.78792 0.108012
\(275\) −3.03316 −0.182906
\(276\) 8.42977 0.507412
\(277\) −22.6297 −1.35969 −0.679843 0.733358i \(-0.737952\pi\)
−0.679843 + 0.733358i \(0.737952\pi\)
\(278\) −18.3894 −1.10292
\(279\) 3.53918 0.211885
\(280\) 0 0
\(281\) −3.95386 −0.235868 −0.117934 0.993021i \(-0.537627\pi\)
−0.117934 + 0.993021i \(0.537627\pi\)
\(282\) −15.4517 −0.920137
\(283\) 13.0638 0.776561 0.388280 0.921541i \(-0.373069\pi\)
0.388280 + 0.921541i \(0.373069\pi\)
\(284\) 7.56832 0.449097
\(285\) 1.53844 0.0911296
\(286\) −11.3232 −0.669556
\(287\) 0 0
\(288\) −3.67631 −0.216628
\(289\) −15.8403 −0.931783
\(290\) −0.879381 −0.0516391
\(291\) −3.32468 −0.194896
\(292\) 12.1011 0.708162
\(293\) 9.69463 0.566366 0.283183 0.959066i \(-0.408610\pi\)
0.283183 + 0.959066i \(0.408610\pi\)
\(294\) 0 0
\(295\) 1.39997 0.0815095
\(296\) −0.257878 −0.0149889
\(297\) −16.9537 −0.983755
\(298\) 7.99198 0.462963
\(299\) 18.7895 1.08663
\(300\) 2.05101 0.118415
\(301\) 0 0
\(302\) 4.79899 0.276151
\(303\) 19.3643 1.11245
\(304\) −0.443701 −0.0254480
\(305\) 5.69951 0.326353
\(306\) −0.556814 −0.0318309
\(307\) 28.5481 1.62932 0.814662 0.579936i \(-0.196923\pi\)
0.814662 + 0.579936i \(0.196923\pi\)
\(308\) 0 0
\(309\) −9.54573 −0.543038
\(310\) −4.56432 −0.259236
\(311\) −25.4070 −1.44070 −0.720350 0.693610i \(-0.756019\pi\)
−0.720350 + 0.693610i \(0.756019\pi\)
\(312\) 19.1432 1.08377
\(313\) −16.7999 −0.949589 −0.474794 0.880097i \(-0.657478\pi\)
−0.474794 + 0.880097i \(0.657478\pi\)
\(314\) −8.32068 −0.469563
\(315\) 0 0
\(316\) 7.19910 0.404981
\(317\) −31.7505 −1.78329 −0.891643 0.452738i \(-0.850447\pi\)
−0.891643 + 0.452738i \(0.850447\pi\)
\(318\) 5.14416 0.288470
\(319\) 3.26638 0.182882
\(320\) 3.85376 0.215432
\(321\) 19.3045 1.07747
\(322\) 0 0
\(323\) −1.07689 −0.0599197
\(324\) 8.93161 0.496201
\(325\) 4.57160 0.253587
\(326\) −8.46470 −0.468816
\(327\) 24.3221 1.34502
\(328\) 29.0322 1.60304
\(329\) 0 0
\(330\) 3.81051 0.209762
\(331\) −9.96429 −0.547687 −0.273843 0.961774i \(-0.588295\pi\)
−0.273843 + 0.961774i \(0.588295\pi\)
\(332\) 2.60805 0.143135
\(333\) −0.0599906 −0.00328747
\(334\) 12.7428 0.697253
\(335\) 5.28168 0.288569
\(336\) 0 0
\(337\) 23.1918 1.26334 0.631669 0.775238i \(-0.282370\pi\)
0.631669 + 0.775238i \(0.282370\pi\)
\(338\) 6.45074 0.350874
\(339\) 8.45331 0.459121
\(340\) −1.43568 −0.0778607
\(341\) 16.9537 0.918095
\(342\) 0.517058 0.0279593
\(343\) 0 0
\(344\) −13.6995 −0.738628
\(345\) −6.32308 −0.340423
\(346\) −0.466769 −0.0250936
\(347\) 21.1352 1.13460 0.567298 0.823512i \(-0.307989\pi\)
0.567298 + 0.823512i \(0.307989\pi\)
\(348\) −2.20871 −0.118400
\(349\) 5.04628 0.270121 0.135061 0.990837i \(-0.456877\pi\)
0.135061 + 0.990837i \(0.456877\pi\)
\(350\) 0 0
\(351\) 25.5528 1.36391
\(352\) −17.6106 −0.938648
\(353\) −12.5634 −0.668680 −0.334340 0.942452i \(-0.608513\pi\)
−0.334340 + 0.942452i \(0.608513\pi\)
\(354\) −1.75876 −0.0934772
\(355\) −5.67692 −0.301300
\(356\) −2.91897 −0.154705
\(357\) 0 0
\(358\) 20.3221 1.07406
\(359\) −17.6534 −0.931709 −0.465855 0.884861i \(-0.654253\pi\)
−0.465855 + 0.884861i \(0.654253\pi\)
\(360\) 1.72344 0.0908335
\(361\) 1.00000 0.0526316
\(362\) −5.67837 −0.298448
\(363\) 2.76911 0.145341
\(364\) 0 0
\(365\) −9.07689 −0.475106
\(366\) −7.16021 −0.374270
\(367\) −4.43409 −0.231457 −0.115729 0.993281i \(-0.536920\pi\)
−0.115729 + 0.993281i \(0.536920\pi\)
\(368\) 1.82363 0.0950634
\(369\) 6.75381 0.351589
\(370\) 0.0773672 0.00402213
\(371\) 0 0
\(372\) −11.4641 −0.594384
\(373\) −20.8735 −1.08079 −0.540396 0.841411i \(-0.681725\pi\)
−0.540396 + 0.841411i \(0.681725\pi\)
\(374\) −2.66730 −0.137923
\(375\) −1.53844 −0.0794449
\(376\) −33.4775 −1.72647
\(377\) −4.92311 −0.253553
\(378\) 0 0
\(379\) −6.79994 −0.349290 −0.174645 0.984632i \(-0.555878\pi\)
−0.174645 + 0.984632i \(0.555878\pi\)
\(380\) 1.33317 0.0683904
\(381\) 13.2542 0.679034
\(382\) −3.19496 −0.163468
\(383\) 10.9078 0.557363 0.278681 0.960384i \(-0.410103\pi\)
0.278681 + 0.960384i \(0.410103\pi\)
\(384\) 13.0231 0.664581
\(385\) 0 0
\(386\) −7.51866 −0.382690
\(387\) −3.18694 −0.162001
\(388\) −2.88107 −0.146264
\(389\) 20.9326 1.06132 0.530662 0.847584i \(-0.321943\pi\)
0.530662 + 0.847584i \(0.321943\pi\)
\(390\) −5.74324 −0.290820
\(391\) 4.42607 0.223836
\(392\) 0 0
\(393\) −3.31347 −0.167142
\(394\) −3.14080 −0.158231
\(395\) −5.39997 −0.271702
\(396\) −2.56044 −0.128667
\(397\) −13.1221 −0.658578 −0.329289 0.944229i \(-0.606809\pi\)
−0.329289 + 0.944229i \(0.606809\pi\)
\(398\) 14.9326 0.748503
\(399\) 0 0
\(400\) 0.443701 0.0221850
\(401\) −11.5528 −0.576919 −0.288459 0.957492i \(-0.593143\pi\)
−0.288459 + 0.957492i \(0.593143\pi\)
\(402\) −6.63530 −0.330939
\(403\) −25.5528 −1.27288
\(404\) 16.7805 0.834863
\(405\) −6.69951 −0.332901
\(406\) 0 0
\(407\) −0.287373 −0.0142445
\(408\) 4.50938 0.223248
\(409\) 18.9433 0.936686 0.468343 0.883547i \(-0.344851\pi\)
0.468343 + 0.883547i \(0.344851\pi\)
\(410\) −8.71008 −0.430160
\(411\) −3.36841 −0.166151
\(412\) −8.27207 −0.407536
\(413\) 0 0
\(414\) −2.12513 −0.104445
\(415\) −1.95627 −0.0960295
\(416\) 26.5428 1.30137
\(417\) 34.6452 1.69658
\(418\) 2.47686 0.121147
\(419\) −27.2664 −1.33205 −0.666025 0.745930i \(-0.732006\pi\)
−0.666025 + 0.745930i \(0.732006\pi\)
\(420\) 0 0
\(421\) 6.66635 0.324898 0.162449 0.986717i \(-0.448061\pi\)
0.162449 + 0.986717i \(0.448061\pi\)
\(422\) −15.7578 −0.767078
\(423\) −7.78792 −0.378662
\(424\) 11.1453 0.541263
\(425\) 1.07689 0.0522368
\(426\) 7.13183 0.345538
\(427\) 0 0
\(428\) 16.7287 0.808614
\(429\) 21.3327 1.02995
\(430\) 4.11005 0.198204
\(431\) −32.4548 −1.56329 −0.781646 0.623723i \(-0.785619\pi\)
−0.781646 + 0.623723i \(0.785619\pi\)
\(432\) 2.48005 0.119321
\(433\) −33.8168 −1.62513 −0.812567 0.582868i \(-0.801930\pi\)
−0.812567 + 0.582868i \(0.801930\pi\)
\(434\) 0 0
\(435\) 1.65673 0.0794343
\(436\) 21.0769 1.00940
\(437\) −4.11005 −0.196610
\(438\) 11.4032 0.544864
\(439\) 27.8453 1.32898 0.664491 0.747296i \(-0.268648\pi\)
0.664491 + 0.747296i \(0.268648\pi\)
\(440\) 8.25581 0.393580
\(441\) 0 0
\(442\) 4.02018 0.191221
\(443\) 22.7754 1.08209 0.541047 0.840992i \(-0.318028\pi\)
0.541047 + 0.840992i \(0.318028\pi\)
\(444\) 0.194321 0.00922206
\(445\) 2.18949 0.103792
\(446\) −0.502478 −0.0237930
\(447\) −15.0567 −0.712158
\(448\) 0 0
\(449\) 24.8507 1.17278 0.586389 0.810029i \(-0.300549\pi\)
0.586389 + 0.810029i \(0.300549\pi\)
\(450\) −0.517058 −0.0243743
\(451\) 32.3527 1.52343
\(452\) 7.32541 0.344558
\(453\) −9.04118 −0.424792
\(454\) −14.2669 −0.669577
\(455\) 0 0
\(456\) −4.18742 −0.196094
\(457\) −7.33270 −0.343009 −0.171505 0.985183i \(-0.554863\pi\)
−0.171505 + 0.985183i \(0.554863\pi\)
\(458\) −7.92056 −0.370104
\(459\) 6.01923 0.280953
\(460\) −5.47941 −0.255479
\(461\) −10.3076 −0.480071 −0.240035 0.970764i \(-0.577159\pi\)
−0.240035 + 0.970764i \(0.577159\pi\)
\(462\) 0 0
\(463\) 7.80249 0.362613 0.181306 0.983427i \(-0.441967\pi\)
0.181306 + 0.983427i \(0.441967\pi\)
\(464\) −0.477817 −0.0221821
\(465\) 8.59907 0.398772
\(466\) −6.65833 −0.308441
\(467\) 7.37643 0.341340 0.170670 0.985328i \(-0.445407\pi\)
0.170670 + 0.985328i \(0.445407\pi\)
\(468\) 3.85912 0.178388
\(469\) 0 0
\(470\) 10.0437 0.463283
\(471\) 15.6760 0.722310
\(472\) −3.81051 −0.175393
\(473\) −15.2664 −0.701949
\(474\) 6.78390 0.311595
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 2.59274 0.118714
\(478\) 20.0875 0.918779
\(479\) 16.1458 0.737719 0.368859 0.929485i \(-0.379748\pi\)
0.368859 + 0.929485i \(0.379748\pi\)
\(480\) −8.93225 −0.407699
\(481\) 0.433131 0.0197491
\(482\) −21.0468 −0.958654
\(483\) 0 0
\(484\) 2.39964 0.109074
\(485\) 2.16106 0.0981288
\(486\) −5.27647 −0.239345
\(487\) −8.40566 −0.380897 −0.190448 0.981697i \(-0.560994\pi\)
−0.190448 + 0.981697i \(0.560994\pi\)
\(488\) −15.5132 −0.702250
\(489\) 15.9473 0.721162
\(490\) 0 0
\(491\) −36.0855 −1.62852 −0.814259 0.580502i \(-0.802856\pi\)
−0.814259 + 0.580502i \(0.802856\pi\)
\(492\) −21.8768 −0.986284
\(493\) −1.15969 −0.0522298
\(494\) −3.73315 −0.167962
\(495\) 1.92056 0.0863228
\(496\) −2.48005 −0.111357
\(497\) 0 0
\(498\) 2.45763 0.110129
\(499\) −3.30035 −0.147744 −0.0738720 0.997268i \(-0.523536\pi\)
−0.0738720 + 0.997268i \(0.523536\pi\)
\(500\) −1.33317 −0.0596214
\(501\) −24.0071 −1.07256
\(502\) −10.2883 −0.459191
\(503\) −3.53530 −0.157631 −0.0788157 0.996889i \(-0.525114\pi\)
−0.0788157 + 0.996889i \(0.525114\pi\)
\(504\) 0 0
\(505\) −12.5869 −0.560110
\(506\) −10.1800 −0.452557
\(507\) −12.1530 −0.539736
\(508\) 11.4857 0.509597
\(509\) −22.4096 −0.993287 −0.496644 0.867955i \(-0.665434\pi\)
−0.496644 + 0.867955i \(0.665434\pi\)
\(510\) −1.35288 −0.0599065
\(511\) 0 0
\(512\) 4.99151 0.220596
\(513\) −5.58946 −0.246781
\(514\) −0.148786 −0.00656266
\(515\) 6.20479 0.273416
\(516\) 10.3231 0.454448
\(517\) −37.3065 −1.64074
\(518\) 0 0
\(519\) 0.879381 0.0386006
\(520\) −12.4432 −0.545671
\(521\) −34.4402 −1.50885 −0.754426 0.656385i \(-0.772085\pi\)
−0.754426 + 0.656385i \(0.772085\pi\)
\(522\) 0.556814 0.0243711
\(523\) 30.4451 1.33127 0.665635 0.746277i \(-0.268161\pi\)
0.665635 + 0.746277i \(0.268161\pi\)
\(524\) −2.87136 −0.125436
\(525\) 0 0
\(526\) 6.02355 0.262639
\(527\) −6.01923 −0.262202
\(528\) 2.07046 0.0901053
\(529\) −6.10750 −0.265543
\(530\) −3.34374 −0.145243
\(531\) −0.886445 −0.0384685
\(532\) 0 0
\(533\) −48.7623 −2.11213
\(534\) −2.75062 −0.119031
\(535\) −12.5481 −0.542500
\(536\) −14.3759 −0.620946
\(537\) −38.2864 −1.65218
\(538\) −3.83967 −0.165540
\(539\) 0 0
\(540\) −7.45172 −0.320671
\(541\) −12.2794 −0.527931 −0.263965 0.964532i \(-0.585030\pi\)
−0.263965 + 0.964532i \(0.585030\pi\)
\(542\) −8.10107 −0.347971
\(543\) 10.6979 0.459091
\(544\) 6.25244 0.268071
\(545\) −15.8096 −0.677207
\(546\) 0 0
\(547\) 0.250928 0.0107289 0.00536446 0.999986i \(-0.498292\pi\)
0.00536446 + 0.999986i \(0.498292\pi\)
\(548\) −2.91897 −0.124692
\(549\) −3.60886 −0.154022
\(550\) −2.47686 −0.105614
\(551\) 1.07689 0.0458770
\(552\) 17.2105 0.732527
\(553\) 0 0
\(554\) −18.4793 −0.785109
\(555\) −0.145758 −0.00618708
\(556\) 30.0226 1.27324
\(557\) 1.67596 0.0710128 0.0355064 0.999369i \(-0.488696\pi\)
0.0355064 + 0.999369i \(0.488696\pi\)
\(558\) 2.89007 0.122347
\(559\) 23.0096 0.973203
\(560\) 0 0
\(561\) 5.02514 0.212162
\(562\) −3.22870 −0.136195
\(563\) −20.6605 −0.870737 −0.435368 0.900252i \(-0.643382\pi\)
−0.435368 + 0.900252i \(0.643382\pi\)
\(564\) 25.2265 1.06223
\(565\) −5.49472 −0.231164
\(566\) 10.6678 0.448401
\(567\) 0 0
\(568\) 15.4517 0.648340
\(569\) 40.9673 1.71744 0.858720 0.512445i \(-0.171260\pi\)
0.858720 + 0.512445i \(0.171260\pi\)
\(570\) 1.25628 0.0526200
\(571\) 24.2070 1.01303 0.506515 0.862231i \(-0.330933\pi\)
0.506515 + 0.862231i \(0.330933\pi\)
\(572\) 18.4863 0.772952
\(573\) 6.01923 0.251457
\(574\) 0 0
\(575\) 4.11005 0.171401
\(576\) −2.44016 −0.101673
\(577\) −40.2864 −1.67715 −0.838573 0.544790i \(-0.816609\pi\)
−0.838573 + 0.544790i \(0.816609\pi\)
\(578\) −12.9351 −0.538029
\(579\) 14.1650 0.588677
\(580\) 1.43568 0.0596134
\(581\) 0 0
\(582\) −2.71491 −0.112537
\(583\) 12.4200 0.514384
\(584\) 24.7059 1.02234
\(585\) −2.89469 −0.119681
\(586\) 7.91658 0.327031
\(587\) 34.7754 1.43534 0.717668 0.696385i \(-0.245210\pi\)
0.717668 + 0.696385i \(0.245210\pi\)
\(588\) 0 0
\(589\) 5.58946 0.230310
\(590\) 1.14321 0.0470651
\(591\) 5.91720 0.243401
\(592\) 0.0420379 0.00172775
\(593\) 35.0864 1.44082 0.720412 0.693546i \(-0.243953\pi\)
0.720412 + 0.693546i \(0.243953\pi\)
\(594\) −13.8443 −0.568039
\(595\) 0 0
\(596\) −13.0477 −0.534456
\(597\) −28.1326 −1.15139
\(598\) 15.3434 0.627439
\(599\) 30.8201 1.25928 0.629638 0.776889i \(-0.283203\pi\)
0.629638 + 0.776889i \(0.283203\pi\)
\(600\) 4.18742 0.170951
\(601\) 7.10654 0.289882 0.144941 0.989440i \(-0.453701\pi\)
0.144941 + 0.989440i \(0.453701\pi\)
\(602\) 0 0
\(603\) −3.34430 −0.136190
\(604\) −7.83484 −0.318795
\(605\) −1.79994 −0.0731781
\(606\) 15.8127 0.642349
\(607\) −2.01531 −0.0817987 −0.0408994 0.999163i \(-0.513022\pi\)
−0.0408994 + 0.999163i \(0.513022\pi\)
\(608\) −5.80602 −0.235465
\(609\) 0 0
\(610\) 4.65418 0.188442
\(611\) 56.2286 2.27477
\(612\) 0.909056 0.0367464
\(613\) −11.6096 −0.468909 −0.234455 0.972127i \(-0.575330\pi\)
−0.234455 + 0.972127i \(0.575330\pi\)
\(614\) 23.3122 0.940803
\(615\) 16.4096 0.661698
\(616\) 0 0
\(617\) 12.4307 0.500442 0.250221 0.968189i \(-0.419497\pi\)
0.250221 + 0.968189i \(0.419497\pi\)
\(618\) −7.79499 −0.313560
\(619\) −3.85424 −0.154915 −0.0774575 0.996996i \(-0.524680\pi\)
−0.0774575 + 0.996996i \(0.524680\pi\)
\(620\) 7.45172 0.299268
\(621\) 22.9729 0.921873
\(622\) −20.7472 −0.831888
\(623\) 0 0
\(624\) −3.12062 −0.124925
\(625\) 1.00000 0.0400000
\(626\) −13.7187 −0.548311
\(627\) −4.66635 −0.186356
\(628\) 13.5844 0.542075
\(629\) 0.102029 0.00406814
\(630\) 0 0
\(631\) −16.8794 −0.671958 −0.335979 0.941870i \(-0.609067\pi\)
−0.335979 + 0.941870i \(0.609067\pi\)
\(632\) 14.6979 0.584652
\(633\) 29.6873 1.17997
\(634\) −25.9273 −1.02970
\(635\) −8.61533 −0.341889
\(636\) −8.39838 −0.333017
\(637\) 0 0
\(638\) 2.66730 0.105600
\(639\) 3.59456 0.142199
\(640\) −8.46509 −0.334612
\(641\) 43.4855 1.71757 0.858787 0.512332i \(-0.171218\pi\)
0.858787 + 0.512332i \(0.171218\pi\)
\(642\) 15.7639 0.622153
\(643\) −11.0689 −0.436514 −0.218257 0.975891i \(-0.570037\pi\)
−0.218257 + 0.975891i \(0.570037\pi\)
\(644\) 0 0
\(645\) −7.74324 −0.304890
\(646\) −0.879381 −0.0345988
\(647\) −5.61766 −0.220853 −0.110427 0.993884i \(-0.535222\pi\)
−0.110427 + 0.993884i \(0.535222\pi\)
\(648\) 18.2351 0.716341
\(649\) −4.24634 −0.166683
\(650\) 3.73315 0.146426
\(651\) 0 0
\(652\) 13.8195 0.541213
\(653\) 44.5211 1.74224 0.871122 0.491066i \(-0.163393\pi\)
0.871122 + 0.491066i \(0.163393\pi\)
\(654\) 19.8613 0.776639
\(655\) 2.15378 0.0841551
\(656\) −4.73267 −0.184780
\(657\) 5.74738 0.224227
\(658\) 0 0
\(659\) −6.89154 −0.268456 −0.134228 0.990950i \(-0.542856\pi\)
−0.134228 + 0.990950i \(0.542856\pi\)
\(660\) −6.22105 −0.242154
\(661\) 44.3989 1.72692 0.863458 0.504421i \(-0.168294\pi\)
0.863458 + 0.504421i \(0.168294\pi\)
\(662\) −8.13678 −0.316245
\(663\) −7.57393 −0.294147
\(664\) 5.32468 0.206637
\(665\) 0 0
\(666\) −0.0489880 −0.00189825
\(667\) −4.42607 −0.171378
\(668\) −20.8039 −0.804926
\(669\) 0.946657 0.0365999
\(670\) 4.31299 0.166625
\(671\) −17.2875 −0.667377
\(672\) 0 0
\(673\) 38.6214 1.48875 0.744374 0.667763i \(-0.232748\pi\)
0.744374 + 0.667763i \(0.232748\pi\)
\(674\) 18.9383 0.729476
\(675\) 5.58946 0.215138
\(676\) −10.5315 −0.405057
\(677\) −43.3917 −1.66768 −0.833840 0.552006i \(-0.813862\pi\)
−0.833840 + 0.552006i \(0.813862\pi\)
\(678\) 6.90293 0.265105
\(679\) 0 0
\(680\) −2.93113 −0.112404
\(681\) 26.8784 1.02998
\(682\) 13.8443 0.530126
\(683\) −34.7123 −1.32823 −0.664114 0.747631i \(-0.731191\pi\)
−0.664114 + 0.747631i \(0.731191\pi\)
\(684\) −0.844150 −0.0322769
\(685\) 2.18949 0.0836560
\(686\) 0 0
\(687\) 14.9222 0.569316
\(688\) 2.23322 0.0851406
\(689\) −18.7195 −0.713158
\(690\) −5.16339 −0.196567
\(691\) −2.94570 −0.112060 −0.0560299 0.998429i \(-0.517844\pi\)
−0.0560299 + 0.998429i \(0.517844\pi\)
\(692\) 0.762048 0.0289687
\(693\) 0 0
\(694\) 17.2589 0.655138
\(695\) −22.5196 −0.854218
\(696\) −4.50938 −0.170928
\(697\) −11.4865 −0.435081
\(698\) 4.12076 0.155973
\(699\) 12.5441 0.474463
\(700\) 0 0
\(701\) 18.5920 0.702210 0.351105 0.936336i \(-0.385806\pi\)
0.351105 + 0.936336i \(0.385806\pi\)
\(702\) 20.8663 0.787546
\(703\) −0.0947438 −0.00357333
\(704\) −11.6891 −0.440549
\(705\) −18.9222 −0.712650
\(706\) −10.2592 −0.386109
\(707\) 0 0
\(708\) 2.87136 0.107912
\(709\) 39.8443 1.49638 0.748192 0.663482i \(-0.230922\pi\)
0.748192 + 0.663482i \(0.230922\pi\)
\(710\) −4.63574 −0.173976
\(711\) 3.41920 0.128230
\(712\) −5.95946 −0.223340
\(713\) −22.9729 −0.860344
\(714\) 0 0
\(715\) −13.8664 −0.518574
\(716\) −33.1780 −1.23992
\(717\) −37.8443 −1.41332
\(718\) −14.4156 −0.537987
\(719\) −21.2321 −0.791824 −0.395912 0.918288i \(-0.629572\pi\)
−0.395912 + 0.918288i \(0.629572\pi\)
\(720\) −0.280946 −0.0104702
\(721\) 0 0
\(722\) 0.816594 0.0303905
\(723\) 39.6516 1.47466
\(724\) 9.27052 0.344536
\(725\) −1.07689 −0.0399947
\(726\) 2.26124 0.0839225
\(727\) 49.1658 1.82346 0.911729 0.410792i \(-0.134748\pi\)
0.911729 + 0.410792i \(0.134748\pi\)
\(728\) 0 0
\(729\) 30.0393 1.11257
\(730\) −7.41213 −0.274335
\(731\) 5.42015 0.200472
\(732\) 11.6898 0.432066
\(733\) −1.60498 −0.0592815 −0.0296407 0.999561i \(-0.509436\pi\)
−0.0296407 + 0.999561i \(0.509436\pi\)
\(734\) −3.62085 −0.133648
\(735\) 0 0
\(736\) 23.8630 0.879603
\(737\) −16.0202 −0.590111
\(738\) 5.51512 0.203014
\(739\) 8.13264 0.299164 0.149582 0.988749i \(-0.452207\pi\)
0.149582 + 0.988749i \(0.452207\pi\)
\(740\) −0.126310 −0.00464324
\(741\) 7.03316 0.258370
\(742\) 0 0
\(743\) −42.9261 −1.57481 −0.787403 0.616439i \(-0.788575\pi\)
−0.787403 + 0.616439i \(0.788575\pi\)
\(744\) −23.4054 −0.858083
\(745\) 9.78697 0.358567
\(746\) −17.0452 −0.624070
\(747\) 1.23869 0.0453212
\(748\) 4.35465 0.159222
\(749\) 0 0
\(750\) −1.25628 −0.0458730
\(751\) 4.05685 0.148037 0.0740183 0.997257i \(-0.476418\pi\)
0.0740183 + 0.997257i \(0.476418\pi\)
\(752\) 5.45731 0.199008
\(753\) 19.3830 0.706355
\(754\) −4.02018 −0.146406
\(755\) 5.87683 0.213880
\(756\) 0 0
\(757\) 22.6151 0.821960 0.410980 0.911644i \(-0.365187\pi\)
0.410980 + 0.911644i \(0.365187\pi\)
\(758\) −5.55279 −0.201687
\(759\) 19.1789 0.696151
\(760\) 2.72185 0.0987319
\(761\) 41.3609 1.49933 0.749666 0.661817i \(-0.230214\pi\)
0.749666 + 0.661817i \(0.230214\pi\)
\(762\) 10.8233 0.392087
\(763\) 0 0
\(764\) 5.21610 0.188712
\(765\) −0.681874 −0.0246532
\(766\) 8.90725 0.321832
\(767\) 6.40011 0.231095
\(768\) 22.4922 0.811616
\(769\) −17.9196 −0.646197 −0.323099 0.946365i \(-0.604725\pi\)
−0.323099 + 0.946365i \(0.604725\pi\)
\(770\) 0 0
\(771\) 0.280309 0.0100951
\(772\) 12.2750 0.441787
\(773\) 21.9043 0.787843 0.393921 0.919144i \(-0.371118\pi\)
0.393921 + 0.919144i \(0.371118\pi\)
\(774\) −2.60243 −0.0935426
\(775\) −5.58946 −0.200779
\(776\) −5.88209 −0.211155
\(777\) 0 0
\(778\) 17.0934 0.612829
\(779\) 10.6663 0.382162
\(780\) 9.37643 0.335730
\(781\) 17.2190 0.616144
\(782\) 3.61430 0.129247
\(783\) −6.01923 −0.215110
\(784\) 0 0
\(785\) −10.1895 −0.363678
\(786\) −2.70576 −0.0965112
\(787\) 31.6354 1.12768 0.563840 0.825884i \(-0.309324\pi\)
0.563840 + 0.825884i \(0.309324\pi\)
\(788\) 5.12768 0.182666
\(789\) −11.3482 −0.404007
\(790\) −4.40959 −0.156886
\(791\) 0 0
\(792\) −5.22748 −0.185750
\(793\) 26.0559 0.925272
\(794\) −10.7154 −0.380275
\(795\) 6.29954 0.223422
\(796\) −24.3790 −0.864090
\(797\) 15.4486 0.547217 0.273608 0.961841i \(-0.411783\pi\)
0.273608 + 0.961841i \(0.411783\pi\)
\(798\) 0 0
\(799\) 13.2452 0.468583
\(800\) 5.80602 0.205274
\(801\) −1.38636 −0.0489845
\(802\) −9.43394 −0.333124
\(803\) 27.5317 0.971571
\(804\) 10.8328 0.382044
\(805\) 0 0
\(806\) −20.8663 −0.734983
\(807\) 7.23385 0.254644
\(808\) 34.2597 1.20525
\(809\) −32.9326 −1.15785 −0.578924 0.815382i \(-0.696527\pi\)
−0.578924 + 0.815382i \(0.696527\pi\)
\(810\) −5.47078 −0.192224
\(811\) 25.5895 0.898567 0.449284 0.893389i \(-0.351679\pi\)
0.449284 + 0.893389i \(0.351679\pi\)
\(812\) 0 0
\(813\) 15.2622 0.535270
\(814\) −0.234667 −0.00822508
\(815\) −10.3659 −0.363100
\(816\) −0.735094 −0.0257334
\(817\) −5.03316 −0.176088
\(818\) 15.4690 0.540860
\(819\) 0 0
\(820\) 14.2201 0.496587
\(821\) 17.8674 0.623575 0.311788 0.950152i \(-0.399072\pi\)
0.311788 + 0.950152i \(0.399072\pi\)
\(822\) −2.75062 −0.0959389
\(823\) −18.4533 −0.643242 −0.321621 0.946868i \(-0.604228\pi\)
−0.321621 + 0.946868i \(0.604228\pi\)
\(824\) −16.8885 −0.588339
\(825\) 4.66635 0.162461
\(826\) 0 0
\(827\) 47.5460 1.65334 0.826668 0.562690i \(-0.190233\pi\)
0.826668 + 0.562690i \(0.190233\pi\)
\(828\) 3.46950 0.120573
\(829\) −19.0308 −0.660965 −0.330483 0.943812i \(-0.607212\pi\)
−0.330483 + 0.943812i \(0.607212\pi\)
\(830\) −1.59748 −0.0554493
\(831\) 34.8145 1.20770
\(832\) 17.6179 0.610790
\(833\) 0 0
\(834\) 28.2911 0.979640
\(835\) 15.6048 0.540025
\(836\) −4.04373 −0.139855
\(837\) −31.2420 −1.07988
\(838\) −22.2656 −0.769151
\(839\) −3.04022 −0.104960 −0.0524801 0.998622i \(-0.516713\pi\)
−0.0524801 + 0.998622i \(0.516713\pi\)
\(840\) 0 0
\(841\) −27.8403 −0.960011
\(842\) 5.44370 0.187602
\(843\) 6.08280 0.209503
\(844\) 25.7262 0.885534
\(845\) 7.89956 0.271753
\(846\) −6.35957 −0.218647
\(847\) 0 0
\(848\) −1.81684 −0.0623906
\(849\) −20.0979 −0.689758
\(850\) 0.879381 0.0301625
\(851\) 0.389401 0.0133485
\(852\) −11.6434 −0.398898
\(853\) 18.2201 0.623844 0.311922 0.950108i \(-0.399027\pi\)
0.311922 + 0.950108i \(0.399027\pi\)
\(854\) 0 0
\(855\) 0.633188 0.0216546
\(856\) 34.1539 1.16736
\(857\) −19.3611 −0.661363 −0.330682 0.943742i \(-0.607279\pi\)
−0.330682 + 0.943742i \(0.607279\pi\)
\(858\) 17.4202 0.594714
\(859\) −3.44129 −0.117415 −0.0587077 0.998275i \(-0.518698\pi\)
−0.0587077 + 0.998275i \(0.518698\pi\)
\(860\) −6.71008 −0.228812
\(861\) 0 0
\(862\) −26.5024 −0.902674
\(863\) −26.5471 −0.903674 −0.451837 0.892101i \(-0.649231\pi\)
−0.451837 + 0.892101i \(0.649231\pi\)
\(864\) 32.4525 1.10406
\(865\) −0.571604 −0.0194351
\(866\) −27.6146 −0.938383
\(867\) 24.3694 0.827630
\(868\) 0 0
\(869\) 16.3790 0.555619
\(870\) 1.35288 0.0458669
\(871\) 24.1458 0.818148
\(872\) 43.0312 1.45722
\(873\) −1.36836 −0.0463120
\(874\) −3.35624 −0.113527
\(875\) 0 0
\(876\) −18.6168 −0.629004
\(877\) 20.5495 0.693908 0.346954 0.937882i \(-0.387216\pi\)
0.346954 + 0.937882i \(0.387216\pi\)
\(878\) 22.7383 0.767380
\(879\) −14.9146 −0.503059
\(880\) −1.34582 −0.0453674
\(881\) 31.1911 1.05085 0.525427 0.850839i \(-0.323906\pi\)
0.525427 + 0.850839i \(0.323906\pi\)
\(882\) 0 0
\(883\) 14.1861 0.477401 0.238701 0.971093i \(-0.423279\pi\)
0.238701 + 0.971093i \(0.423279\pi\)
\(884\) −6.56336 −0.220750
\(885\) −2.15378 −0.0723985
\(886\) 18.5983 0.624822
\(887\) −46.6046 −1.56483 −0.782415 0.622757i \(-0.786012\pi\)
−0.782415 + 0.622757i \(0.786012\pi\)
\(888\) 0.396732 0.0133134
\(889\) 0 0
\(890\) 1.78792 0.0599313
\(891\) 20.3207 0.680768
\(892\) 0.820347 0.0274672
\(893\) −12.2995 −0.411588
\(894\) −12.2952 −0.411214
\(895\) 24.8864 0.831862
\(896\) 0 0
\(897\) −28.9066 −0.965164
\(898\) 20.2930 0.677185
\(899\) 6.01923 0.200752
\(900\) 0.844150 0.0281383
\(901\) −4.40959 −0.146905
\(902\) 26.4191 0.879658
\(903\) 0 0
\(904\) 14.9558 0.497422
\(905\) −6.95372 −0.231150
\(906\) −7.38297 −0.245283
\(907\) −0.754028 −0.0250371 −0.0125185 0.999922i \(-0.503985\pi\)
−0.0125185 + 0.999922i \(0.503985\pi\)
\(908\) 23.2921 0.772976
\(909\) 7.96988 0.264344
\(910\) 0 0
\(911\) −53.1413 −1.76065 −0.880325 0.474371i \(-0.842675\pi\)
−0.880325 + 0.474371i \(0.842675\pi\)
\(912\) 0.682609 0.0226034
\(913\) 5.93368 0.196376
\(914\) −5.98784 −0.198060
\(915\) −8.76838 −0.289874
\(916\) 12.9311 0.427257
\(917\) 0 0
\(918\) 4.91527 0.162228
\(919\) 37.4202 1.23438 0.617189 0.786815i \(-0.288272\pi\)
0.617189 + 0.786815i \(0.288272\pi\)
\(920\) −11.1869 −0.368822
\(921\) −43.9196 −1.44720
\(922\) −8.41709 −0.277202
\(923\) −25.9526 −0.854241
\(924\) 0 0
\(925\) 0.0947438 0.00311516
\(926\) 6.37147 0.209379
\(927\) −3.92880 −0.129039
\(928\) −6.25244 −0.205247
\(929\) 19.1981 0.629871 0.314935 0.949113i \(-0.398017\pi\)
0.314935 + 0.949113i \(0.398017\pi\)
\(930\) 7.02195 0.230259
\(931\) 0 0
\(932\) 10.8704 0.356072
\(933\) 39.0873 1.27966
\(934\) 6.02355 0.197096
\(935\) −3.26638 −0.106822
\(936\) 7.87890 0.257530
\(937\) 20.0095 0.653681 0.326840 0.945080i \(-0.394016\pi\)
0.326840 + 0.945080i \(0.394016\pi\)
\(938\) 0 0
\(939\) 25.8458 0.843445
\(940\) −16.3974 −0.534825
\(941\) −15.3327 −0.499832 −0.249916 0.968268i \(-0.580403\pi\)
−0.249916 + 0.968268i \(0.580403\pi\)
\(942\) 12.8009 0.417076
\(943\) −43.8392 −1.42760
\(944\) 0.621168 0.0202173
\(945\) 0 0
\(946\) −12.4664 −0.405319
\(947\) −29.8217 −0.969076 −0.484538 0.874770i \(-0.661012\pi\)
−0.484538 + 0.874770i \(0.661012\pi\)
\(948\) −11.0754 −0.359713
\(949\) −41.4959 −1.34702
\(950\) −0.816594 −0.0264938
\(951\) 48.8464 1.58395
\(952\) 0 0
\(953\) 31.4938 1.02018 0.510091 0.860120i \(-0.329612\pi\)
0.510091 + 0.860120i \(0.329612\pi\)
\(954\) 2.11722 0.0685475
\(955\) −3.91254 −0.126607
\(956\) −32.7948 −1.06066
\(957\) −5.02514 −0.162440
\(958\) 13.1845 0.425973
\(959\) 0 0
\(960\) −5.92880 −0.191351
\(961\) 0.242050 0.00780806
\(962\) 0.353692 0.0114035
\(963\) 7.94528 0.256033
\(964\) 34.3610 1.10669
\(965\) −9.20734 −0.296395
\(966\) 0 0
\(967\) 1.16143 0.0373490 0.0186745 0.999826i \(-0.494055\pi\)
0.0186745 + 0.999826i \(0.494055\pi\)
\(968\) 4.89917 0.157465
\(969\) 1.65673 0.0532220
\(970\) 1.76471 0.0566615
\(971\) −18.4557 −0.592272 −0.296136 0.955146i \(-0.595698\pi\)
−0.296136 + 0.955146i \(0.595698\pi\)
\(972\) 8.61438 0.276306
\(973\) 0 0
\(974\) −6.86401 −0.219937
\(975\) −7.03316 −0.225241
\(976\) 2.52888 0.0809474
\(977\) 5.62735 0.180035 0.0900175 0.995940i \(-0.471308\pi\)
0.0900175 + 0.995940i \(0.471308\pi\)
\(978\) 13.0225 0.416413
\(979\) −6.64107 −0.212249
\(980\) 0 0
\(981\) 10.0104 0.319608
\(982\) −29.4672 −0.940338
\(983\) 25.1228 0.801293 0.400647 0.916233i \(-0.368786\pi\)
0.400647 + 0.916233i \(0.368786\pi\)
\(984\) −44.6644 −1.42385
\(985\) −3.84622 −0.122551
\(986\) −0.946996 −0.0301585
\(987\) 0 0
\(988\) 6.09474 0.193900
\(989\) 20.6865 0.657793
\(990\) 1.56832 0.0498445
\(991\) −41.8749 −1.33020 −0.665100 0.746754i \(-0.731611\pi\)
−0.665100 + 0.746754i \(0.731611\pi\)
\(992\) −32.4525 −1.03037
\(993\) 15.3295 0.486467
\(994\) 0 0
\(995\) 18.2864 0.579718
\(996\) −4.01234 −0.127136
\(997\) 37.0346 1.17290 0.586449 0.809986i \(-0.300525\pi\)
0.586449 + 0.809986i \(0.300525\pi\)
\(998\) −2.69505 −0.0853102
\(999\) 0.529566 0.0167547
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4655.2.a.y.1.3 4
7.6 odd 2 95.2.a.b.1.3 4
21.20 even 2 855.2.a.m.1.2 4
28.27 even 2 1520.2.a.t.1.2 4
35.13 even 4 475.2.b.e.324.4 8
35.27 even 4 475.2.b.e.324.5 8
35.34 odd 2 475.2.a.i.1.2 4
56.13 odd 2 6080.2.a.cc.1.2 4
56.27 even 2 6080.2.a.ch.1.3 4
105.104 even 2 4275.2.a.bo.1.3 4
133.132 even 2 1805.2.a.p.1.2 4
140.139 even 2 7600.2.a.cf.1.3 4
665.664 even 2 9025.2.a.bf.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.b.1.3 4 7.6 odd 2
475.2.a.i.1.2 4 35.34 odd 2
475.2.b.e.324.4 8 35.13 even 4
475.2.b.e.324.5 8 35.27 even 4
855.2.a.m.1.2 4 21.20 even 2
1520.2.a.t.1.2 4 28.27 even 2
1805.2.a.p.1.2 4 133.132 even 2
4275.2.a.bo.1.3 4 105.104 even 2
4655.2.a.y.1.3 4 1.1 even 1 trivial
6080.2.a.cc.1.2 4 56.13 odd 2
6080.2.a.ch.1.3 4 56.27 even 2
7600.2.a.cf.1.3 4 140.139 even 2
9025.2.a.bf.1.3 4 665.664 even 2