Properties

Label 4675.2.a.bt
Level 46754675
Weight 22
Character orbit 4675.a
Self dual yes
Analytic conductor 37.33037.330
Analytic rank 11
Dimension 2222
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4675,2,Mod(1,4675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4675.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4675=521117 4675 = 5^{2} \cdot 11 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 37.330062944937.3300629449
Analytic rank: 11
Dimension: 2222
Twist minimal: no (minimal twist has level 935)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 22q9q24q3+25q42q616q727q8+20q9+22q1112q1220q13+8q14+31q1622q1724q18+6q199q2222q23+q24++20q99+O(q100) 22 q - 9 q^{2} - 4 q^{3} + 25 q^{4} - 2 q^{6} - 16 q^{7} - 27 q^{8} + 20 q^{9} + 22 q^{11} - 12 q^{12} - 20 q^{13} + 8 q^{14} + 31 q^{16} - 22 q^{17} - 24 q^{18} + 6 q^{19} - 9 q^{22} - 22 q^{23} + q^{24}+ \cdots + 20 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.77068 0.753069 5.67669 0 −2.08652 2.41960 −10.1870 −2.43289 0
1.2 −2.76245 −1.22272 5.63113 0 3.37771 −5.08336 −10.0308 −1.50495 0
1.3 −2.59711 3.33544 4.74498 0 −8.66252 −2.91886 −7.12903 8.12518 0
1.4 −2.52105 −2.76985 4.35570 0 6.98294 2.60133 −5.93886 4.67207 0
1.5 −2.18930 −1.82824 2.79305 0 4.00257 −2.62629 −1.73622 0.342452 0
1.6 −1.97325 1.62502 1.89373 0 −3.20657 −2.37978 0.209701 −0.359323 0
1.7 −1.82925 −2.88143 1.34616 0 5.27086 −1.51037 1.19604 5.30266 0
1.8 −1.70614 1.08909 0.910926 0 −1.85815 2.74439 1.85812 −1.81388 0
1.9 −1.19964 −0.567918 −0.560863 0 0.681297 1.91514 3.07211 −2.67747 0
1.10 −0.785778 0.0417035 −1.38255 0 −0.0327697 −1.34686 2.65793 −2.99826 0
1.11 −0.594738 −2.84214 −1.64629 0 1.69033 −3.13953 2.16859 5.07777 0
1.12 −0.576411 2.17667 −1.66775 0 −1.25466 3.08854 2.11413 1.73789 0
1.13 −0.306294 2.62915 −1.90618 0 −0.805293 −2.16273 1.19644 3.91245 0
1.14 0.137127 −0.548266 −1.98120 0 −0.0751820 −4.85019 −0.545929 −2.69940 0
1.15 0.843676 0.498989 −1.28821 0 0.420986 1.65405 −2.77419 −2.75101 0
1.16 0.890316 2.31907 −1.20734 0 2.06470 −0.253528 −2.85554 2.37807 0
1.17 0.977188 −2.29468 −1.04510 0 −2.24233 1.08001 −2.97564 2.26555 0
1.18 1.66800 −3.11445 0.782241 0 −5.19492 −3.03771 −2.03123 6.69981 0
1.19 1.80850 −1.99036 1.27067 0 −3.59956 4.37746 −1.31899 0.961531 0
1.20 1.85769 2.05778 1.45101 0 3.82271 −4.43429 −1.01986 1.23446 0
See all 22 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.22
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1111 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4675.2.a.bt 22
5.b even 2 1 4675.2.a.bu 22
5.c odd 4 2 935.2.b.b 44
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
935.2.b.b 44 5.c odd 4 2
4675.2.a.bt 22 1.a even 1 1 trivial
4675.2.a.bu 22 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4675))S_{2}^{\mathrm{new}}(\Gamma_0(4675)):

T222+9T221+6T220168T219429T218+1071T217+200 T_{2}^{22} + 9 T_{2}^{21} + 6 T_{2}^{20} - 168 T_{2}^{19} - 429 T_{2}^{18} + 1071 T_{2}^{17} + \cdots - 200 Copy content Toggle raw display
T322+4T32135T320150T319+488T318+2308T317+88 T_{3}^{22} + 4 T_{3}^{21} - 35 T_{3}^{20} - 150 T_{3}^{19} + 488 T_{3}^{18} + 2308 T_{3}^{17} + \cdots - 88 Copy content Toggle raw display
T722+16T721+39T720644T7193794T718+6050T717++8650752 T_{7}^{22} + 16 T_{7}^{21} + 39 T_{7}^{20} - 644 T_{7}^{19} - 3794 T_{7}^{18} + 6050 T_{7}^{17} + \cdots + 8650752 Copy content Toggle raw display