Properties

Label 468.2.a.e
Level $468$
Weight $2$
Character orbit 468.a
Self dual yes
Analytic conductor $3.737$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,2,Mod(1,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{5} + 4 q^{7} - 4 q^{11} - q^{13} - 8 q^{23} + 11 q^{25} - 8 q^{29} + 4 q^{31} + 16 q^{35} + 6 q^{37} + 12 q^{41} - 8 q^{43} - 4 q^{47} + 9 q^{49} - 16 q^{55} + 4 q^{59} - 2 q^{61} - 4 q^{65} - 8 q^{67} - 4 q^{71} - 10 q^{73} - 16 q^{77} - 4 q^{79} + 12 q^{83} - 12 q^{89} - 4 q^{91} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 4.00000 0 4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.2.a.e yes 1
3.b odd 2 1 468.2.a.a 1
4.b odd 2 1 1872.2.a.r 1
8.b even 2 1 7488.2.a.f 1
8.d odd 2 1 7488.2.a.a 1
9.c even 3 2 4212.2.i.a 2
9.d odd 6 2 4212.2.i.k 2
12.b even 2 1 1872.2.a.a 1
13.b even 2 1 6084.2.a.a 1
13.d odd 4 2 6084.2.b.i 2
24.f even 2 1 7488.2.a.ca 1
24.h odd 2 1 7488.2.a.cd 1
39.d odd 2 1 6084.2.a.p 1
39.f even 4 2 6084.2.b.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.2.a.a 1 3.b odd 2 1
468.2.a.e yes 1 1.a even 1 1 trivial
1872.2.a.a 1 12.b even 2 1
1872.2.a.r 1 4.b odd 2 1
4212.2.i.a 2 9.c even 3 2
4212.2.i.k 2 9.d odd 6 2
6084.2.a.a 1 13.b even 2 1
6084.2.a.p 1 39.d odd 2 1
6084.2.b.e 2 39.f even 4 2
6084.2.b.i 2 13.d odd 4 2
7488.2.a.a 1 8.d odd 2 1
7488.2.a.f 1 8.b even 2 1
7488.2.a.ca 1 24.f even 2 1
7488.2.a.cd 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(468))\):

\( T_{5} - 4 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 8 \) Copy content Toggle raw display
$29$ \( T + 8 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T - 12 \) Copy content Toggle raw display
$43$ \( T + 8 \) Copy content Toggle raw display
$47$ \( T + 4 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T + 4 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T + 12 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less