Properties

Label 468.2.t.b
Level $468$
Weight $2$
Character orbit 468.t
Analytic conductor $3.737$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,2,Mod(361,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 2) q^{7} + ( - \zeta_{6} + 4) q^{13} + ( - 2 \zeta_{6} + 4) q^{19} + 5 q^{25} + ( - 2 \zeta_{6} + 1) q^{31} + (4 \zeta_{6} + 4) q^{37} - 5 \zeta_{6} q^{43} + (4 \zeta_{6} - 4) q^{49} + \cdots + (3 \zeta_{6} - 6) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{7} + 7 q^{13} + 6 q^{19} + 10 q^{25} + 12 q^{37} - 5 q^{43} - 4 q^{49} - q^{61} - 27 q^{67} - 34 q^{79} + 9 q^{91} - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 1.50000 + 0.866025i 0 0 0
433.1 0 0 0 0 0 1.50000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.e even 6 1 inner
39.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.2.t.b 2
3.b odd 2 1 CM 468.2.t.b 2
4.b odd 2 1 1872.2.by.c 2
12.b even 2 1 1872.2.by.c 2
13.c even 3 1 6084.2.b.h 2
13.e even 6 1 inner 468.2.t.b 2
13.e even 6 1 6084.2.b.h 2
13.f odd 12 2 6084.2.a.s 2
39.h odd 6 1 inner 468.2.t.b 2
39.h odd 6 1 6084.2.b.h 2
39.i odd 6 1 6084.2.b.h 2
39.k even 12 2 6084.2.a.s 2
52.i odd 6 1 1872.2.by.c 2
156.r even 6 1 1872.2.by.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.2.t.b 2 1.a even 1 1 trivial
468.2.t.b 2 3.b odd 2 1 CM
468.2.t.b 2 13.e even 6 1 inner
468.2.t.b 2 39.h odd 6 1 inner
1872.2.by.c 2 4.b odd 2 1
1872.2.by.c 2 12.b even 2 1
1872.2.by.c 2 52.i odd 6 1
1872.2.by.c 2 156.r even 6 1
6084.2.a.s 2 13.f odd 12 2
6084.2.a.s 2 39.k even 12 2
6084.2.b.h 2 13.c even 3 1
6084.2.b.h 2 13.e even 6 1
6084.2.b.h 2 39.h odd 6 1
6084.2.b.h 2 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(468, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{2} - 3T_{7} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 7T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 12 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3 \) Copy content Toggle raw display
$37$ \( T^{2} - 12T + 48 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 27T + 243 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 243 \) Copy content Toggle raw display
$79$ \( (T + 17)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
show more
show less