Properties

Label 468.4.a.a
Level 468468
Weight 44
Character orbit 468.a
Self dual yes
Analytic conductor 27.61327.613
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,4,Mod(1,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 468=223213 468 = 2^{2} \cdot 3^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 468.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 27.612893882727.6128938827
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 156)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2q532q7+68q11+13q13+14q17+4q1972q23121q25102q29136q3164q35386q37250q41140q43+296q47+681q49526q53+446q97+O(q100) q + 2 q^{5} - 32 q^{7} + 68 q^{11} + 13 q^{13} + 14 q^{17} + 4 q^{19} - 72 q^{23} - 121 q^{25} - 102 q^{29} - 136 q^{31} - 64 q^{35} - 386 q^{37} - 250 q^{41} - 140 q^{43} + 296 q^{47} + 681 q^{49} - 526 q^{53}+ \cdots - 446 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 2.00000 0 −32.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.4.a.a 1
3.b odd 2 1 156.4.a.b 1
4.b odd 2 1 1872.4.a.i 1
12.b even 2 1 624.4.a.b 1
24.f even 2 1 2496.4.a.m 1
24.h odd 2 1 2496.4.a.d 1
39.d odd 2 1 2028.4.a.b 1
39.f even 4 2 2028.4.b.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.4.a.b 1 3.b odd 2 1
468.4.a.a 1 1.a even 1 1 trivial
624.4.a.b 1 12.b even 2 1
1872.4.a.i 1 4.b odd 2 1
2028.4.a.b 1 39.d odd 2 1
2028.4.b.d 2 39.f even 4 2
2496.4.a.d 1 24.h odd 2 1
2496.4.a.m 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52 T_{5} - 2 acting on S4new(Γ0(468))S_{4}^{\mathrm{new}}(\Gamma_0(468)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T2 T - 2 Copy content Toggle raw display
77 T+32 T + 32 Copy content Toggle raw display
1111 T68 T - 68 Copy content Toggle raw display
1313 T13 T - 13 Copy content Toggle raw display
1717 T14 T - 14 Copy content Toggle raw display
1919 T4 T - 4 Copy content Toggle raw display
2323 T+72 T + 72 Copy content Toggle raw display
2929 T+102 T + 102 Copy content Toggle raw display
3131 T+136 T + 136 Copy content Toggle raw display
3737 T+386 T + 386 Copy content Toggle raw display
4141 T+250 T + 250 Copy content Toggle raw display
4343 T+140 T + 140 Copy content Toggle raw display
4747 T296 T - 296 Copy content Toggle raw display
5353 T+526 T + 526 Copy content Toggle raw display
5959 T+332 T + 332 Copy content Toggle raw display
6161 T+410 T + 410 Copy content Toggle raw display
6767 T596 T - 596 Copy content Toggle raw display
7171 T880 T - 880 Copy content Toggle raw display
7373 T506 T - 506 Copy content Toggle raw display
7979 T+640 T + 640 Copy content Toggle raw display
8383 T+1380 T + 1380 Copy content Toggle raw display
8989 T+1450 T + 1450 Copy content Toggle raw display
9797 T+446 T + 446 Copy content Toggle raw display
show more
show less