Properties

Label 468.4.a.h
Level $468$
Weight $4$
Character orbit 468.a
Self dual yes
Analytic conductor $27.613$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,4,Mod(1,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 468.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.6128938827\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.5126992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 25x^{2} + 117 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} - \beta_{3} q^{7} + ( - \beta_{2} + \beta_1) q^{11} + 13 q^{13} + (2 \beta_{2} + 4 \beta_1) q^{17} + ( - \beta_{3} + 24) q^{19} + 2 \beta_{2} q^{23} + (4 \beta_{3} + 75) q^{25} - 2 \beta_{2} q^{29}+ \cdots + ( - 52 \beta_{3} + 318) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 52 q^{13} + 96 q^{19} + 300 q^{25} + 416 q^{31} + 744 q^{37} + 624 q^{43} + 1140 q^{49} + 944 q^{55} + 1464 q^{61} + 1568 q^{67} + 2072 q^{73} + 1232 q^{79} + 2912 q^{85} + 1272 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 25x^{2} + 117 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{3} - 32\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 50 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 50 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 8\beta_1 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.33186
−2.49700
2.49700
4.33186
0 0 0 −17.3274 0 −25.0599 0 0 0
1.2 0 0 0 −9.98801 0 25.0599 0 0 0
1.3 0 0 0 9.98801 0 25.0599 0 0 0
1.4 0 0 0 17.3274 0 −25.0599 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.4.a.h 4
3.b odd 2 1 inner 468.4.a.h 4
4.b odd 2 1 1872.4.a.bp 4
12.b even 2 1 1872.4.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.4.a.h 4 1.a even 1 1 trivial
468.4.a.h 4 3.b odd 2 1 inner
1872.4.a.bp 4 4.b odd 2 1
1872.4.a.bp 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 400T_{5}^{2} + 29952 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(468))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 400 T^{2} + 29952 \) Copy content Toggle raw display
$7$ \( (T^{2} - 628)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 3496 T^{2} + 151632 \) Copy content Toggle raw display
$13$ \( (T - 13)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 17056 T^{2} + 45556992 \) Copy content Toggle raw display
$19$ \( (T^{2} - 48 T - 52)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 11808 T^{2} + 21835008 \) Copy content Toggle raw display
$29$ \( T^{4} - 11808 T^{2} + 21835008 \) Copy content Toggle raw display
$31$ \( (T^{2} - 208 T + 5164)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 372 T - 5596)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 120592 T^{2} + 382457088 \) Copy content Toggle raw display
$43$ \( (T^{2} - 312 T - 38464)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 10881788112 \) Copy content Toggle raw display
$53$ \( T^{4} - 240448 T^{2} + 80990208 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 107019845712 \) Copy content Toggle raw display
$61$ \( (T^{2} - 732 T - 26812)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 784 T + 102796)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 79116337872 \) Copy content Toggle raw display
$73$ \( (T - 518)^{4} \) Copy content Toggle raw display
$79$ \( (T - 308)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 559558623312 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 378108327168 \) Copy content Toggle raw display
$97$ \( (T^{2} - 636 T - 1596988)^{2} \) Copy content Toggle raw display
show more
show less