Properties

Label 468.4.a.h
Level 468468
Weight 44
Character orbit 468.a
Self dual yes
Analytic conductor 27.61327.613
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [468,4,Mod(1,468)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(468, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("468.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 468=223213 468 = 2^{2} \cdot 3^{2} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 468.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 27.612893882727.6128938827
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.5126992.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x425x2+117 x^{4} - 25x^{2} + 117 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 253 2^{5}\cdot 3
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5β3q7+(β2+β1)q11+13q13+(2β2+4β1)q17+(β3+24)q19+2β2q23+(4β3+75)q252β2q29++(52β3+318)q97+O(q100) q + \beta_1 q^{5} - \beta_{3} q^{7} + ( - \beta_{2} + \beta_1) q^{11} + 13 q^{13} + (2 \beta_{2} + 4 \beta_1) q^{17} + ( - \beta_{3} + 24) q^{19} + 2 \beta_{2} q^{23} + (4 \beta_{3} + 75) q^{25} - 2 \beta_{2} q^{29}+ \cdots + ( - 52 \beta_{3} + 318) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+52q13+96q19+300q25+416q31+744q37+624q43+1140q49+944q55+1464q61+1568q67+2072q73+1232q79+2912q85+1272q97+O(q100) 4 q + 52 q^{13} + 96 q^{19} + 300 q^{25} + 416 q^{31} + 744 q^{37} + 624 q^{43} + 1140 q^{49} + 944 q^{55} + 1464 q^{61} + 1568 q^{67} + 2072 q^{73} + 1232 q^{79} + 2912 q^{85} + 1272 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x425x2+117 x^{4} - 25x^{2} + 117 : Copy content Toggle raw display

β1\beta_{1}== 4ν 4\nu Copy content Toggle raw display
β2\beta_{2}== 2ν332ν 2\nu^{3} - 32\nu Copy content Toggle raw display
β3\beta_{3}== 4ν250 4\nu^{2} - 50 Copy content Toggle raw display
ν\nu== (β1)/4 ( \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β3+50)/4 ( \beta_{3} + 50 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (β2+8β1)/2 ( \beta_{2} + 8\beta_1 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−4.33186
−2.49700
2.49700
4.33186
0 0 0 −17.3274 0 −25.0599 0 0 0
1.2 0 0 0 −9.98801 0 25.0599 0 0 0
1.3 0 0 0 9.98801 0 25.0599 0 0 0
1.4 0 0 0 17.3274 0 −25.0599 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1313 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 468.4.a.h 4
3.b odd 2 1 inner 468.4.a.h 4
4.b odd 2 1 1872.4.a.bp 4
12.b even 2 1 1872.4.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.4.a.h 4 1.a even 1 1 trivial
468.4.a.h 4 3.b odd 2 1 inner
1872.4.a.bp 4 4.b odd 2 1
1872.4.a.bp 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54400T52+29952 T_{5}^{4} - 400T_{5}^{2} + 29952 acting on S4new(Γ0(468))S_{4}^{\mathrm{new}}(\Gamma_0(468)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4400T2+29952 T^{4} - 400 T^{2} + 29952 Copy content Toggle raw display
77 (T2628)2 (T^{2} - 628)^{2} Copy content Toggle raw display
1111 T43496T2+151632 T^{4} - 3496 T^{2} + 151632 Copy content Toggle raw display
1313 (T13)4 (T - 13)^{4} Copy content Toggle raw display
1717 T417056T2+45556992 T^{4} - 17056 T^{2} + 45556992 Copy content Toggle raw display
1919 (T248T52)2 (T^{2} - 48 T - 52)^{2} Copy content Toggle raw display
2323 T411808T2+21835008 T^{4} - 11808 T^{2} + 21835008 Copy content Toggle raw display
2929 T411808T2+21835008 T^{4} - 11808 T^{2} + 21835008 Copy content Toggle raw display
3131 (T2208T+5164)2 (T^{2} - 208 T + 5164)^{2} Copy content Toggle raw display
3737 (T2372T5596)2 (T^{2} - 372 T - 5596)^{2} Copy content Toggle raw display
4141 T4120592T2+382457088 T^{4} - 120592 T^{2} + 382457088 Copy content Toggle raw display
4343 (T2312T38464)2 (T^{2} - 312 T - 38464)^{2} Copy content Toggle raw display
4747 T4++10881788112 T^{4} + \cdots + 10881788112 Copy content Toggle raw display
5353 T4240448T2+80990208 T^{4} - 240448 T^{2} + 80990208 Copy content Toggle raw display
5959 T4++107019845712 T^{4} + \cdots + 107019845712 Copy content Toggle raw display
6161 (T2732T26812)2 (T^{2} - 732 T - 26812)^{2} Copy content Toggle raw display
6767 (T2784T+102796)2 (T^{2} - 784 T + 102796)^{2} Copy content Toggle raw display
7171 T4++79116337872 T^{4} + \cdots + 79116337872 Copy content Toggle raw display
7373 (T518)4 (T - 518)^{4} Copy content Toggle raw display
7979 (T308)4 (T - 308)^{4} Copy content Toggle raw display
8383 T4++559558623312 T^{4} + \cdots + 559558623312 Copy content Toggle raw display
8989 T4++378108327168 T^{4} + \cdots + 378108327168 Copy content Toggle raw display
9797 (T2636T1596988)2 (T^{2} - 636 T - 1596988)^{2} Copy content Toggle raw display
show more
show less