Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4680,2,Mod(1,4680)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4680, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4680.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4680.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(37.3699881460\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{10})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - x - 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 520) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(-0.618034\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4680.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −0.763932 | −0.230334 | −0.115167 | − | 0.993346i | \(-0.536740\pi\) | ||||
−0.115167 | + | 0.993346i | \(0.536740\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0.763932 | 0.175258 | 0.0876290 | − | 0.996153i | \(-0.472071\pi\) | ||||
0.0876290 | + | 0.996153i | \(0.472071\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 3.23607 | 0.674767 | 0.337383 | − | 0.941367i | \(-0.390458\pi\) | ||||
0.337383 | + | 0.941367i | \(0.390458\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.47214 | −1.57324 | −0.786618 | − | 0.617440i | \(-0.788170\pi\) | ||||
−0.786618 | + | 0.617440i | \(0.788170\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −5.70820 | −1.02522 | −0.512612 | − | 0.858620i | \(-0.671322\pi\) | ||||
−0.512612 | + | 0.858620i | \(0.671322\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −8.47214 | −1.39281 | −0.696405 | − | 0.717649i | \(-0.745218\pi\) | ||||
−0.696405 | + | 0.717649i | \(0.745218\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 10.9443 | 1.70921 | 0.854604 | − | 0.519280i | \(-0.173800\pi\) | ||||
0.854604 | + | 0.519280i | \(0.173800\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −3.23607 | −0.493496 | −0.246748 | − | 0.969080i | \(-0.579362\pi\) | ||||
−0.246748 | + | 0.969080i | \(0.579362\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −12.9443 | −1.88812 | −0.944058 | − | 0.329779i | \(-0.893026\pi\) | ||||
−0.944058 | + | 0.329779i | \(0.893026\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 10.9443 | 1.50331 | 0.751656 | − | 0.659556i | \(-0.229256\pi\) | ||||
0.751656 | + | 0.659556i | \(0.229256\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −0.763932 | −0.103009 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 5.70820 | 0.743145 | 0.371572 | − | 0.928404i | \(-0.378819\pi\) | ||||
0.371572 | + | 0.928404i | \(0.378819\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −4.47214 | −0.572598 | −0.286299 | − | 0.958140i | \(-0.592425\pi\) | ||||
−0.286299 | + | 0.958140i | \(0.592425\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −1.00000 | −0.124035 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 10.4721 | 1.27938 | 0.639688 | − | 0.768635i | \(-0.279064\pi\) | ||||
0.639688 | + | 0.768635i | \(0.279064\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0.763932 | 0.0906621 | 0.0453310 | − | 0.998972i | \(-0.485566\pi\) | ||||
0.0453310 | + | 0.998972i | \(0.485566\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −7.52786 | −0.881070 | −0.440535 | − | 0.897735i | \(-0.645211\pi\) | ||||
−0.440535 | + | 0.897735i | \(0.645211\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 6.47214 | 0.728172 | 0.364086 | − | 0.931365i | \(-0.381381\pi\) | ||||
0.364086 | + | 0.931365i | \(0.381381\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −4.00000 | −0.439057 | −0.219529 | − | 0.975606i | \(-0.570452\pi\) | ||||
−0.219529 | + | 0.975606i | \(0.570452\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −2.00000 | −0.216930 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −10.0000 | −1.06000 | −0.529999 | − | 0.847998i | \(-0.677808\pi\) | ||||
−0.529999 | + | 0.847998i | \(0.677808\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0.763932 | 0.0783778 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −10.0000 | −1.01535 | −0.507673 | − | 0.861550i | \(-0.669494\pi\) | ||||
−0.507673 | + | 0.861550i | \(0.669494\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −14.0000 | −1.39305 | −0.696526 | − | 0.717532i | \(-0.745272\pi\) | ||||
−0.696526 | + | 0.717532i | \(0.745272\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −6.29180 | −0.619949 | −0.309975 | − | 0.950745i | \(-0.600321\pi\) | ||||
−0.309975 | + | 0.950745i | \(0.600321\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 16.1803 | 1.56421 | 0.782106 | − | 0.623145i | \(-0.214145\pi\) | ||||
0.782106 | + | 0.623145i | \(0.214145\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −1.05573 | −0.101120 | −0.0505602 | − | 0.998721i | \(-0.516101\pi\) | ||||
−0.0505602 | + | 0.998721i | \(0.516101\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −19.8885 | −1.87096 | −0.935478 | − | 0.353384i | \(-0.885031\pi\) | ||||
−0.935478 | + | 0.353384i | \(0.885031\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 3.23607 | 0.301765 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −10.4164 | −0.946946 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −9.70820 | −0.861464 | −0.430732 | − | 0.902480i | \(-0.641745\pi\) | ||||
−0.430732 | + | 0.902480i | \(0.641745\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −16.9443 | −1.48043 | −0.740214 | − | 0.672371i | \(-0.765276\pi\) | ||||
−0.740214 | + | 0.672371i | \(0.765276\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 19.8885 | 1.69919 | 0.849596 | − | 0.527433i | \(-0.176846\pi\) | ||||
0.849596 | + | 0.527433i | \(0.176846\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 13.5279 | 1.14742 | 0.573709 | − | 0.819059i | \(-0.305504\pi\) | ||||
0.573709 | + | 0.819059i | \(0.305504\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0.763932 | 0.0638832 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −8.47214 | −0.703573 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 10.6525 | 0.866886 | 0.433443 | − | 0.901181i | \(-0.357299\pi\) | ||||
0.433443 | + | 0.901181i | \(0.357299\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −5.70820 | −0.458494 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −10.9443 | −0.873448 | −0.436724 | − | 0.899596i | \(-0.643861\pi\) | ||||
−0.436724 | + | 0.899596i | \(0.643861\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −10.4721 | −0.820241 | −0.410120 | − | 0.912031i | \(-0.634513\pi\) | ||||
−0.410120 | + | 0.912031i | \(0.634513\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −8.00000 | −0.619059 | −0.309529 | − | 0.950890i | \(-0.600171\pi\) | ||||
−0.309529 | + | 0.950890i | \(0.600171\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 10.9443 | 0.832078 | 0.416039 | − | 0.909347i | \(-0.363418\pi\) | ||||
0.416039 | + | 0.909347i | \(0.363418\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −16.9443 | −1.26647 | −0.633237 | − | 0.773958i | \(-0.718274\pi\) | ||||
−0.633237 | + | 0.773958i | \(0.718274\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 0.472136 | 0.0350936 | 0.0175468 | − | 0.999846i | \(-0.494414\pi\) | ||||
0.0175468 | + | 0.999846i | \(0.494414\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −8.47214 | −0.622884 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 1.52786 | 0.111728 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 17.8885 | 1.29437 | 0.647185 | − | 0.762333i | \(-0.275946\pi\) | ||||
0.647185 | + | 0.762333i | \(0.275946\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 6.00000 | 0.431889 | 0.215945 | − | 0.976406i | \(-0.430717\pi\) | ||||
0.215945 | + | 0.976406i | \(0.430717\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −19.8885 | −1.41700 | −0.708500 | − | 0.705711i | \(-0.750628\pi\) | ||||
−0.708500 | + | 0.705711i | \(0.750628\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 20.9443 | 1.48470 | 0.742350 | − | 0.670012i | \(-0.233711\pi\) | ||||
0.742350 | + | 0.670012i | \(0.233711\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 10.9443 | 0.764381 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −0.583592 | −0.0403679 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8.94427 | 0.615749 | 0.307875 | − | 0.951427i | \(-0.400382\pi\) | ||||
0.307875 | + | 0.951427i | \(0.400382\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −3.23607 | −0.220698 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 2.00000 | 0.134535 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −9.88854 | −0.662186 | −0.331093 | − | 0.943598i | \(-0.607417\pi\) | ||||
−0.331093 | + | 0.943598i | \(0.607417\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −18.4721 | −1.22604 | −0.613019 | − | 0.790068i | \(-0.710045\pi\) | ||||
−0.613019 | + | 0.790068i | \(0.710045\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 10.0000 | 0.660819 | 0.330409 | − | 0.943838i | \(-0.392813\pi\) | ||||
0.330409 | + | 0.943838i | \(0.392813\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 10.9443 | 0.716983 | 0.358492 | − | 0.933533i | \(-0.383291\pi\) | ||||
0.358492 | + | 0.933533i | \(0.383291\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −12.9443 | −0.844391 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −2.65248 | −0.171574 | −0.0857872 | − | 0.996313i | \(-0.527341\pi\) | ||||
−0.0857872 | + | 0.996313i | \(0.527341\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −15.8885 | −1.02347 | −0.511736 | − | 0.859143i | \(-0.670997\pi\) | ||||
−0.511736 | + | 0.859143i | \(0.670997\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −7.00000 | −0.447214 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −0.763932 | −0.0486078 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −2.47214 | −0.156040 | −0.0780199 | − | 0.996952i | \(-0.524860\pi\) | ||||
−0.0780199 | + | 0.996952i | \(0.524860\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −2.47214 | −0.155422 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −5.05573 | −0.315368 | −0.157684 | − | 0.987490i | \(-0.550403\pi\) | ||||
−0.157684 | + | 0.987490i | \(0.550403\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 1.70820 | 0.105332 | 0.0526662 | − | 0.998612i | \(-0.483228\pi\) | ||||
0.0526662 | + | 0.998612i | \(0.483228\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 10.9443 | 0.672301 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 18.6525 | 1.13306 | 0.566529 | − | 0.824042i | \(-0.308286\pi\) | ||||
0.566529 | + | 0.824042i | \(0.308286\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −0.763932 | −0.0460668 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 6.94427 | 0.417241 | 0.208620 | − | 0.977997i | \(-0.433103\pi\) | ||||
0.208620 | + | 0.977997i | \(0.433103\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −10.0000 | −0.596550 | −0.298275 | − | 0.954480i | \(-0.596411\pi\) | ||||
−0.298275 | + | 0.954480i | \(0.596411\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 30.6525 | 1.82210 | 0.911050 | − | 0.412295i | \(-0.135273\pi\) | ||||
0.911050 | + | 0.412295i | \(0.135273\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −22.3607 | −1.30632 | −0.653162 | − | 0.757218i | \(-0.726558\pi\) | ||||
−0.653162 | + | 0.757218i | \(0.726558\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 5.70820 | 0.332344 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −3.23607 | −0.187147 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −4.47214 | −0.256074 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −12.0000 | −0.684876 | −0.342438 | − | 0.939540i | \(-0.611253\pi\) | ||||
−0.342438 | + | 0.939540i | \(0.611253\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −11.4164 | −0.647365 | −0.323683 | − | 0.946166i | \(-0.604921\pi\) | ||||
−0.323683 | + | 0.946166i | \(0.604921\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −20.8328 | −1.17754 | −0.588770 | − | 0.808300i | \(-0.700388\pi\) | ||||
−0.588770 | + | 0.808300i | \(0.700388\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −30.3607 | −1.70523 | −0.852613 | − | 0.522543i | \(-0.824983\pi\) | ||||
−0.852613 | + | 0.522543i | \(0.824983\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 6.47214 | 0.362370 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −1.52786 | −0.0850126 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −1.00000 | −0.0554700 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −0.763932 | −0.0419895 | −0.0209948 | − | 0.999780i | \(-0.506683\pi\) | ||||
−0.0209948 | + | 0.999780i | \(0.506683\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 10.4721 | 0.572154 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −30.0000 | −1.63420 | −0.817102 | − | 0.576493i | \(-0.804421\pi\) | ||||
−0.817102 | + | 0.576493i | \(0.804421\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 4.36068 | 0.236144 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −20.7639 | −1.11467 | −0.557333 | − | 0.830289i | \(-0.688175\pi\) | ||||
−0.557333 | + | 0.830289i | \(0.688175\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 14.9443 | 0.799949 | 0.399974 | − | 0.916526i | \(-0.369019\pi\) | ||||
0.399974 | + | 0.916526i | \(0.369019\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 12.4721 | 0.663825 | 0.331912 | − | 0.943310i | \(-0.392306\pi\) | ||||
0.331912 | + | 0.943310i | \(0.392306\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0.763932 | 0.0405453 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −7.23607 | −0.381905 | −0.190953 | − | 0.981599i | \(-0.561158\pi\) | ||||
−0.190953 | + | 0.981599i | \(0.561158\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −18.4164 | −0.969285 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −7.52786 | −0.394026 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −24.1803 | −1.26220 | −0.631102 | − | 0.775700i | \(-0.717397\pi\) | ||||
−0.631102 | + | 0.775700i | \(0.717397\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −2.94427 | −0.152449 | −0.0762243 | − | 0.997091i | \(-0.524287\pi\) | ||||
−0.0762243 | + | 0.997091i | \(0.524287\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 8.47214 | 0.436337 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.7639 | 0.861105 | 0.430553 | − | 0.902565i | \(-0.358319\pi\) | ||||
0.430553 | + | 0.902565i | \(0.358319\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 17.8885 | 0.914062 | 0.457031 | − | 0.889451i | \(-0.348913\pi\) | ||||
0.457031 | + | 0.889451i | \(0.348913\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −31.8885 | −1.61681 | −0.808407 | − | 0.588624i | \(-0.799670\pi\) | ||||
−0.808407 | + | 0.588624i | \(0.799670\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −6.47214 | −0.327310 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 6.47214 | 0.325649 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −6.58359 | −0.330421 | −0.165211 | − | 0.986258i | \(-0.552830\pi\) | ||||
−0.165211 | + | 0.986258i | \(0.552830\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 7.88854 | 0.393935 | 0.196968 | − | 0.980410i | \(-0.436891\pi\) | ||||
0.196968 | + | 0.980410i | \(0.436891\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 5.70820 | 0.284346 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 6.47214 | 0.320812 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 32.8328 | 1.62348 | 0.811739 | − | 0.584020i | \(-0.198521\pi\) | ||||
0.811739 | + | 0.584020i | \(0.198521\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −4.00000 | −0.196352 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0.583592 | 0.0285103 | 0.0142552 | − | 0.999898i | \(-0.495462\pi\) | ||||
0.0142552 | + | 0.999898i | \(0.495462\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 3.88854 | 0.189516 | 0.0947580 | − | 0.995500i | \(-0.469792\pi\) | ||||
0.0947580 | + | 0.995500i | \(0.469792\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −2.00000 | −0.0970143 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −38.0689 | −1.83371 | −0.916857 | − | 0.399216i | \(-0.869282\pi\) | ||||
−0.916857 | + | 0.399216i | \(0.869282\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 24.8328 | 1.19339 | 0.596694 | − | 0.802469i | \(-0.296480\pi\) | ||||
0.596694 | + | 0.802469i | \(0.296480\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 2.47214 | 0.118258 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 22.6525 | 1.07625 | 0.538126 | − | 0.842865i | \(-0.319133\pi\) | ||||
0.538126 | + | 0.842865i | \(0.319133\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −10.0000 | −0.474045 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 9.05573 | 0.427366 | 0.213683 | − | 0.976903i | \(-0.431454\pi\) | ||||
0.213683 | + | 0.976903i | \(0.431454\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −8.36068 | −0.393689 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 7.88854 | 0.369011 | 0.184505 | − | 0.982832i | \(-0.440932\pi\) | ||||
0.184505 | + | 0.982832i | \(0.440932\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 4.11146 | 0.191490 | 0.0957448 | − | 0.995406i | \(-0.469477\pi\) | ||||
0.0957448 | + | 0.995406i | \(0.469477\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −19.4164 | −0.902357 | −0.451178 | − | 0.892434i | \(-0.648996\pi\) | ||||
−0.451178 | + | 0.892434i | \(0.648996\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 1.70820 | 0.0790463 | 0.0395231 | − | 0.999219i | \(-0.487416\pi\) | ||||
0.0395231 | + | 0.999219i | \(0.487416\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 2.47214 | 0.113669 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0.763932 | 0.0350516 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −9.12461 | −0.416914 | −0.208457 | − | 0.978032i | \(-0.566844\pi\) | ||||
−0.208457 | + | 0.978032i | \(0.566844\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 8.47214 | 0.386296 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −10.0000 | −0.454077 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 29.3050 | 1.32793 | 0.663967 | − | 0.747762i | \(-0.268872\pi\) | ||||
0.663967 | + | 0.747762i | \(0.268872\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 34.4721 | 1.55571 | 0.777853 | − | 0.628446i | \(-0.216309\pi\) | ||||
0.777853 | + | 0.628446i | \(0.216309\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 16.9443 | 0.763132 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 37.7082 | 1.68805 | 0.844026 | − | 0.536303i | \(-0.180180\pi\) | ||||
0.844026 | + | 0.536303i | \(0.180180\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −14.2918 | −0.637240 | −0.318620 | − | 0.947883i | \(-0.603219\pi\) | ||||
−0.318620 | + | 0.947883i | \(0.603219\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −14.0000 | −0.622992 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 9.05573 | 0.401388 | 0.200694 | − | 0.979654i | \(-0.435680\pi\) | ||||
0.200694 | + | 0.979654i | \(0.435680\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −6.29180 | −0.277250 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 9.88854 | 0.434898 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 6.58359 | 0.288432 | 0.144216 | − | 0.989546i | \(-0.453934\pi\) | ||||
0.144216 | + | 0.989546i | \(0.453934\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −19.5967 | −0.856906 | −0.428453 | − | 0.903564i | \(-0.640941\pi\) | ||||
−0.428453 | + | 0.903564i | \(0.640941\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 11.4164 | 0.497307 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −12.5279 | −0.544690 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −10.9443 | −0.474049 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 16.1803 | 0.699537 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 5.34752 | 0.230334 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −17.0557 | −0.733283 | −0.366642 | − | 0.930362i | \(-0.619492\pi\) | ||||
−0.366642 | + | 0.930362i | \(0.619492\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −1.05573 | −0.0452224 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 35.5967 | 1.52201 | 0.761004 | − | 0.648748i | \(-0.224707\pi\) | ||||
0.761004 | + | 0.648748i | \(0.224707\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −6.47214 | −0.275722 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −25.4164 | −1.07693 | −0.538464 | − | 0.842649i | \(-0.680995\pi\) | ||||
−0.538464 | + | 0.842649i | \(0.680995\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 3.23607 | 0.136871 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 14.2918 | 0.602327 | 0.301164 | − | 0.953572i | \(-0.402625\pi\) | ||||
0.301164 | + | 0.953572i | \(0.402625\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −19.8885 | −0.836717 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −41.4164 | −1.73627 | −0.868133 | − | 0.496332i | \(-0.834680\pi\) | ||||
−0.868133 | + | 0.496332i | \(0.834680\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −13.5279 | −0.566123 | −0.283062 | − | 0.959102i | \(-0.591350\pi\) | ||||
−0.283062 | + | 0.959102i | \(0.591350\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 3.23607 | 0.134953 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −41.4164 | −1.72419 | −0.862094 | − | 0.506749i | \(-0.830847\pi\) | ||||
−0.862094 | + | 0.506749i | \(0.830847\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −8.36068 | −0.346264 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 13.5279 | 0.558355 | 0.279177 | − | 0.960240i | \(-0.409938\pi\) | ||||
0.279177 | + | 0.960240i | \(0.409938\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −4.36068 | −0.179679 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0.111456 | 0.00457696 | 0.00228848 | − | 0.999997i | \(-0.499272\pi\) | ||||
0.00228848 | + | 0.999997i | \(0.499272\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 6.47214 | 0.264444 | 0.132222 | − | 0.991220i | \(-0.457789\pi\) | ||||
0.132222 | + | 0.991220i | \(0.457789\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −15.8885 | −0.648107 | −0.324054 | − | 0.946039i | \(-0.605046\pi\) | ||||
−0.324054 | + | 0.946039i | \(0.605046\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −10.4164 | −0.423487 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −34.0689 | −1.38281 | −0.691407 | − | 0.722466i | \(-0.743009\pi\) | ||||
−0.691407 | + | 0.722466i | \(0.743009\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 12.9443 | 0.523669 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −6.00000 | −0.242338 | −0.121169 | − | 0.992632i | \(-0.538664\pi\) | ||||
−0.121169 | + | 0.992632i | \(0.538664\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 18.0000 | 0.724653 | 0.362326 | − | 0.932051i | \(-0.381983\pi\) | ||||
0.362326 | + | 0.932051i | \(0.381983\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −2.65248 | −0.106612 | −0.0533060 | − | 0.998578i | \(-0.516976\pi\) | ||||
−0.0533060 | + | 0.998578i | \(0.516976\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 16.9443 | 0.675612 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −43.0132 | −1.71233 | −0.856163 | − | 0.516705i | \(-0.827158\pi\) | ||||
−0.856163 | + | 0.516705i | \(0.827158\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −9.70820 | −0.385258 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 7.00000 | 0.277350 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 14.0000 | 0.552967 | 0.276483 | − | 0.961019i | \(-0.410831\pi\) | ||||
0.276483 | + | 0.961019i | \(0.410831\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 15.0557 | 0.593740 | 0.296870 | − | 0.954918i | \(-0.404057\pi\) | ||||
0.296870 | + | 0.954918i | \(0.404057\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −19.2361 | −0.756248 | −0.378124 | − | 0.925755i | \(-0.623431\pi\) | ||||
−0.378124 | + | 0.925755i | \(0.623431\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −4.36068 | −0.171172 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 12.8328 | 0.502187 | 0.251093 | − | 0.967963i | \(-0.419210\pi\) | ||||
0.251093 | + | 0.967963i | \(0.419210\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −16.9443 | −0.662067 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 33.3050 | 1.29738 | 0.648688 | − | 0.761054i | \(-0.275318\pi\) | ||||
0.648688 | + | 0.761054i | \(0.275318\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 18.0000 | 0.700119 | 0.350059 | − | 0.936727i | \(-0.386161\pi\) | ||||
0.350059 | + | 0.936727i | \(0.386161\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −27.4164 | −1.06157 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 3.41641 | 0.131889 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 43.8885 | 1.69178 | 0.845890 | − | 0.533358i | \(-0.179070\pi\) | ||||
0.845890 | + | 0.533358i | \(0.179070\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 12.8328 | 0.493205 | 0.246603 | − | 0.969117i | \(-0.420686\pi\) | ||||
0.246603 | + | 0.969117i | \(0.420686\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 44.3607 | 1.69741 | 0.848707 | − | 0.528863i | \(-0.177382\pi\) | ||||
0.848707 | + | 0.528863i | \(0.177382\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 19.8885 | 0.759902 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −10.9443 | −0.416944 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 43.0132 | 1.63630 | 0.818149 | − | 0.575007i | \(-0.195001\pi\) | ||||
0.818149 | + | 0.575007i | \(0.195001\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 13.5279 | 0.513141 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −21.8885 | −0.829088 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 51.8885 | 1.95980 | 0.979902 | − | 0.199481i | \(-0.0639257\pi\) | ||||
0.979902 | + | 0.199481i | \(0.0639257\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −6.47214 | −0.244101 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −15.8885 | −0.596707 | −0.298353 | − | 0.954455i | \(-0.596437\pi\) | ||||
−0.298353 | + | 0.954455i | \(0.596437\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −18.4721 | −0.691787 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0.763932 | 0.0285694 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 46.8328 | 1.74657 | 0.873285 | − | 0.487210i | \(-0.161985\pi\) | ||||
0.873285 | + | 0.487210i | \(0.161985\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −8.47214 | −0.314647 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −25.7082 | −0.953465 | −0.476732 | − | 0.879049i | \(-0.658179\pi\) | ||||
−0.476732 | + | 0.879049i | \(0.658179\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 6.47214 | 0.239381 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 2.00000 | 0.0738717 | 0.0369358 | − | 0.999318i | \(-0.488240\pi\) | ||||
0.0369358 | + | 0.999318i | \(0.488240\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −8.00000 | −0.294684 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 35.0132 | 1.28798 | 0.643990 | − | 0.765034i | \(-0.277278\pi\) | ||||
0.643990 | + | 0.765034i | \(0.277278\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −6.11146 | −0.224208 | −0.112104 | − | 0.993697i | \(-0.535759\pi\) | ||||
−0.112104 | + | 0.993697i | \(0.535759\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 6.00000 | 0.219823 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 46.4721 | 1.69579 | 0.847896 | − | 0.530162i | \(-0.177869\pi\) | ||||
0.847896 | + | 0.530162i | \(0.177869\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 10.6525 | 0.387683 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −28.8328 | −1.04795 | −0.523973 | − | 0.851735i | \(-0.675551\pi\) | ||||
−0.523973 | + | 0.851735i | \(0.675551\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 30.0000 | 1.08750 | 0.543750 | − | 0.839248i | \(-0.317004\pi\) | ||||
0.543750 | + | 0.839248i | \(0.317004\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −5.70820 | −0.206111 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 14.9443 | 0.538904 | 0.269452 | − | 0.963014i | \(-0.413157\pi\) | ||||
0.269452 | + | 0.963014i | \(0.413157\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 28.2492 | 1.01605 | 0.508027 | − | 0.861341i | \(-0.330375\pi\) | ||||
0.508027 | + | 0.861341i | \(0.330375\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −5.70820 | −0.205045 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 8.36068 | 0.299552 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −0.583592 | −0.0208826 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −10.9443 | −0.390618 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −21.8885 | −0.780242 | −0.390121 | − | 0.920764i | \(-0.627567\pi\) | ||||
−0.390121 | + | 0.920764i | \(0.627567\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 4.47214 | 0.158810 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 22.0000 | 0.779280 | 0.389640 | − | 0.920967i | \(-0.372599\pi\) | ||||
0.389640 | + | 0.920967i | \(0.372599\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 25.8885 | 0.915871 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 5.75078 | 0.202940 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −4.47214 | −0.157232 | −0.0786160 | − | 0.996905i | \(-0.525050\pi\) | ||||
−0.0786160 | + | 0.996905i | \(0.525050\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 39.2361 | 1.37776 | 0.688882 | − | 0.724873i | \(-0.258102\pi\) | ||||
0.688882 | + | 0.724873i | \(0.258102\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −10.4721 | −0.366823 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −2.47214 | −0.0864891 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −5.05573 | −0.176446 | −0.0882231 | − | 0.996101i | \(-0.528119\pi\) | ||||
−0.0882231 | + | 0.996101i | \(0.528119\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −21.1246 | −0.736358 | −0.368179 | − | 0.929755i | \(-0.620019\pi\) | ||||
−0.368179 | + | 0.929755i | \(0.620019\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −26.8328 | −0.933068 | −0.466534 | − | 0.884503i | \(-0.654498\pi\) | ||||
−0.466534 | + | 0.884503i | \(0.654498\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 37.4164 | 1.29953 | 0.649763 | − | 0.760137i | \(-0.274868\pi\) | ||||
0.649763 | + | 0.760137i | \(0.274868\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000 | 0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −8.00000 | −0.276851 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 50.6525 | 1.74872 | 0.874359 | − | 0.485280i | \(-0.161282\pi\) | ||||
0.874359 | + | 0.485280i | \(0.161282\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 42.7771 | 1.47507 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 1.00000 | 0.0344010 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −27.4164 | −0.939822 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 12.4721 | 0.427038 | 0.213519 | − | 0.976939i | \(-0.431508\pi\) | ||||
0.213519 | + | 0.976939i | \(0.431508\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −21.0557 | −0.719250 | −0.359625 | − | 0.933097i | \(-0.617095\pi\) | ||||
−0.359625 | + | 0.933097i | \(0.617095\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 11.6393 | 0.397128 | 0.198564 | − | 0.980088i | \(-0.436372\pi\) | ||||
0.198564 | + | 0.980088i | \(0.436372\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −19.0557 | −0.648665 | −0.324332 | − | 0.945943i | \(-0.605140\pi\) | ||||
−0.324332 | + | 0.945943i | \(0.605140\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 10.9443 | 0.372116 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −4.94427 | −0.167723 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −10.4721 | −0.354835 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −17.7771 | −0.600290 | −0.300145 | − | 0.953894i | \(-0.597035\pi\) | ||||
−0.300145 | + | 0.953894i | \(0.597035\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 9.63932 | 0.324757 | 0.162378 | − | 0.986729i | \(-0.448083\pi\) | ||||
0.162378 | + | 0.986729i | \(0.448083\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −14.2918 | −0.480957 | −0.240479 | − | 0.970654i | \(-0.577304\pi\) | ||||
−0.240479 | + | 0.970654i | \(0.577304\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −4.76393 | −0.159957 | −0.0799786 | − | 0.996797i | \(-0.525485\pi\) | ||||
−0.0799786 | + | 0.996797i | \(0.525485\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −9.88854 | −0.330908 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −16.9443 | −0.566385 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 48.3607 | 1.61292 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −21.8885 | −0.729213 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0.472136 | 0.0156943 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −41.7082 | −1.38490 | −0.692449 | − | 0.721467i | \(-0.743468\pi\) | ||||
−0.692449 | + | 0.721467i | \(0.743468\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 3.05573 | 0.101130 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −38.4721 | −1.26908 | −0.634539 | − | 0.772891i | \(-0.718810\pi\) | ||||
−0.634539 | + | 0.772891i | \(0.718810\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −0.763932 | −0.0251451 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −8.47214 | −0.278562 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 18.9443 | 0.621541 | 0.310771 | − | 0.950485i | \(-0.399413\pi\) | ||||
0.310771 | + | 0.950485i | \(0.399413\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −5.34752 | −0.175258 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 1.52786 | 0.0499665 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −44.8328 | −1.46462 | −0.732312 | − | 0.680969i | \(-0.761559\pi\) | ||||
−0.732312 | + | 0.680969i | \(0.761559\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 35.4164 | 1.15332 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 39.0557 | 1.26914 | 0.634570 | − | 0.772865i | \(-0.281177\pi\) | ||||
0.634570 | + | 0.772865i | \(0.281177\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 7.52786 | 0.244365 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 7.16718 | 0.232168 | 0.116084 | − | 0.993239i | \(-0.462966\pi\) | ||||
0.116084 | + | 0.993239i | \(0.462966\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 17.8885 | 0.578860 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 1.58359 | 0.0510836 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 6.00000 | 0.193147 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 60.1378 | 1.93390 | 0.966950 | − | 0.254966i | \(-0.0820642\pi\) | ||||
0.966950 | + | 0.254966i | \(0.0820642\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −26.8328 | −0.861106 | −0.430553 | − | 0.902565i | \(-0.641681\pi\) | ||||
−0.430553 | + | 0.902565i | \(0.641681\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 15.5279 | 0.496780 | 0.248390 | − | 0.968660i | \(-0.420098\pi\) | ||||
0.248390 | + | 0.968660i | \(0.420098\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 7.63932 | 0.244154 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −7.63932 | −0.243656 | −0.121828 | − | 0.992551i | \(-0.538876\pi\) | ||||
−0.121828 | + | 0.992551i | \(0.538876\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −19.8885 | −0.633702 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −10.4721 | −0.332995 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −3.05573 | −0.0970684 | −0.0485342 | − | 0.998822i | \(-0.515455\pi\) | ||||
−0.0485342 | + | 0.998822i | \(0.515455\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 20.9443 | 0.663978 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0.832816 | 0.0263755 | 0.0131878 | − | 0.999913i | \(-0.495802\pi\) | ||||
0.0131878 | + | 0.999913i | \(0.495802\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 4680.2.a.bc.1.2 | 2 | ||
3.2 | odd | 2 | 520.2.a.g.1.2 | ✓ | 2 | ||
4.3 | odd | 2 | 9360.2.a.cs.1.1 | 2 | |||
12.11 | even | 2 | 1040.2.a.i.1.1 | 2 | |||
15.2 | even | 4 | 2600.2.d.j.1249.1 | 4 | |||
15.8 | even | 4 | 2600.2.d.j.1249.4 | 4 | |||
15.14 | odd | 2 | 2600.2.a.o.1.1 | 2 | |||
24.5 | odd | 2 | 4160.2.a.x.1.1 | 2 | |||
24.11 | even | 2 | 4160.2.a.bm.1.2 | 2 | |||
39.38 | odd | 2 | 6760.2.a.t.1.2 | 2 | |||
60.59 | even | 2 | 5200.2.a.bz.1.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
520.2.a.g.1.2 | ✓ | 2 | 3.2 | odd | 2 | ||
1040.2.a.i.1.1 | 2 | 12.11 | even | 2 | |||
2600.2.a.o.1.1 | 2 | 15.14 | odd | 2 | |||
2600.2.d.j.1249.1 | 4 | 15.2 | even | 4 | |||
2600.2.d.j.1249.4 | 4 | 15.8 | even | 4 | |||
4160.2.a.x.1.1 | 2 | 24.5 | odd | 2 | |||
4160.2.a.bm.1.2 | 2 | 24.11 | even | 2 | |||
4680.2.a.bc.1.2 | 2 | 1.1 | even | 1 | trivial | ||
5200.2.a.bz.1.2 | 2 | 60.59 | even | 2 | |||
6760.2.a.t.1.2 | 2 | 39.38 | odd | 2 | |||
9360.2.a.cs.1.1 | 2 | 4.3 | odd | 2 |