Properties

Label 4732.2.a.k.1.2
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30278 q^{3} -0.302776 q^{5} -1.00000 q^{7} +2.30278 q^{9} +6.30278 q^{11} -0.697224 q^{15} -1.60555 q^{17} +3.69722 q^{19} -2.30278 q^{21} +2.00000 q^{23} -4.90833 q^{25} -1.60555 q^{27} -0.302776 q^{29} -0.394449 q^{31} +14.5139 q^{33} +0.302776 q^{35} +9.21110 q^{37} -1.39445 q^{41} -5.90833 q^{43} -0.697224 q^{45} +11.6056 q^{47} +1.00000 q^{49} -3.69722 q^{51} +10.8167 q^{53} -1.90833 q^{55} +8.51388 q^{57} -5.60555 q^{59} +7.21110 q^{61} -2.30278 q^{63} +13.0000 q^{67} +4.60555 q^{69} -9.81665 q^{71} +11.2111 q^{73} -11.3028 q^{75} -6.30278 q^{77} +8.00000 q^{79} -10.6056 q^{81} -4.39445 q^{83} +0.486122 q^{85} -0.697224 q^{87} +5.09167 q^{89} -0.908327 q^{93} -1.11943 q^{95} -6.09167 q^{97} +14.5139 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 3 q^{5} - 2 q^{7} + q^{9} + 9 q^{11} - 5 q^{15} + 4 q^{17} + 11 q^{19} - q^{21} + 4 q^{23} + q^{25} + 4 q^{27} + 3 q^{29} - 8 q^{31} + 11 q^{33} - 3 q^{35} + 4 q^{37} - 10 q^{41} - q^{43}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.30278 1.32951 0.664754 0.747062i \(-0.268536\pi\)
0.664754 + 0.747062i \(0.268536\pi\)
\(4\) 0 0
\(5\) −0.302776 −0.135405 −0.0677027 0.997706i \(-0.521567\pi\)
−0.0677027 + 0.997706i \(0.521567\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.30278 0.767592
\(10\) 0 0
\(11\) 6.30278 1.90036 0.950179 0.311704i \(-0.100900\pi\)
0.950179 + 0.311704i \(0.100900\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −0.697224 −0.180023
\(16\) 0 0
\(17\) −1.60555 −0.389403 −0.194702 0.980863i \(-0.562374\pi\)
−0.194702 + 0.980863i \(0.562374\pi\)
\(18\) 0 0
\(19\) 3.69722 0.848201 0.424101 0.905615i \(-0.360590\pi\)
0.424101 + 0.905615i \(0.360590\pi\)
\(20\) 0 0
\(21\) −2.30278 −0.502507
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) −4.90833 −0.981665
\(26\) 0 0
\(27\) −1.60555 −0.308988
\(28\) 0 0
\(29\) −0.302776 −0.0562240 −0.0281120 0.999605i \(-0.508950\pi\)
−0.0281120 + 0.999605i \(0.508950\pi\)
\(30\) 0 0
\(31\) −0.394449 −0.0708451 −0.0354225 0.999372i \(-0.511278\pi\)
−0.0354225 + 0.999372i \(0.511278\pi\)
\(32\) 0 0
\(33\) 14.5139 2.52654
\(34\) 0 0
\(35\) 0.302776 0.0511784
\(36\) 0 0
\(37\) 9.21110 1.51430 0.757148 0.653243i \(-0.226592\pi\)
0.757148 + 0.653243i \(0.226592\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.39445 −0.217776 −0.108888 0.994054i \(-0.534729\pi\)
−0.108888 + 0.994054i \(0.534729\pi\)
\(42\) 0 0
\(43\) −5.90833 −0.901011 −0.450506 0.892774i \(-0.648756\pi\)
−0.450506 + 0.892774i \(0.648756\pi\)
\(44\) 0 0
\(45\) −0.697224 −0.103936
\(46\) 0 0
\(47\) 11.6056 1.69284 0.846422 0.532513i \(-0.178752\pi\)
0.846422 + 0.532513i \(0.178752\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −3.69722 −0.517715
\(52\) 0 0
\(53\) 10.8167 1.48578 0.742891 0.669413i \(-0.233454\pi\)
0.742891 + 0.669413i \(0.233454\pi\)
\(54\) 0 0
\(55\) −1.90833 −0.257319
\(56\) 0 0
\(57\) 8.51388 1.12769
\(58\) 0 0
\(59\) −5.60555 −0.729781 −0.364890 0.931051i \(-0.618894\pi\)
−0.364890 + 0.931051i \(0.618894\pi\)
\(60\) 0 0
\(61\) 7.21110 0.923287 0.461644 0.887066i \(-0.347260\pi\)
0.461644 + 0.887066i \(0.347260\pi\)
\(62\) 0 0
\(63\) −2.30278 −0.290122
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.0000 1.58820 0.794101 0.607785i \(-0.207942\pi\)
0.794101 + 0.607785i \(0.207942\pi\)
\(68\) 0 0
\(69\) 4.60555 0.554443
\(70\) 0 0
\(71\) −9.81665 −1.16502 −0.582511 0.812823i \(-0.697930\pi\)
−0.582511 + 0.812823i \(0.697930\pi\)
\(72\) 0 0
\(73\) 11.2111 1.31216 0.656080 0.754691i \(-0.272213\pi\)
0.656080 + 0.754691i \(0.272213\pi\)
\(74\) 0 0
\(75\) −11.3028 −1.30513
\(76\) 0 0
\(77\) −6.30278 −0.718268
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −10.6056 −1.17839
\(82\) 0 0
\(83\) −4.39445 −0.482353 −0.241177 0.970481i \(-0.577533\pi\)
−0.241177 + 0.970481i \(0.577533\pi\)
\(84\) 0 0
\(85\) 0.486122 0.0527273
\(86\) 0 0
\(87\) −0.697224 −0.0747503
\(88\) 0 0
\(89\) 5.09167 0.539716 0.269858 0.962900i \(-0.413023\pi\)
0.269858 + 0.962900i \(0.413023\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.908327 −0.0941891
\(94\) 0 0
\(95\) −1.11943 −0.114851
\(96\) 0 0
\(97\) −6.09167 −0.618516 −0.309258 0.950978i \(-0.600081\pi\)
−0.309258 + 0.950978i \(0.600081\pi\)
\(98\) 0 0
\(99\) 14.5139 1.45870
\(100\) 0 0
\(101\) 9.51388 0.946666 0.473333 0.880884i \(-0.343051\pi\)
0.473333 + 0.880884i \(0.343051\pi\)
\(102\) 0 0
\(103\) −6.81665 −0.671665 −0.335832 0.941922i \(-0.609018\pi\)
−0.335832 + 0.941922i \(0.609018\pi\)
\(104\) 0 0
\(105\) 0.697224 0.0680421
\(106\) 0 0
\(107\) −15.5139 −1.49978 −0.749892 0.661561i \(-0.769894\pi\)
−0.749892 + 0.661561i \(0.769894\pi\)
\(108\) 0 0
\(109\) −3.60555 −0.345349 −0.172675 0.984979i \(-0.555241\pi\)
−0.172675 + 0.984979i \(0.555241\pi\)
\(110\) 0 0
\(111\) 21.2111 2.01327
\(112\) 0 0
\(113\) −10.2111 −0.960580 −0.480290 0.877110i \(-0.659469\pi\)
−0.480290 + 0.877110i \(0.659469\pi\)
\(114\) 0 0
\(115\) −0.605551 −0.0564679
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.60555 0.147181
\(120\) 0 0
\(121\) 28.7250 2.61136
\(122\) 0 0
\(123\) −3.21110 −0.289535
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −11.9083 −1.05669 −0.528347 0.849029i \(-0.677188\pi\)
−0.528347 + 0.849029i \(0.677188\pi\)
\(128\) 0 0
\(129\) −13.6056 −1.19790
\(130\) 0 0
\(131\) −12.5139 −1.09334 −0.546671 0.837347i \(-0.684105\pi\)
−0.546671 + 0.837347i \(0.684105\pi\)
\(132\) 0 0
\(133\) −3.69722 −0.320590
\(134\) 0 0
\(135\) 0.486122 0.0418387
\(136\) 0 0
\(137\) 2.30278 0.196739 0.0983697 0.995150i \(-0.468637\pi\)
0.0983697 + 0.995150i \(0.468637\pi\)
\(138\) 0 0
\(139\) 7.90833 0.670776 0.335388 0.942080i \(-0.391133\pi\)
0.335388 + 0.942080i \(0.391133\pi\)
\(140\) 0 0
\(141\) 26.7250 2.25065
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0.0916731 0.00761304
\(146\) 0 0
\(147\) 2.30278 0.189930
\(148\) 0 0
\(149\) −0.908327 −0.0744130 −0.0372065 0.999308i \(-0.511846\pi\)
−0.0372065 + 0.999308i \(0.511846\pi\)
\(150\) 0 0
\(151\) −12.2111 −0.993725 −0.496863 0.867829i \(-0.665515\pi\)
−0.496863 + 0.867829i \(0.665515\pi\)
\(152\) 0 0
\(153\) −3.69722 −0.298903
\(154\) 0 0
\(155\) 0.119429 0.00959281
\(156\) 0 0
\(157\) 20.6972 1.65182 0.825909 0.563803i \(-0.190662\pi\)
0.825909 + 0.563803i \(0.190662\pi\)
\(158\) 0 0
\(159\) 24.9083 1.97536
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) −8.60555 −0.674039 −0.337019 0.941498i \(-0.609419\pi\)
−0.337019 + 0.941498i \(0.609419\pi\)
\(164\) 0 0
\(165\) −4.39445 −0.342107
\(166\) 0 0
\(167\) 22.8167 1.76561 0.882803 0.469744i \(-0.155654\pi\)
0.882803 + 0.469744i \(0.155654\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 8.51388 0.651073
\(172\) 0 0
\(173\) −20.8167 −1.58266 −0.791330 0.611389i \(-0.790611\pi\)
−0.791330 + 0.611389i \(0.790611\pi\)
\(174\) 0 0
\(175\) 4.90833 0.371035
\(176\) 0 0
\(177\) −12.9083 −0.970249
\(178\) 0 0
\(179\) −1.18335 −0.0884474 −0.0442237 0.999022i \(-0.514081\pi\)
−0.0442237 + 0.999022i \(0.514081\pi\)
\(180\) 0 0
\(181\) 1.39445 0.103649 0.0518243 0.998656i \(-0.483496\pi\)
0.0518243 + 0.998656i \(0.483496\pi\)
\(182\) 0 0
\(183\) 16.6056 1.22752
\(184\) 0 0
\(185\) −2.78890 −0.205044
\(186\) 0 0
\(187\) −10.1194 −0.740006
\(188\) 0 0
\(189\) 1.60555 0.116787
\(190\) 0 0
\(191\) 9.51388 0.688400 0.344200 0.938896i \(-0.388150\pi\)
0.344200 + 0.938896i \(0.388150\pi\)
\(192\) 0 0
\(193\) −25.6333 −1.84513 −0.922563 0.385847i \(-0.873909\pi\)
−0.922563 + 0.385847i \(0.873909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.90833 0.492198 0.246099 0.969245i \(-0.420851\pi\)
0.246099 + 0.969245i \(0.420851\pi\)
\(198\) 0 0
\(199\) 17.4222 1.23503 0.617514 0.786560i \(-0.288140\pi\)
0.617514 + 0.786560i \(0.288140\pi\)
\(200\) 0 0
\(201\) 29.9361 2.11153
\(202\) 0 0
\(203\) 0.302776 0.0212507
\(204\) 0 0
\(205\) 0.422205 0.0294881
\(206\) 0 0
\(207\) 4.60555 0.320108
\(208\) 0 0
\(209\) 23.3028 1.61189
\(210\) 0 0
\(211\) 17.4222 1.19939 0.599697 0.800227i \(-0.295288\pi\)
0.599697 + 0.800227i \(0.295288\pi\)
\(212\) 0 0
\(213\) −22.6056 −1.54891
\(214\) 0 0
\(215\) 1.78890 0.122002
\(216\) 0 0
\(217\) 0.394449 0.0267769
\(218\) 0 0
\(219\) 25.8167 1.74453
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 14.0917 0.943648 0.471824 0.881693i \(-0.343596\pi\)
0.471824 + 0.881693i \(0.343596\pi\)
\(224\) 0 0
\(225\) −11.3028 −0.753518
\(226\) 0 0
\(227\) 12.2111 0.810479 0.405240 0.914210i \(-0.367188\pi\)
0.405240 + 0.914210i \(0.367188\pi\)
\(228\) 0 0
\(229\) 1.39445 0.0921478 0.0460739 0.998938i \(-0.485329\pi\)
0.0460739 + 0.998938i \(0.485329\pi\)
\(230\) 0 0
\(231\) −14.5139 −0.954943
\(232\) 0 0
\(233\) 8.11943 0.531922 0.265961 0.963984i \(-0.414311\pi\)
0.265961 + 0.963984i \(0.414311\pi\)
\(234\) 0 0
\(235\) −3.51388 −0.229220
\(236\) 0 0
\(237\) 18.4222 1.19665
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) 4.88057 0.314385 0.157193 0.987568i \(-0.449756\pi\)
0.157193 + 0.987568i \(0.449756\pi\)
\(242\) 0 0
\(243\) −19.6056 −1.25770
\(244\) 0 0
\(245\) −0.302776 −0.0193436
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −10.1194 −0.641293
\(250\) 0 0
\(251\) 26.2389 1.65618 0.828091 0.560594i \(-0.189427\pi\)
0.828091 + 0.560594i \(0.189427\pi\)
\(252\) 0 0
\(253\) 12.6056 0.792504
\(254\) 0 0
\(255\) 1.11943 0.0701014
\(256\) 0 0
\(257\) −2.09167 −0.130475 −0.0652375 0.997870i \(-0.520780\pi\)
−0.0652375 + 0.997870i \(0.520780\pi\)
\(258\) 0 0
\(259\) −9.21110 −0.572350
\(260\) 0 0
\(261\) −0.697224 −0.0431571
\(262\) 0 0
\(263\) 10.3944 0.640949 0.320475 0.947257i \(-0.396158\pi\)
0.320475 + 0.947257i \(0.396158\pi\)
\(264\) 0 0
\(265\) −3.27502 −0.201183
\(266\) 0 0
\(267\) 11.7250 0.717557
\(268\) 0 0
\(269\) −25.5416 −1.55730 −0.778650 0.627458i \(-0.784095\pi\)
−0.778650 + 0.627458i \(0.784095\pi\)
\(270\) 0 0
\(271\) −2.21110 −0.134315 −0.0671575 0.997742i \(-0.521393\pi\)
−0.0671575 + 0.997742i \(0.521393\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −30.9361 −1.86552
\(276\) 0 0
\(277\) −3.42221 −0.205620 −0.102810 0.994701i \(-0.532783\pi\)
−0.102810 + 0.994701i \(0.532783\pi\)
\(278\) 0 0
\(279\) −0.908327 −0.0543801
\(280\) 0 0
\(281\) −15.8167 −0.943542 −0.471771 0.881721i \(-0.656385\pi\)
−0.471771 + 0.881721i \(0.656385\pi\)
\(282\) 0 0
\(283\) −20.4222 −1.21397 −0.606987 0.794712i \(-0.707622\pi\)
−0.606987 + 0.794712i \(0.707622\pi\)
\(284\) 0 0
\(285\) −2.57779 −0.152695
\(286\) 0 0
\(287\) 1.39445 0.0823117
\(288\) 0 0
\(289\) −14.4222 −0.848365
\(290\) 0 0
\(291\) −14.0278 −0.822322
\(292\) 0 0
\(293\) 23.3944 1.36672 0.683359 0.730082i \(-0.260518\pi\)
0.683359 + 0.730082i \(0.260518\pi\)
\(294\) 0 0
\(295\) 1.69722 0.0988162
\(296\) 0 0
\(297\) −10.1194 −0.587189
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 5.90833 0.340550
\(302\) 0 0
\(303\) 21.9083 1.25860
\(304\) 0 0
\(305\) −2.18335 −0.125018
\(306\) 0 0
\(307\) −12.5139 −0.714205 −0.357102 0.934065i \(-0.616235\pi\)
−0.357102 + 0.934065i \(0.616235\pi\)
\(308\) 0 0
\(309\) −15.6972 −0.892984
\(310\) 0 0
\(311\) 2.09167 0.118608 0.0593039 0.998240i \(-0.481112\pi\)
0.0593039 + 0.998240i \(0.481112\pi\)
\(312\) 0 0
\(313\) 25.0278 1.41465 0.707326 0.706887i \(-0.249901\pi\)
0.707326 + 0.706887i \(0.249901\pi\)
\(314\) 0 0
\(315\) 0.697224 0.0392841
\(316\) 0 0
\(317\) 29.2389 1.64222 0.821109 0.570771i \(-0.193356\pi\)
0.821109 + 0.570771i \(0.193356\pi\)
\(318\) 0 0
\(319\) −1.90833 −0.106846
\(320\) 0 0
\(321\) −35.7250 −1.99397
\(322\) 0 0
\(323\) −5.93608 −0.330293
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8.30278 −0.459145
\(328\) 0 0
\(329\) −11.6056 −0.639835
\(330\) 0 0
\(331\) −29.3305 −1.61215 −0.806076 0.591812i \(-0.798413\pi\)
−0.806076 + 0.591812i \(0.798413\pi\)
\(332\) 0 0
\(333\) 21.2111 1.16236
\(334\) 0 0
\(335\) −3.93608 −0.215051
\(336\) 0 0
\(337\) 10.3028 0.561228 0.280614 0.959821i \(-0.409462\pi\)
0.280614 + 0.959821i \(0.409462\pi\)
\(338\) 0 0
\(339\) −23.5139 −1.27710
\(340\) 0 0
\(341\) −2.48612 −0.134631
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −1.39445 −0.0750746
\(346\) 0 0
\(347\) −16.6056 −0.891433 −0.445716 0.895174i \(-0.647051\pi\)
−0.445716 + 0.895174i \(0.647051\pi\)
\(348\) 0 0
\(349\) −7.78890 −0.416930 −0.208465 0.978030i \(-0.566847\pi\)
−0.208465 + 0.978030i \(0.566847\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.9083 0.580592 0.290296 0.956937i \(-0.406246\pi\)
0.290296 + 0.956937i \(0.406246\pi\)
\(354\) 0 0
\(355\) 2.97224 0.157750
\(356\) 0 0
\(357\) 3.69722 0.195678
\(358\) 0 0
\(359\) −5.72498 −0.302153 −0.151076 0.988522i \(-0.548274\pi\)
−0.151076 + 0.988522i \(0.548274\pi\)
\(360\) 0 0
\(361\) −5.33053 −0.280554
\(362\) 0 0
\(363\) 66.1472 3.47183
\(364\) 0 0
\(365\) −3.39445 −0.177674
\(366\) 0 0
\(367\) 11.2111 0.585215 0.292607 0.956233i \(-0.405477\pi\)
0.292607 + 0.956233i \(0.405477\pi\)
\(368\) 0 0
\(369\) −3.21110 −0.167163
\(370\) 0 0
\(371\) −10.8167 −0.561573
\(372\) 0 0
\(373\) −1.48612 −0.0769485 −0.0384742 0.999260i \(-0.512250\pi\)
−0.0384742 + 0.999260i \(0.512250\pi\)
\(374\) 0 0
\(375\) 6.90833 0.356744
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −14.9083 −0.765789 −0.382895 0.923792i \(-0.625073\pi\)
−0.382895 + 0.923792i \(0.625073\pi\)
\(380\) 0 0
\(381\) −27.4222 −1.40488
\(382\) 0 0
\(383\) −9.90833 −0.506292 −0.253146 0.967428i \(-0.581465\pi\)
−0.253146 + 0.967428i \(0.581465\pi\)
\(384\) 0 0
\(385\) 1.90833 0.0972573
\(386\) 0 0
\(387\) −13.6056 −0.691609
\(388\) 0 0
\(389\) −27.2111 −1.37966 −0.689829 0.723973i \(-0.742314\pi\)
−0.689829 + 0.723973i \(0.742314\pi\)
\(390\) 0 0
\(391\) −3.21110 −0.162392
\(392\) 0 0
\(393\) −28.8167 −1.45361
\(394\) 0 0
\(395\) −2.42221 −0.121874
\(396\) 0 0
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) 0 0
\(399\) −8.51388 −0.426227
\(400\) 0 0
\(401\) 15.6972 0.783882 0.391941 0.919990i \(-0.371804\pi\)
0.391941 + 0.919990i \(0.371804\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.21110 0.159561
\(406\) 0 0
\(407\) 58.0555 2.87770
\(408\) 0 0
\(409\) 21.9361 1.08467 0.542335 0.840162i \(-0.317540\pi\)
0.542335 + 0.840162i \(0.317540\pi\)
\(410\) 0 0
\(411\) 5.30278 0.261567
\(412\) 0 0
\(413\) 5.60555 0.275831
\(414\) 0 0
\(415\) 1.33053 0.0653132
\(416\) 0 0
\(417\) 18.2111 0.891802
\(418\) 0 0
\(419\) −36.2111 −1.76903 −0.884514 0.466514i \(-0.845510\pi\)
−0.884514 + 0.466514i \(0.845510\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) 26.7250 1.29941
\(424\) 0 0
\(425\) 7.88057 0.382264
\(426\) 0 0
\(427\) −7.21110 −0.348970
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 40.3305 1.94265 0.971327 0.237749i \(-0.0764095\pi\)
0.971327 + 0.237749i \(0.0764095\pi\)
\(432\) 0 0
\(433\) 11.6056 0.557727 0.278864 0.960331i \(-0.410042\pi\)
0.278864 + 0.960331i \(0.410042\pi\)
\(434\) 0 0
\(435\) 0.211103 0.0101216
\(436\) 0 0
\(437\) 7.39445 0.353724
\(438\) 0 0
\(439\) −29.1194 −1.38979 −0.694897 0.719109i \(-0.744550\pi\)
−0.694897 + 0.719109i \(0.744550\pi\)
\(440\) 0 0
\(441\) 2.30278 0.109656
\(442\) 0 0
\(443\) 1.81665 0.0863118 0.0431559 0.999068i \(-0.486259\pi\)
0.0431559 + 0.999068i \(0.486259\pi\)
\(444\) 0 0
\(445\) −1.54163 −0.0730805
\(446\) 0 0
\(447\) −2.09167 −0.0989327
\(448\) 0 0
\(449\) −23.2111 −1.09540 −0.547700 0.836675i \(-0.684496\pi\)
−0.547700 + 0.836675i \(0.684496\pi\)
\(450\) 0 0
\(451\) −8.78890 −0.413853
\(452\) 0 0
\(453\) −28.1194 −1.32117
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.57779 −0.0738061 −0.0369031 0.999319i \(-0.511749\pi\)
−0.0369031 + 0.999319i \(0.511749\pi\)
\(458\) 0 0
\(459\) 2.57779 0.120321
\(460\) 0 0
\(461\) −33.1472 −1.54382 −0.771909 0.635733i \(-0.780698\pi\)
−0.771909 + 0.635733i \(0.780698\pi\)
\(462\) 0 0
\(463\) −35.8444 −1.66583 −0.832916 0.553400i \(-0.813330\pi\)
−0.832916 + 0.553400i \(0.813330\pi\)
\(464\) 0 0
\(465\) 0.275019 0.0127537
\(466\) 0 0
\(467\) −36.0278 −1.66717 −0.833583 0.552394i \(-0.813714\pi\)
−0.833583 + 0.552394i \(0.813714\pi\)
\(468\) 0 0
\(469\) −13.0000 −0.600284
\(470\) 0 0
\(471\) 47.6611 2.19611
\(472\) 0 0
\(473\) −37.2389 −1.71224
\(474\) 0 0
\(475\) −18.1472 −0.832650
\(476\) 0 0
\(477\) 24.9083 1.14047
\(478\) 0 0
\(479\) −26.7250 −1.22110 −0.610548 0.791979i \(-0.709051\pi\)
−0.610548 + 0.791979i \(0.709051\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −4.60555 −0.209560
\(484\) 0 0
\(485\) 1.84441 0.0837504
\(486\) 0 0
\(487\) 4.09167 0.185411 0.0927057 0.995694i \(-0.470448\pi\)
0.0927057 + 0.995694i \(0.470448\pi\)
\(488\) 0 0
\(489\) −19.8167 −0.896140
\(490\) 0 0
\(491\) −10.0917 −0.455431 −0.227715 0.973728i \(-0.573126\pi\)
−0.227715 + 0.973728i \(0.573126\pi\)
\(492\) 0 0
\(493\) 0.486122 0.0218938
\(494\) 0 0
\(495\) −4.39445 −0.197516
\(496\) 0 0
\(497\) 9.81665 0.440337
\(498\) 0 0
\(499\) 29.5416 1.32247 0.661233 0.750181i \(-0.270034\pi\)
0.661233 + 0.750181i \(0.270034\pi\)
\(500\) 0 0
\(501\) 52.5416 2.34739
\(502\) 0 0
\(503\) 20.1194 0.897081 0.448541 0.893763i \(-0.351944\pi\)
0.448541 + 0.893763i \(0.351944\pi\)
\(504\) 0 0
\(505\) −2.88057 −0.128184
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.42221 0.328983 0.164492 0.986378i \(-0.447402\pi\)
0.164492 + 0.986378i \(0.447402\pi\)
\(510\) 0 0
\(511\) −11.2111 −0.495950
\(512\) 0 0
\(513\) −5.93608 −0.262084
\(514\) 0 0
\(515\) 2.06392 0.0909470
\(516\) 0 0
\(517\) 73.1472 3.21701
\(518\) 0 0
\(519\) −47.9361 −2.10416
\(520\) 0 0
\(521\) −23.4500 −1.02736 −0.513681 0.857981i \(-0.671718\pi\)
−0.513681 + 0.857981i \(0.671718\pi\)
\(522\) 0 0
\(523\) −35.4500 −1.55012 −0.775059 0.631889i \(-0.782280\pi\)
−0.775059 + 0.631889i \(0.782280\pi\)
\(524\) 0 0
\(525\) 11.3028 0.493294
\(526\) 0 0
\(527\) 0.633308 0.0275873
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −12.9083 −0.560174
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 4.69722 0.203079
\(536\) 0 0
\(537\) −2.72498 −0.117592
\(538\) 0 0
\(539\) 6.30278 0.271480
\(540\) 0 0
\(541\) −8.11943 −0.349082 −0.174541 0.984650i \(-0.555844\pi\)
−0.174541 + 0.984650i \(0.555844\pi\)
\(542\) 0 0
\(543\) 3.21110 0.137802
\(544\) 0 0
\(545\) 1.09167 0.0467621
\(546\) 0 0
\(547\) −37.2389 −1.59222 −0.796109 0.605153i \(-0.793112\pi\)
−0.796109 + 0.605153i \(0.793112\pi\)
\(548\) 0 0
\(549\) 16.6056 0.708708
\(550\) 0 0
\(551\) −1.11943 −0.0476893
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) −6.42221 −0.272607
\(556\) 0 0
\(557\) 5.30278 0.224686 0.112343 0.993669i \(-0.464164\pi\)
0.112343 + 0.993669i \(0.464164\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −23.3028 −0.983844
\(562\) 0 0
\(563\) −37.6333 −1.58605 −0.793027 0.609186i \(-0.791496\pi\)
−0.793027 + 0.609186i \(0.791496\pi\)
\(564\) 0 0
\(565\) 3.09167 0.130068
\(566\) 0 0
\(567\) 10.6056 0.445391
\(568\) 0 0
\(569\) −4.78890 −0.200761 −0.100381 0.994949i \(-0.532006\pi\)
−0.100381 + 0.994949i \(0.532006\pi\)
\(570\) 0 0
\(571\) 19.8806 0.831976 0.415988 0.909370i \(-0.363436\pi\)
0.415988 + 0.909370i \(0.363436\pi\)
\(572\) 0 0
\(573\) 21.9083 0.915233
\(574\) 0 0
\(575\) −9.81665 −0.409383
\(576\) 0 0
\(577\) −28.8167 −1.19965 −0.599826 0.800130i \(-0.704764\pi\)
−0.599826 + 0.800130i \(0.704764\pi\)
\(578\) 0 0
\(579\) −59.0278 −2.45311
\(580\) 0 0
\(581\) 4.39445 0.182312
\(582\) 0 0
\(583\) 68.1749 2.82352
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.4861 0.969376 0.484688 0.874687i \(-0.338933\pi\)
0.484688 + 0.874687i \(0.338933\pi\)
\(588\) 0 0
\(589\) −1.45837 −0.0600909
\(590\) 0 0
\(591\) 15.9083 0.654381
\(592\) 0 0
\(593\) −18.0917 −0.742936 −0.371468 0.928446i \(-0.621145\pi\)
−0.371468 + 0.928446i \(0.621145\pi\)
\(594\) 0 0
\(595\) −0.486122 −0.0199291
\(596\) 0 0
\(597\) 40.1194 1.64198
\(598\) 0 0
\(599\) 16.1472 0.659756 0.329878 0.944024i \(-0.392992\pi\)
0.329878 + 0.944024i \(0.392992\pi\)
\(600\) 0 0
\(601\) 20.1194 0.820689 0.410344 0.911931i \(-0.365409\pi\)
0.410344 + 0.911931i \(0.365409\pi\)
\(602\) 0 0
\(603\) 29.9361 1.21909
\(604\) 0 0
\(605\) −8.69722 −0.353592
\(606\) 0 0
\(607\) −39.8444 −1.61723 −0.808617 0.588335i \(-0.799784\pi\)
−0.808617 + 0.588335i \(0.799784\pi\)
\(608\) 0 0
\(609\) 0.697224 0.0282530
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −33.7250 −1.36214 −0.681070 0.732219i \(-0.738485\pi\)
−0.681070 + 0.732219i \(0.738485\pi\)
\(614\) 0 0
\(615\) 0.972244 0.0392046
\(616\) 0 0
\(617\) 28.6333 1.15273 0.576367 0.817191i \(-0.304470\pi\)
0.576367 + 0.817191i \(0.304470\pi\)
\(618\) 0 0
\(619\) −8.42221 −0.338517 −0.169259 0.985572i \(-0.554137\pi\)
−0.169259 + 0.985572i \(0.554137\pi\)
\(620\) 0 0
\(621\) −3.21110 −0.128857
\(622\) 0 0
\(623\) −5.09167 −0.203994
\(624\) 0 0
\(625\) 23.6333 0.945332
\(626\) 0 0
\(627\) 53.6611 2.14302
\(628\) 0 0
\(629\) −14.7889 −0.589672
\(630\) 0 0
\(631\) −31.0917 −1.23774 −0.618870 0.785493i \(-0.712409\pi\)
−0.618870 + 0.785493i \(0.712409\pi\)
\(632\) 0 0
\(633\) 40.1194 1.59460
\(634\) 0 0
\(635\) 3.60555 0.143082
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −22.6056 −0.894262
\(640\) 0 0
\(641\) −8.69722 −0.343520 −0.171760 0.985139i \(-0.554945\pi\)
−0.171760 + 0.985139i \(0.554945\pi\)
\(642\) 0 0
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) 4.11943 0.162202
\(646\) 0 0
\(647\) 14.6056 0.574203 0.287102 0.957900i \(-0.407308\pi\)
0.287102 + 0.957900i \(0.407308\pi\)
\(648\) 0 0
\(649\) −35.3305 −1.38684
\(650\) 0 0
\(651\) 0.908327 0.0356001
\(652\) 0 0
\(653\) −39.3583 −1.54021 −0.770104 0.637918i \(-0.779796\pi\)
−0.770104 + 0.637918i \(0.779796\pi\)
\(654\) 0 0
\(655\) 3.78890 0.148044
\(656\) 0 0
\(657\) 25.8167 1.00720
\(658\) 0 0
\(659\) 49.2666 1.91915 0.959577 0.281445i \(-0.0908136\pi\)
0.959577 + 0.281445i \(0.0908136\pi\)
\(660\) 0 0
\(661\) −5.39445 −0.209820 −0.104910 0.994482i \(-0.533455\pi\)
−0.104910 + 0.994482i \(0.533455\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.11943 0.0434096
\(666\) 0 0
\(667\) −0.605551 −0.0234470
\(668\) 0 0
\(669\) 32.4500 1.25459
\(670\) 0 0
\(671\) 45.4500 1.75458
\(672\) 0 0
\(673\) 33.7889 1.30247 0.651233 0.758878i \(-0.274252\pi\)
0.651233 + 0.758878i \(0.274252\pi\)
\(674\) 0 0
\(675\) 7.88057 0.303323
\(676\) 0 0
\(677\) 14.3028 0.549700 0.274850 0.961487i \(-0.411372\pi\)
0.274850 + 0.961487i \(0.411372\pi\)
\(678\) 0 0
\(679\) 6.09167 0.233777
\(680\) 0 0
\(681\) 28.1194 1.07754
\(682\) 0 0
\(683\) 11.1833 0.427919 0.213959 0.976843i \(-0.431364\pi\)
0.213959 + 0.976843i \(0.431364\pi\)
\(684\) 0 0
\(685\) −0.697224 −0.0266396
\(686\) 0 0
\(687\) 3.21110 0.122511
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 44.5416 1.69444 0.847222 0.531239i \(-0.178273\pi\)
0.847222 + 0.531239i \(0.178273\pi\)
\(692\) 0 0
\(693\) −14.5139 −0.551337
\(694\) 0 0
\(695\) −2.39445 −0.0908266
\(696\) 0 0
\(697\) 2.23886 0.0848028
\(698\) 0 0
\(699\) 18.6972 0.707194
\(700\) 0 0
\(701\) −19.8167 −0.748465 −0.374232 0.927335i \(-0.622094\pi\)
−0.374232 + 0.927335i \(0.622094\pi\)
\(702\) 0 0
\(703\) 34.0555 1.28443
\(704\) 0 0
\(705\) −8.09167 −0.304750
\(706\) 0 0
\(707\) −9.51388 −0.357806
\(708\) 0 0
\(709\) −3.51388 −0.131966 −0.0659832 0.997821i \(-0.521018\pi\)
−0.0659832 + 0.997821i \(0.521018\pi\)
\(710\) 0 0
\(711\) 18.4222 0.690887
\(712\) 0 0
\(713\) −0.788897 −0.0295444
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.7250 0.773989
\(718\) 0 0
\(719\) −20.8167 −0.776330 −0.388165 0.921590i \(-0.626891\pi\)
−0.388165 + 0.921590i \(0.626891\pi\)
\(720\) 0 0
\(721\) 6.81665 0.253865
\(722\) 0 0
\(723\) 11.2389 0.417978
\(724\) 0 0
\(725\) 1.48612 0.0551932
\(726\) 0 0
\(727\) 41.6056 1.54306 0.771532 0.636190i \(-0.219491\pi\)
0.771532 + 0.636190i \(0.219491\pi\)
\(728\) 0 0
\(729\) −13.3305 −0.493723
\(730\) 0 0
\(731\) 9.48612 0.350857
\(732\) 0 0
\(733\) 16.9361 0.625549 0.312774 0.949827i \(-0.398742\pi\)
0.312774 + 0.949827i \(0.398742\pi\)
\(734\) 0 0
\(735\) −0.697224 −0.0257175
\(736\) 0 0
\(737\) 81.9361 3.01815
\(738\) 0 0
\(739\) −34.6056 −1.27299 −0.636493 0.771283i \(-0.719616\pi\)
−0.636493 + 0.771283i \(0.719616\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.27502 0.156835 0.0784176 0.996921i \(-0.475013\pi\)
0.0784176 + 0.996921i \(0.475013\pi\)
\(744\) 0 0
\(745\) 0.275019 0.0100759
\(746\) 0 0
\(747\) −10.1194 −0.370251
\(748\) 0 0
\(749\) 15.5139 0.566865
\(750\) 0 0
\(751\) −17.7889 −0.649126 −0.324563 0.945864i \(-0.605217\pi\)
−0.324563 + 0.945864i \(0.605217\pi\)
\(752\) 0 0
\(753\) 60.4222 2.20191
\(754\) 0 0
\(755\) 3.69722 0.134556
\(756\) 0 0
\(757\) −42.4222 −1.54186 −0.770931 0.636919i \(-0.780209\pi\)
−0.770931 + 0.636919i \(0.780209\pi\)
\(758\) 0 0
\(759\) 29.0278 1.05364
\(760\) 0 0
\(761\) −42.6972 −1.54777 −0.773887 0.633324i \(-0.781690\pi\)
−0.773887 + 0.633324i \(0.781690\pi\)
\(762\) 0 0
\(763\) 3.60555 0.130530
\(764\) 0 0
\(765\) 1.11943 0.0404731
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −25.6056 −0.923360 −0.461680 0.887047i \(-0.652753\pi\)
−0.461680 + 0.887047i \(0.652753\pi\)
\(770\) 0 0
\(771\) −4.81665 −0.173468
\(772\) 0 0
\(773\) −26.8167 −0.964528 −0.482264 0.876026i \(-0.660185\pi\)
−0.482264 + 0.876026i \(0.660185\pi\)
\(774\) 0 0
\(775\) 1.93608 0.0695462
\(776\) 0 0
\(777\) −21.2111 −0.760944
\(778\) 0 0
\(779\) −5.15559 −0.184718
\(780\) 0 0
\(781\) −61.8722 −2.21396
\(782\) 0 0
\(783\) 0.486122 0.0173726
\(784\) 0 0
\(785\) −6.26662 −0.223665
\(786\) 0 0
\(787\) 38.0000 1.35455 0.677277 0.735728i \(-0.263160\pi\)
0.677277 + 0.735728i \(0.263160\pi\)
\(788\) 0 0
\(789\) 23.9361 0.852147
\(790\) 0 0
\(791\) 10.2111 0.363065
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −7.54163 −0.267474
\(796\) 0 0
\(797\) 11.4500 0.405578 0.202789 0.979222i \(-0.434999\pi\)
0.202789 + 0.979222i \(0.434999\pi\)
\(798\) 0 0
\(799\) −18.6333 −0.659199
\(800\) 0 0
\(801\) 11.7250 0.414282
\(802\) 0 0
\(803\) 70.6611 2.49357
\(804\) 0 0
\(805\) 0.605551 0.0213429
\(806\) 0 0
\(807\) −58.8167 −2.07044
\(808\) 0 0
\(809\) −5.36669 −0.188683 −0.0943414 0.995540i \(-0.530075\pi\)
−0.0943414 + 0.995540i \(0.530075\pi\)
\(810\) 0 0
\(811\) 16.7250 0.587294 0.293647 0.955914i \(-0.405131\pi\)
0.293647 + 0.955914i \(0.405131\pi\)
\(812\) 0 0
\(813\) −5.09167 −0.178573
\(814\) 0 0
\(815\) 2.60555 0.0912685
\(816\) 0 0
\(817\) −21.8444 −0.764239
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −43.8444 −1.53018 −0.765090 0.643923i \(-0.777306\pi\)
−0.765090 + 0.643923i \(0.777306\pi\)
\(822\) 0 0
\(823\) −37.6056 −1.31085 −0.655424 0.755262i \(-0.727510\pi\)
−0.655424 + 0.755262i \(0.727510\pi\)
\(824\) 0 0
\(825\) −71.2389 −2.48022
\(826\) 0 0
\(827\) 38.9361 1.35394 0.676970 0.736010i \(-0.263293\pi\)
0.676970 + 0.736010i \(0.263293\pi\)
\(828\) 0 0
\(829\) −43.9361 −1.52596 −0.762982 0.646420i \(-0.776265\pi\)
−0.762982 + 0.646420i \(0.776265\pi\)
\(830\) 0 0
\(831\) −7.88057 −0.273374
\(832\) 0 0
\(833\) −1.60555 −0.0556291
\(834\) 0 0
\(835\) −6.90833 −0.239073
\(836\) 0 0
\(837\) 0.633308 0.0218903
\(838\) 0 0
\(839\) 37.9361 1.30970 0.654850 0.755759i \(-0.272732\pi\)
0.654850 + 0.755759i \(0.272732\pi\)
\(840\) 0 0
\(841\) −28.9083 −0.996839
\(842\) 0 0
\(843\) −36.4222 −1.25445
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −28.7250 −0.987002
\(848\) 0 0
\(849\) −47.0278 −1.61399
\(850\) 0 0
\(851\) 18.4222 0.631505
\(852\) 0 0
\(853\) −11.0000 −0.376633 −0.188316 0.982108i \(-0.560303\pi\)
−0.188316 + 0.982108i \(0.560303\pi\)
\(854\) 0 0
\(855\) −2.57779 −0.0881587
\(856\) 0 0
\(857\) −46.9361 −1.60331 −0.801653 0.597790i \(-0.796046\pi\)
−0.801653 + 0.597790i \(0.796046\pi\)
\(858\) 0 0
\(859\) −43.2111 −1.47434 −0.737172 0.675705i \(-0.763839\pi\)
−0.737172 + 0.675705i \(0.763839\pi\)
\(860\) 0 0
\(861\) 3.21110 0.109434
\(862\) 0 0
\(863\) 36.7889 1.25231 0.626154 0.779699i \(-0.284628\pi\)
0.626154 + 0.779699i \(0.284628\pi\)
\(864\) 0 0
\(865\) 6.30278 0.214301
\(866\) 0 0
\(867\) −33.2111 −1.12791
\(868\) 0 0
\(869\) 50.4222 1.71046
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −14.0278 −0.474768
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) −2.02776 −0.0684725 −0.0342362 0.999414i \(-0.510900\pi\)
−0.0342362 + 0.999414i \(0.510900\pi\)
\(878\) 0 0
\(879\) 53.8722 1.81706
\(880\) 0 0
\(881\) 48.2111 1.62427 0.812137 0.583467i \(-0.198304\pi\)
0.812137 + 0.583467i \(0.198304\pi\)
\(882\) 0 0
\(883\) −5.97224 −0.200982 −0.100491 0.994938i \(-0.532041\pi\)
−0.100491 + 0.994938i \(0.532041\pi\)
\(884\) 0 0
\(885\) 3.90833 0.131377
\(886\) 0 0
\(887\) −42.6056 −1.43055 −0.715277 0.698841i \(-0.753700\pi\)
−0.715277 + 0.698841i \(0.753700\pi\)
\(888\) 0 0
\(889\) 11.9083 0.399392
\(890\) 0 0
\(891\) −66.8444 −2.23937
\(892\) 0 0
\(893\) 42.9083 1.43587
\(894\) 0 0
\(895\) 0.358288 0.0119763
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.119429 0.00398320
\(900\) 0 0
\(901\) −17.3667 −0.578568
\(902\) 0 0
\(903\) 13.6056 0.452764
\(904\) 0 0
\(905\) −0.422205 −0.0140346
\(906\) 0 0
\(907\) 51.6333 1.71446 0.857228 0.514937i \(-0.172185\pi\)
0.857228 + 0.514937i \(0.172185\pi\)
\(908\) 0 0
\(909\) 21.9083 0.726653
\(910\) 0 0
\(911\) 4.54163 0.150471 0.0752355 0.997166i \(-0.476029\pi\)
0.0752355 + 0.997166i \(0.476029\pi\)
\(912\) 0 0
\(913\) −27.6972 −0.916644
\(914\) 0 0
\(915\) −5.02776 −0.166212
\(916\) 0 0
\(917\) 12.5139 0.413245
\(918\) 0 0
\(919\) −27.2111 −0.897611 −0.448806 0.893629i \(-0.648150\pi\)
−0.448806 + 0.893629i \(0.648150\pi\)
\(920\) 0 0
\(921\) −28.8167 −0.949541
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −45.2111 −1.48653
\(926\) 0 0
\(927\) −15.6972 −0.515564
\(928\) 0 0
\(929\) −42.6333 −1.39875 −0.699377 0.714753i \(-0.746539\pi\)
−0.699377 + 0.714753i \(0.746539\pi\)
\(930\) 0 0
\(931\) 3.69722 0.121172
\(932\) 0 0
\(933\) 4.81665 0.157690
\(934\) 0 0
\(935\) 3.06392 0.100201
\(936\) 0 0
\(937\) −5.36669 −0.175322 −0.0876611 0.996150i \(-0.527939\pi\)
−0.0876611 + 0.996150i \(0.527939\pi\)
\(938\) 0 0
\(939\) 57.6333 1.88079
\(940\) 0 0
\(941\) −7.78890 −0.253911 −0.126955 0.991908i \(-0.540521\pi\)
−0.126955 + 0.991908i \(0.540521\pi\)
\(942\) 0 0
\(943\) −2.78890 −0.0908190
\(944\) 0 0
\(945\) −0.486122 −0.0158135
\(946\) 0 0
\(947\) −27.6972 −0.900039 −0.450019 0.893019i \(-0.648583\pi\)
−0.450019 + 0.893019i \(0.648583\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 67.3305 2.18334
\(952\) 0 0
\(953\) −16.6333 −0.538806 −0.269403 0.963028i \(-0.586826\pi\)
−0.269403 + 0.963028i \(0.586826\pi\)
\(954\) 0 0
\(955\) −2.88057 −0.0932131
\(956\) 0 0
\(957\) −4.39445 −0.142052
\(958\) 0 0
\(959\) −2.30278 −0.0743605
\(960\) 0 0
\(961\) −30.8444 −0.994981
\(962\) 0 0
\(963\) −35.7250 −1.15122
\(964\) 0 0
\(965\) 7.76114 0.249840
\(966\) 0 0
\(967\) 30.3944 0.977420 0.488710 0.872446i \(-0.337468\pi\)
0.488710 + 0.872446i \(0.337468\pi\)
\(968\) 0 0
\(969\) −13.6695 −0.439127
\(970\) 0 0
\(971\) 39.0000 1.25157 0.625785 0.779996i \(-0.284779\pi\)
0.625785 + 0.779996i \(0.284779\pi\)
\(972\) 0 0
\(973\) −7.90833 −0.253529
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.6333 0.980046 0.490023 0.871709i \(-0.336988\pi\)
0.490023 + 0.871709i \(0.336988\pi\)
\(978\) 0 0
\(979\) 32.0917 1.02565
\(980\) 0 0
\(981\) −8.30278 −0.265087
\(982\) 0 0
\(983\) −5.54163 −0.176751 −0.0883753 0.996087i \(-0.528167\pi\)
−0.0883753 + 0.996087i \(0.528167\pi\)
\(984\) 0 0
\(985\) −2.09167 −0.0666462
\(986\) 0 0
\(987\) −26.7250 −0.850666
\(988\) 0 0
\(989\) −11.8167 −0.375748
\(990\) 0 0
\(991\) −24.9083 −0.791239 −0.395620 0.918414i \(-0.629470\pi\)
−0.395620 + 0.918414i \(0.629470\pi\)
\(992\) 0 0
\(993\) −67.5416 −2.14337
\(994\) 0 0
\(995\) −5.27502 −0.167229
\(996\) 0 0
\(997\) −32.3944 −1.02594 −0.512971 0.858406i \(-0.671455\pi\)
−0.512971 + 0.858406i \(0.671455\pi\)
\(998\) 0 0
\(999\) −14.7889 −0.467900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.k.1.2 2
13.3 even 3 364.2.k.c.113.1 yes 4
13.5 odd 4 4732.2.g.g.337.4 4
13.8 odd 4 4732.2.g.g.337.3 4
13.9 even 3 364.2.k.c.29.1 4
13.12 even 2 4732.2.a.j.1.2 2
39.29 odd 6 3276.2.z.d.3025.2 4
39.35 odd 6 3276.2.z.d.757.2 4
52.3 odd 6 1456.2.s.m.113.2 4
52.35 odd 6 1456.2.s.m.1121.2 4
91.3 odd 6 2548.2.l.i.373.1 4
91.9 even 3 2548.2.l.k.1537.2 4
91.16 even 3 2548.2.i.j.165.1 4
91.48 odd 6 2548.2.k.f.393.2 4
91.55 odd 6 2548.2.k.f.1569.2 4
91.61 odd 6 2548.2.l.i.1537.1 4
91.68 odd 6 2548.2.i.l.165.2 4
91.74 even 3 2548.2.i.j.1745.1 4
91.81 even 3 2548.2.l.k.373.2 4
91.87 odd 6 2548.2.i.l.1745.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.k.c.29.1 4 13.9 even 3
364.2.k.c.113.1 yes 4 13.3 even 3
1456.2.s.m.113.2 4 52.3 odd 6
1456.2.s.m.1121.2 4 52.35 odd 6
2548.2.i.j.165.1 4 91.16 even 3
2548.2.i.j.1745.1 4 91.74 even 3
2548.2.i.l.165.2 4 91.68 odd 6
2548.2.i.l.1745.2 4 91.87 odd 6
2548.2.k.f.393.2 4 91.48 odd 6
2548.2.k.f.1569.2 4 91.55 odd 6
2548.2.l.i.373.1 4 91.3 odd 6
2548.2.l.i.1537.1 4 91.61 odd 6
2548.2.l.k.373.2 4 91.81 even 3
2548.2.l.k.1537.2 4 91.9 even 3
3276.2.z.d.757.2 4 39.35 odd 6
3276.2.z.d.3025.2 4 39.29 odd 6
4732.2.a.j.1.2 2 13.12 even 2
4732.2.a.k.1.2 2 1.1 even 1 trivial
4732.2.g.g.337.3 4 13.8 odd 4
4732.2.g.g.337.4 4 13.5 odd 4