Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(1,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 475.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 19) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.a.b | 1 | |
3.b | odd | 2 | 1 | 4275.2.a.i | 1 | ||
4.b | odd | 2 | 1 | 7600.2.a.c | 1 | ||
5.b | even | 2 | 1 | 19.2.a.a | ✓ | 1 | |
5.c | odd | 4 | 2 | 475.2.b.a | 2 | ||
15.d | odd | 2 | 1 | 171.2.a.b | 1 | ||
19.b | odd | 2 | 1 | 9025.2.a.d | 1 | ||
20.d | odd | 2 | 1 | 304.2.a.f | 1 | ||
35.c | odd | 2 | 1 | 931.2.a.a | 1 | ||
35.i | odd | 6 | 2 | 931.2.f.b | 2 | ||
35.j | even | 6 | 2 | 931.2.f.c | 2 | ||
40.e | odd | 2 | 1 | 1216.2.a.b | 1 | ||
40.f | even | 2 | 1 | 1216.2.a.o | 1 | ||
55.d | odd | 2 | 1 | 2299.2.a.b | 1 | ||
60.h | even | 2 | 1 | 2736.2.a.c | 1 | ||
65.d | even | 2 | 1 | 3211.2.a.a | 1 | ||
85.c | even | 2 | 1 | 5491.2.a.b | 1 | ||
95.d | odd | 2 | 1 | 361.2.a.b | 1 | ||
95.h | odd | 6 | 2 | 361.2.c.a | 2 | ||
95.i | even | 6 | 2 | 361.2.c.c | 2 | ||
95.o | odd | 18 | 6 | 361.2.e.e | 6 | ||
95.p | even | 18 | 6 | 361.2.e.d | 6 | ||
105.g | even | 2 | 1 | 8379.2.a.j | 1 | ||
285.b | even | 2 | 1 | 3249.2.a.d | 1 | ||
380.d | even | 2 | 1 | 5776.2.a.c | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
19.2.a.a | ✓ | 1 | 5.b | even | 2 | 1 | |
171.2.a.b | 1 | 15.d | odd | 2 | 1 | ||
304.2.a.f | 1 | 20.d | odd | 2 | 1 | ||
361.2.a.b | 1 | 95.d | odd | 2 | 1 | ||
361.2.c.a | 2 | 95.h | odd | 6 | 2 | ||
361.2.c.c | 2 | 95.i | even | 6 | 2 | ||
361.2.e.d | 6 | 95.p | even | 18 | 6 | ||
361.2.e.e | 6 | 95.o | odd | 18 | 6 | ||
475.2.a.b | 1 | 1.a | even | 1 | 1 | trivial | |
475.2.b.a | 2 | 5.c | odd | 4 | 2 | ||
931.2.a.a | 1 | 35.c | odd | 2 | 1 | ||
931.2.f.b | 2 | 35.i | odd | 6 | 2 | ||
931.2.f.c | 2 | 35.j | even | 6 | 2 | ||
1216.2.a.b | 1 | 40.e | odd | 2 | 1 | ||
1216.2.a.o | 1 | 40.f | even | 2 | 1 | ||
2299.2.a.b | 1 | 55.d | odd | 2 | 1 | ||
2736.2.a.c | 1 | 60.h | even | 2 | 1 | ||
3211.2.a.a | 1 | 65.d | even | 2 | 1 | ||
3249.2.a.d | 1 | 285.b | even | 2 | 1 | ||
4275.2.a.i | 1 | 3.b | odd | 2 | 1 | ||
5491.2.a.b | 1 | 85.c | even | 2 | 1 | ||
5776.2.a.c | 1 | 380.d | even | 2 | 1 | ||
7600.2.a.c | 1 | 4.b | odd | 2 | 1 | ||
8379.2.a.j | 1 | 105.g | even | 2 | 1 | ||
9025.2.a.d | 1 | 19.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .