Properties

Label 475.2.a.f.1.3
Level 475475
Weight 22
Character 475.1
Self dual yes
Analytic conductor 3.7933.793
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 475=5219 475 = 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.792894096013.79289409601
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 1.48119-1.48119 of defining polynomial
Character χ\chi == 475.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.48119q20.806063q3+0.193937q41.19394q63.35026q72.67513q82.35026q9+0.962389q110.156325q126.15633q134.96239q144.35026q16+6.31265q173.48119q181.00000q19+2.70052q21+1.42548q22+4.96239q23+2.15633q249.11871q26+4.31265q270.649738q283.61213q295.92478q311.09332q320.775746q33+9.35026q340.455802q3610.1563q371.48119q38+4.96239q39+6.31265q41+4.00000q42+4.12601q43+0.186642q44+7.35026q463.35026q47+3.50659q48+4.22425q495.08840q511.19394q521.84367q53+6.38787q54+8.96239q56+0.806063q575.35026q586.38787q5911.2750q618.77575q62+7.87399q63+7.08110q641.14903q66+6.73084q67+1.22425q684.00000q690.775746q71+6.28726q720.387873q7315.0435q740.193937q763.22425q77+7.35026q780.836381q79+3.57452q81+9.35026q82+7.03761q83+0.523730q84+6.11142q86+2.91160q872.57452q88+7.08840q89+20.6253q91+0.962389q92+4.77575q934.96239q94+0.881286q9610.9927q97+6.25694q982.26187q99+O(q100)q+1.48119 q^{2} -0.806063 q^{3} +0.193937 q^{4} -1.19394 q^{6} -3.35026 q^{7} -2.67513 q^{8} -2.35026 q^{9} +0.962389 q^{11} -0.156325 q^{12} -6.15633 q^{13} -4.96239 q^{14} -4.35026 q^{16} +6.31265 q^{17} -3.48119 q^{18} -1.00000 q^{19} +2.70052 q^{21} +1.42548 q^{22} +4.96239 q^{23} +2.15633 q^{24} -9.11871 q^{26} +4.31265 q^{27} -0.649738 q^{28} -3.61213 q^{29} -5.92478 q^{31} -1.09332 q^{32} -0.775746 q^{33} +9.35026 q^{34} -0.455802 q^{36} -10.1563 q^{37} -1.48119 q^{38} +4.96239 q^{39} +6.31265 q^{41} +4.00000 q^{42} +4.12601 q^{43} +0.186642 q^{44} +7.35026 q^{46} -3.35026 q^{47} +3.50659 q^{48} +4.22425 q^{49} -5.08840 q^{51} -1.19394 q^{52} -1.84367 q^{53} +6.38787 q^{54} +8.96239 q^{56} +0.806063 q^{57} -5.35026 q^{58} -6.38787 q^{59} -11.2750 q^{61} -8.77575 q^{62} +7.87399 q^{63} +7.08110 q^{64} -1.14903 q^{66} +6.73084 q^{67} +1.22425 q^{68} -4.00000 q^{69} -0.775746 q^{71} +6.28726 q^{72} -0.387873 q^{73} -15.0435 q^{74} -0.193937 q^{76} -3.22425 q^{77} +7.35026 q^{78} -0.836381 q^{79} +3.57452 q^{81} +9.35026 q^{82} +7.03761 q^{83} +0.523730 q^{84} +6.11142 q^{86} +2.91160 q^{87} -2.57452 q^{88} +7.08840 q^{89} +20.6253 q^{91} +0.962389 q^{92} +4.77575 q^{93} -4.96239 q^{94} +0.881286 q^{96} -10.9927 q^{97} +6.25694 q^{98} -2.26187 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq22q3+q44q63q8+3q98q11+10q128q134q143q162q175q183q1912q21+16q22+4q234q246q26+16q99+O(q100) 3 q - q^{2} - 2 q^{3} + q^{4} - 4 q^{6} - 3 q^{8} + 3 q^{9} - 8 q^{11} + 10 q^{12} - 8 q^{13} - 4 q^{14} - 3 q^{16} - 2 q^{17} - 5 q^{18} - 3 q^{19} - 12 q^{21} + 16 q^{22} + 4 q^{23} - 4 q^{24} - 6 q^{26}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.48119 1.04736 0.523681 0.851914i 0.324558π-0.324558\pi
0.523681 + 0.851914i 0.324558π0.324558\pi
33 −0.806063 −0.465381 −0.232690 0.972551i 0.574753π-0.574753\pi
−0.232690 + 0.972551i 0.574753π0.574753\pi
44 0.193937 0.0969683
55 0 0
66 −1.19394 −0.487423
77 −3.35026 −1.26628 −0.633140 0.774037i 0.718234π-0.718234\pi
−0.633140 + 0.774037i 0.718234π0.718234\pi
88 −2.67513 −0.945802
99 −2.35026 −0.783421
1010 0 0
1111 0.962389 0.290171 0.145086 0.989419i 0.453654π-0.453654\pi
0.145086 + 0.989419i 0.453654π0.453654\pi
1212 −0.156325 −0.0451272
1313 −6.15633 −1.70746 −0.853729 0.520718i 0.825664π-0.825664\pi
−0.853729 + 0.520718i 0.825664π0.825664\pi
1414 −4.96239 −1.32625
1515 0 0
1616 −4.35026 −1.08757
1717 6.31265 1.53104 0.765521 0.643411i 0.222481π-0.222481\pi
0.765521 + 0.643411i 0.222481π0.222481\pi
1818 −3.48119 −0.820525
1919 −1.00000 −0.229416
2020 0 0
2121 2.70052 0.589303
2222 1.42548 0.303914
2323 4.96239 1.03473 0.517365 0.855765i 0.326913π-0.326913\pi
0.517365 + 0.855765i 0.326913π0.326913\pi
2424 2.15633 0.440158
2525 0 0
2626 −9.11871 −1.78833
2727 4.31265 0.829970
2828 −0.649738 −0.122789
2929 −3.61213 −0.670755 −0.335378 0.942084i 0.608864π-0.608864\pi
−0.335378 + 0.942084i 0.608864π0.608864\pi
3030 0 0
3131 −5.92478 −1.06412 −0.532061 0.846706i 0.678582π-0.678582\pi
−0.532061 + 0.846706i 0.678582π0.678582\pi
3232 −1.09332 −0.193274
3333 −0.775746 −0.135040
3434 9.35026 1.60356
3535 0 0
3636 −0.455802 −0.0759669
3737 −10.1563 −1.66969 −0.834845 0.550485i 0.814443π-0.814443\pi
−0.834845 + 0.550485i 0.814443π0.814443\pi
3838 −1.48119 −0.240281
3939 4.96239 0.794618
4040 0 0
4141 6.31265 0.985870 0.492935 0.870066i 0.335924π-0.335924\pi
0.492935 + 0.870066i 0.335924π0.335924\pi
4242 4.00000 0.617213
4343 4.12601 0.629210 0.314605 0.949223i 0.398128π-0.398128\pi
0.314605 + 0.949223i 0.398128π0.398128\pi
4444 0.186642 0.0281374
4545 0 0
4646 7.35026 1.08374
4747 −3.35026 −0.488686 −0.244343 0.969689i 0.578572π-0.578572\pi
−0.244343 + 0.969689i 0.578572π0.578572\pi
4848 3.50659 0.506132
4949 4.22425 0.603465
5050 0 0
5151 −5.08840 −0.712518
5252 −1.19394 −0.165569
5353 −1.84367 −0.253248 −0.126624 0.991951i 0.540414π-0.540414\pi
−0.126624 + 0.991951i 0.540414π0.540414\pi
5454 6.38787 0.869279
5555 0 0
5656 8.96239 1.19765
5757 0.806063 0.106766
5858 −5.35026 −0.702524
5959 −6.38787 −0.831630 −0.415815 0.909449i 0.636504π-0.636504\pi
−0.415815 + 0.909449i 0.636504π0.636504\pi
6060 0 0
6161 −11.2750 −1.44362 −0.721810 0.692091i 0.756690π-0.756690\pi
−0.721810 + 0.692091i 0.756690π0.756690\pi
6262 −8.77575 −1.11452
6363 7.87399 0.992030
6464 7.08110 0.885138
6565 0 0
6666 −1.14903 −0.141436
6767 6.73084 0.822303 0.411152 0.911567i 0.365127π-0.365127\pi
0.411152 + 0.911567i 0.365127π0.365127\pi
6868 1.22425 0.148463
6969 −4.00000 −0.481543
7070 0 0
7171 −0.775746 −0.0920641 −0.0460321 0.998940i 0.514658π-0.514658\pi
−0.0460321 + 0.998940i 0.514658π0.514658\pi
7272 6.28726 0.740960
7373 −0.387873 −0.0453971 −0.0226986 0.999742i 0.507226π-0.507226\pi
−0.0226986 + 0.999742i 0.507226π0.507226\pi
7474 −15.0435 −1.74877
7575 0 0
7676 −0.193937 −0.0222460
7777 −3.22425 −0.367438
7878 7.35026 0.832253
7979 −0.836381 −0.0941002 −0.0470501 0.998893i 0.514982π-0.514982\pi
−0.0470501 + 0.998893i 0.514982π0.514982\pi
8080 0 0
8181 3.57452 0.397168
8282 9.35026 1.03256
8383 7.03761 0.772478 0.386239 0.922399i 0.373774π-0.373774\pi
0.386239 + 0.922399i 0.373774π0.373774\pi
8484 0.523730 0.0571437
8585 0 0
8686 6.11142 0.659011
8787 2.91160 0.312157
8888 −2.57452 −0.274444
8989 7.08840 0.751369 0.375684 0.926748i 0.377408π-0.377408\pi
0.375684 + 0.926748i 0.377408π0.377408\pi
9090 0 0
9191 20.6253 2.16212
9292 0.962389 0.100336
9393 4.77575 0.495222
9494 −4.96239 −0.511831
9595 0 0
9696 0.881286 0.0899459
9797 −10.9927 −1.11614 −0.558070 0.829794i 0.688458π-0.688458\pi
−0.558070 + 0.829794i 0.688458π0.688458\pi
9898 6.25694 0.632046
9999 −2.26187 −0.227326
100100 0 0
101101 −2.64974 −0.263659 −0.131829 0.991272i 0.542085π-0.542085\pi
−0.131829 + 0.991272i 0.542085π0.542085\pi
102102 −7.53690 −0.746265
103103 10.7308 1.05734 0.528671 0.848827i 0.322691π-0.322691\pi
0.528671 + 0.848827i 0.322691π0.322691\pi
104104 16.4690 1.61492
105105 0 0
106106 −2.73084 −0.265243
107107 −4.80606 −0.464620 −0.232310 0.972642i 0.574628π-0.574628\pi
−0.232310 + 0.972642i 0.574628π0.574628\pi
108108 0.836381 0.0804808
109109 −2.77575 −0.265868 −0.132934 0.991125i 0.542440π-0.542440\pi
−0.132934 + 0.991125i 0.542440π0.542440\pi
110110 0 0
111111 8.18664 0.777042
112112 14.5745 1.37716
113113 −6.99271 −0.657818 −0.328909 0.944362i 0.606681π-0.606681\pi
−0.328909 + 0.944362i 0.606681π0.606681\pi
114114 1.19394 0.111822
115115 0 0
116116 −0.700523 −0.0650420
117117 14.4690 1.33766
118118 −9.46168 −0.871018
119119 −21.1490 −1.93873
120120 0 0
121121 −10.0738 −0.915801
122122 −16.7005 −1.51199
123123 −5.08840 −0.458805
124124 −1.14903 −0.103186
125125 0 0
126126 11.6629 1.03901
127127 −13.4314 −1.19184 −0.595920 0.803043i 0.703213π-0.703213\pi
−0.595920 + 0.803043i 0.703213π0.703213\pi
128128 12.6751 1.12033
129129 −3.32582 −0.292822
130130 0 0
131131 20.6253 1.80204 0.901020 0.433777i 0.142819π-0.142819\pi
0.901020 + 0.433777i 0.142819π0.142819\pi
132132 −0.150446 −0.0130946
133133 3.35026 0.290505
134134 9.96968 0.861249
135135 0 0
136136 −16.8872 −1.44806
137137 −20.2374 −1.72900 −0.864500 0.502633i 0.832365π-0.832365\pi
−0.864500 + 0.502633i 0.832365π0.832365\pi
138138 −5.92478 −0.504351
139139 −17.5877 −1.49177 −0.745884 0.666076i 0.767973π-0.767973\pi
−0.745884 + 0.666076i 0.767973π0.767973\pi
140140 0 0
141141 2.70052 0.227425
142142 −1.14903 −0.0964245
143143 −5.92478 −0.495455
144144 10.2243 0.852021
145145 0 0
146146 −0.574515 −0.0475472
147147 −3.40502 −0.280841
148148 −1.96968 −0.161907
149149 −7.42548 −0.608319 −0.304160 0.952621i 0.598376π-0.598376\pi
−0.304160 + 0.952621i 0.598376π0.598376\pi
150150 0 0
151151 −1.61213 −0.131193 −0.0655965 0.997846i 0.520895π-0.520895\pi
−0.0655965 + 0.997846i 0.520895π0.520895\pi
152152 2.67513 0.216982
153153 −14.8364 −1.19945
154154 −4.77575 −0.384841
155155 0 0
156156 0.962389 0.0770528
157157 −4.38787 −0.350190 −0.175095 0.984552i 0.556023π-0.556023\pi
−0.175095 + 0.984552i 0.556023π0.556023\pi
158158 −1.23884 −0.0985570
159159 1.48612 0.117857
160160 0 0
161161 −16.6253 −1.31026
162162 5.29455 0.415979
163163 0.649738 0.0508914 0.0254457 0.999676i 0.491900π-0.491900\pi
0.0254457 + 0.999676i 0.491900π0.491900\pi
164164 1.22425 0.0955982
165165 0 0
166166 10.4241 0.809065
167167 15.3561 1.18829 0.594147 0.804357i 0.297490π-0.297490\pi
0.594147 + 0.804357i 0.297490π0.297490\pi
168168 −7.22425 −0.557363
169169 24.9003 1.91541
170170 0 0
171171 2.35026 0.179729
172172 0.800184 0.0610134
173173 −3.24472 −0.246692 −0.123346 0.992364i 0.539362π-0.539362\pi
−0.123346 + 0.992364i 0.539362π0.539362\pi
174174 4.31265 0.326941
175175 0 0
176176 −4.18664 −0.315580
177177 5.14903 0.387025
178178 10.4993 0.786955
179179 15.0132 1.12214 0.561069 0.827769i 0.310390π-0.310390\pi
0.561069 + 0.827769i 0.310390π0.310390\pi
180180 0 0
181181 9.22425 0.685633 0.342817 0.939402i 0.388619π-0.388619\pi
0.342817 + 0.939402i 0.388619π0.388619\pi
182182 30.5501 2.26452
183183 9.08840 0.671834
184184 −13.2750 −0.978649
185185 0 0
186186 7.07381 0.518677
187187 6.07522 0.444264
188188 −0.649738 −0.0473870
189189 −14.4485 −1.05097
190190 0 0
191191 −21.7743 −1.57554 −0.787768 0.615972i 0.788763π-0.788763\pi
−0.787768 + 0.615972i 0.788763π0.788763\pi
192192 −5.70782 −0.411926
193193 −12.5442 −0.902951 −0.451476 0.892283i 0.649102π-0.649102\pi
−0.451476 + 0.892283i 0.649102π0.649102\pi
194194 −16.2823 −1.16900
195195 0 0
196196 0.819237 0.0585169
197197 −24.5501 −1.74912 −0.874560 0.484917i 0.838850π-0.838850\pi
−0.874560 + 0.484917i 0.838850π0.838850\pi
198198 −3.35026 −0.238093
199199 23.0738 1.63566 0.817829 0.575461i 0.195177π-0.195177\pi
0.817829 + 0.575461i 0.195177π0.195177\pi
200200 0 0
201201 −5.42548 −0.382684
202202 −3.92478 −0.276146
203203 12.1016 0.849364
204204 −0.986826 −0.0690917
205205 0 0
206206 15.8945 1.10742
207207 −11.6629 −0.810628
208208 26.7816 1.85697
209209 −0.962389 −0.0665698
210210 0 0
211211 −20.9380 −1.44143 −0.720714 0.693233i 0.756186π-0.756186\pi
−0.720714 + 0.693233i 0.756186π0.756186\pi
212212 −0.357556 −0.0245570
213213 0.625301 0.0428449
214214 −7.11871 −0.486625
215215 0 0
216216 −11.5369 −0.784987
217217 19.8496 1.34748
218218 −4.11142 −0.278460
219219 0.312650 0.0211270
220220 0 0
221221 −38.8627 −2.61419
222222 12.1260 0.813844
223223 0.0303172 0.00203019 0.00101509 0.999999i 0.499677π-0.499677\pi
0.00101509 + 0.999999i 0.499677π0.499677\pi
224224 3.66291 0.244739
225225 0 0
226226 −10.3576 −0.688974
227227 −4.80606 −0.318990 −0.159495 0.987199i 0.550987π-0.550987\pi
−0.159495 + 0.987199i 0.550987π0.550987\pi
228228 0.156325 0.0103529
229229 1.87399 0.123837 0.0619184 0.998081i 0.480278π-0.480278\pi
0.0619184 + 0.998081i 0.480278π0.480278\pi
230230 0 0
231231 2.59895 0.170999
232232 9.66291 0.634401
233233 11.1490 0.730397 0.365199 0.930930i 0.381001π-0.381001\pi
0.365199 + 0.930930i 0.381001π0.381001\pi
234234 21.4314 1.40101
235235 0 0
236236 −1.23884 −0.0806418
237237 0.674176 0.0437924
238238 −31.3258 −2.03055
239239 9.29948 0.601533 0.300767 0.953698i 0.402757π-0.402757\pi
0.300767 + 0.953698i 0.402757π0.402757\pi
240240 0 0
241241 −2.31265 −0.148971 −0.0744855 0.997222i 0.523731π-0.523731\pi
−0.0744855 + 0.997222i 0.523731π0.523731\pi
242242 −14.9213 −0.959175
243243 −15.8192 −1.01480
244244 −2.18664 −0.139985
245245 0 0
246246 −7.53690 −0.480535
247247 6.15633 0.391718
248248 15.8496 1.00645
249249 −5.67276 −0.359497
250250 0 0
251251 24.1016 1.52128 0.760639 0.649175i 0.224886π-0.224886\pi
0.760639 + 0.649175i 0.224886π0.224886\pi
252252 1.52705 0.0961954
253253 4.77575 0.300249
254254 −19.8945 −1.24829
255255 0 0
256256 4.61213 0.288258
257257 13.3199 0.830875 0.415438 0.909622i 0.363628π-0.363628\pi
0.415438 + 0.909622i 0.363628π0.363628\pi
258258 −4.92619 −0.306691
259259 34.0263 2.11429
260260 0 0
261261 8.48944 0.525483
262262 30.5501 1.88739
263263 −12.9624 −0.799295 −0.399648 0.916669i 0.630867π-0.630867\pi
−0.399648 + 0.916669i 0.630867π0.630867\pi
264264 2.07522 0.127721
265265 0 0
266266 4.96239 0.304264
267267 −5.71370 −0.349673
268268 1.30536 0.0797373
269269 −11.4010 −0.695134 −0.347567 0.937655i 0.612992π-0.612992\pi
−0.347567 + 0.937655i 0.612992π0.612992\pi
270270 0 0
271271 16.8119 1.02125 0.510626 0.859803i 0.329414π-0.329414\pi
0.510626 + 0.859803i 0.329414π0.329414\pi
272272 −27.4617 −1.66511
273273 −16.6253 −1.00621
274274 −29.9756 −1.81089
275275 0 0
276276 −0.775746 −0.0466944
277277 29.7889 1.78984 0.894921 0.446224i 0.147231π-0.147231\pi
0.894921 + 0.446224i 0.147231π0.147231\pi
278278 −26.0508 −1.56242
279279 13.9248 0.833655
280280 0 0
281281 −11.6121 −0.692721 −0.346361 0.938101i 0.612583π-0.612583\pi
−0.346361 + 0.938101i 0.612583π0.612583\pi
282282 4.00000 0.238197
283283 −2.26187 −0.134454 −0.0672270 0.997738i 0.521415π-0.521415\pi
−0.0672270 + 0.997738i 0.521415π0.521415\pi
284284 −0.150446 −0.00892730
285285 0 0
286286 −8.77575 −0.518921
287287 −21.1490 −1.24839
288288 2.56959 0.151415
289289 22.8496 1.34409
290290 0 0
291291 8.86082 0.519430
292292 −0.0752228 −0.00440208
293293 −1.84367 −0.107709 −0.0538543 0.998549i 0.517151π-0.517151\pi
−0.0538543 + 0.998549i 0.517151π0.517151\pi
294294 −5.04349 −0.294142
295295 0 0
296296 27.1695 1.57920
297297 4.15045 0.240833
298298 −10.9986 −0.637131
299299 −30.5501 −1.76676
300300 0 0
301301 −13.8232 −0.796756
302302 −2.38787 −0.137407
303303 2.13586 0.122702
304304 4.35026 0.249505
305305 0 0
306306 −21.9756 −1.25626
307307 −26.2071 −1.49572 −0.747859 0.663857i 0.768918π-0.768918\pi
−0.747859 + 0.663857i 0.768918π0.768918\pi
308308 −0.625301 −0.0356298
309309 −8.64974 −0.492066
310310 0 0
311311 6.51388 0.369368 0.184684 0.982798i 0.440874π-0.440874\pi
0.184684 + 0.982798i 0.440874π0.440874\pi
312312 −13.2750 −0.751551
313313 −16.0752 −0.908625 −0.454313 0.890842i 0.650115π-0.650115\pi
−0.454313 + 0.890842i 0.650115π0.650115\pi
314314 −6.49929 −0.366776
315315 0 0
316316 −0.162205 −0.00912473
317317 5.69323 0.319764 0.159882 0.987136i 0.448889π-0.448889\pi
0.159882 + 0.987136i 0.448889π0.448889\pi
318318 2.20123 0.123439
319319 −3.47627 −0.194634
320320 0 0
321321 3.87399 0.216225
322322 −24.6253 −1.37231
323323 −6.31265 −0.351245
324324 0.693229 0.0385127
325325 0 0
326326 0.962389 0.0533018
327327 2.23743 0.123730
328328 −16.8872 −0.932438
329329 11.2243 0.618813
330330 0 0
331331 −12.3127 −0.676764 −0.338382 0.941009i 0.609880π-0.609880\pi
−0.338382 + 0.941009i 0.609880π0.609880\pi
332332 1.36485 0.0749059
333333 23.8700 1.30807
334334 22.7454 1.24457
335335 0 0
336336 −11.7480 −0.640905
337337 −3.76845 −0.205281 −0.102640 0.994719i 0.532729π-0.532729\pi
−0.102640 + 0.994719i 0.532729π0.532729\pi
338338 36.8822 2.00613
339339 5.63656 0.306136
340340 0 0
341341 −5.70194 −0.308777
342342 3.48119 0.188241
343343 9.29948 0.502125
344344 −11.0376 −0.595108
345345 0 0
346346 −4.80606 −0.258376
347347 22.3634 1.20053 0.600266 0.799800i 0.295061π-0.295061\pi
0.600266 + 0.799800i 0.295061π0.295061\pi
348348 0.564666 0.0302693
349349 −10.0000 −0.535288 −0.267644 0.963518i 0.586245π-0.586245\pi
−0.267644 + 0.963518i 0.586245π0.586245\pi
350350 0 0
351351 −26.5501 −1.41714
352352 −1.05220 −0.0560824
353353 −5.53690 −0.294700 −0.147350 0.989084i 0.547074π-0.547074\pi
−0.147350 + 0.989084i 0.547074π0.547074\pi
354354 7.62672 0.405355
355355 0 0
356356 1.37470 0.0728589
357357 17.0475 0.902247
358358 22.2374 1.17528
359359 −10.3634 −0.546961 −0.273481 0.961878i 0.588175π-0.588175\pi
−0.273481 + 0.961878i 0.588175π0.588175\pi
360360 0 0
361361 1.00000 0.0526316
362362 13.6629 0.718107
363363 8.12013 0.426196
364364 4.00000 0.209657
365365 0 0
366366 13.4617 0.703653
367367 −3.35026 −0.174882 −0.0874411 0.996170i 0.527869π-0.527869\pi
−0.0874411 + 0.996170i 0.527869π0.527869\pi
368368 −21.5877 −1.12534
369369 −14.8364 −0.772351
370370 0 0
371371 6.17679 0.320683
372372 0.926192 0.0480208
373373 12.6048 0.652653 0.326327 0.945257i 0.394189π-0.394189\pi
0.326327 + 0.945257i 0.394189π0.394189\pi
374374 8.99859 0.465306
375375 0 0
376376 8.96239 0.462200
377377 22.2374 1.14529
378378 −21.4010 −1.10075
379379 −37.2506 −1.91343 −0.956717 0.291018i 0.906006π-0.906006\pi
−0.956717 + 0.291018i 0.906006π0.906006\pi
380380 0 0
381381 10.8265 0.554660
382382 −32.2520 −1.65016
383383 −30.8324 −1.57546 −0.787731 0.616019i 0.788744π-0.788744\pi
−0.787731 + 0.616019i 0.788744π0.788744\pi
384384 −10.2170 −0.521382
385385 0 0
386386 −18.5804 −0.945717
387387 −9.69720 −0.492936
388388 −2.13189 −0.108230
389389 −1.37470 −0.0697000 −0.0348500 0.999393i 0.511095π-0.511095\pi
−0.0348500 + 0.999393i 0.511095π0.511095\pi
390390 0 0
391391 31.3258 1.58422
392392 −11.3004 −0.570758
393393 −16.6253 −0.838635
394394 −36.3634 −1.83196
395395 0 0
396396 −0.438658 −0.0220434
397397 9.38646 0.471093 0.235546 0.971863i 0.424312π-0.424312\pi
0.235546 + 0.971863i 0.424312π0.424312\pi
398398 34.1768 1.71313
399399 −2.70052 −0.135195
400400 0 0
401401 14.1016 0.704199 0.352099 0.935963i 0.385468π-0.385468\pi
0.352099 + 0.935963i 0.385468π0.385468\pi
402402 −8.03620 −0.400809
403403 36.4749 1.81694
404404 −0.513881 −0.0255665
405405 0 0
406406 17.9248 0.889592
407407 −9.77433 −0.484496
408408 13.6121 0.673901
409409 35.1490 1.73801 0.869004 0.494805i 0.164761π-0.164761\pi
0.869004 + 0.494805i 0.164761π0.164761\pi
410410 0 0
411411 16.3127 0.804644
412412 2.08110 0.102529
413413 21.4010 1.05308
414414 −17.2750 −0.849022
415415 0 0
416416 6.73084 0.330007
417417 14.1768 0.694241
418418 −1.42548 −0.0697227
419419 9.02776 0.441035 0.220518 0.975383i 0.429225π-0.429225\pi
0.220518 + 0.975383i 0.429225π0.429225\pi
420420 0 0
421421 15.2097 0.741274 0.370637 0.928778i 0.379139π-0.379139\pi
0.370637 + 0.928778i 0.379139π0.379139\pi
422422 −31.0132 −1.50970
423423 7.87399 0.382847
424424 4.93207 0.239523
425425 0 0
426426 0.926192 0.0448741
427427 37.7743 1.82803
428428 −0.932071 −0.0450534
429429 4.77575 0.230575
430430 0 0
431431 16.3127 0.785753 0.392876 0.919591i 0.371480π-0.371480\pi
0.392876 + 0.919591i 0.371480π0.371480\pi
432432 −18.7612 −0.902647
433433 −11.1432 −0.535506 −0.267753 0.963488i 0.586281π-0.586281\pi
−0.267753 + 0.963488i 0.586281π0.586281\pi
434434 29.4010 1.41130
435435 0 0
436436 −0.538319 −0.0257808
437437 −4.96239 −0.237383
438438 0.463096 0.0221276
439439 27.3865 1.30708 0.653542 0.756890i 0.273282π-0.273282\pi
0.653542 + 0.756890i 0.273282π0.273282\pi
440440 0 0
441441 −9.92810 −0.472767
442442 −57.5633 −2.73800
443443 −19.5125 −0.927065 −0.463533 0.886080i 0.653418π-0.653418\pi
−0.463533 + 0.886080i 0.653418π0.653418\pi
444444 1.58769 0.0753484
445445 0 0
446446 0.0449056 0.00212634
447447 5.98541 0.283100
448448 −23.7235 −1.12083
449449 −22.1016 −1.04304 −0.521519 0.853240i 0.674634π-0.674634\pi
−0.521519 + 0.853240i 0.674634π0.674634\pi
450450 0 0
451451 6.07522 0.286071
452452 −1.35614 −0.0637875
453453 1.29948 0.0610547
454454 −7.11871 −0.334098
455455 0 0
456456 −2.15633 −0.100979
457457 17.8496 0.834967 0.417483 0.908685i 0.362912π-0.362912\pi
0.417483 + 0.908685i 0.362912π0.362912\pi
458458 2.77575 0.129702
459459 27.2243 1.27072
460460 0 0
461461 −35.2506 −1.64178 −0.820892 0.571083i 0.806523π-0.806523\pi
−0.820892 + 0.571083i 0.806523π0.806523\pi
462462 3.84955 0.179097
463463 26.3634 1.22521 0.612606 0.790388i 0.290121π-0.290121\pi
0.612606 + 0.790388i 0.290121π0.290121\pi
464464 15.7137 0.729490
465465 0 0
466466 16.5139 0.764991
467467 6.78560 0.314000 0.157000 0.987599i 0.449818π-0.449818\pi
0.157000 + 0.987599i 0.449818π0.449818\pi
468468 2.80606 0.129710
469469 −22.5501 −1.04127
470470 0 0
471471 3.53690 0.162972
472472 17.0884 0.786557
473473 3.97082 0.182579
474474 0.998585 0.0458665
475475 0 0
476476 −4.10157 −0.187995
477477 4.33312 0.198400
478478 13.7743 0.630023
479479 12.7104 0.580752 0.290376 0.956913i 0.406220π-0.406220\pi
0.290376 + 0.956913i 0.406220π0.406220\pi
480480 0 0
481481 62.5256 2.85092
482482 −3.42548 −0.156027
483483 13.4010 0.609769
484484 −1.95368 −0.0888036
485485 0 0
486486 −23.4314 −1.06287
487487 15.7586 0.714090 0.357045 0.934087i 0.383784π-0.383784\pi
0.357045 + 0.934087i 0.383784π0.383784\pi
488488 30.1622 1.36538
489489 −0.523730 −0.0236839
490490 0 0
491491 −14.5501 −0.656636 −0.328318 0.944567i 0.606482π-0.606482\pi
−0.328318 + 0.944567i 0.606482π0.606482\pi
492492 −0.986826 −0.0444896
493493 −22.8021 −1.02695
494494 9.11871 0.410270
495495 0 0
496496 25.7743 1.15730
497497 2.59895 0.116579
498498 −8.40246 −0.376523
499499 −5.48612 −0.245592 −0.122796 0.992432i 0.539186π-0.539186\pi
−0.122796 + 0.992432i 0.539186π0.539186\pi
500500 0 0
501501 −12.3780 −0.553009
502502 35.6991 1.59333
503503 36.6615 1.63466 0.817328 0.576173i 0.195455π-0.195455\pi
0.817328 + 0.576173i 0.195455π0.195455\pi
504504 −21.0640 −0.938263
505505 0 0
506506 7.07381 0.314469
507507 −20.0713 −0.891396
508508 −2.60483 −0.115571
509509 39.1900 1.73706 0.868532 0.495632i 0.165064π-0.165064\pi
0.868532 + 0.495632i 0.165064π0.165064\pi
510510 0 0
511511 1.29948 0.0574855
512512 −18.5188 −0.818423
513513 −4.31265 −0.190408
514514 19.7294 0.870228
515515 0 0
516516 −0.644999 −0.0283945
517517 −3.22425 −0.141803
518518 50.3996 2.21443
519519 2.61545 0.114806
520520 0 0
521521 −17.7283 −0.776690 −0.388345 0.921514i 0.626953π-0.626953\pi
−0.388345 + 0.921514i 0.626953π0.626953\pi
522522 12.5745 0.550372
523523 40.7572 1.78219 0.891094 0.453819i 0.149939π-0.149939\pi
0.891094 + 0.453819i 0.149939π0.149939\pi
524524 4.00000 0.174741
525525 0 0
526526 −19.1998 −0.837152
527527 −37.4010 −1.62922
528528 3.37470 0.146865
529529 1.62530 0.0706652
530530 0 0
531531 15.0132 0.651516
532532 0.649738 0.0281697
533533 −38.8627 −1.68333
534534 −8.46310 −0.366234
535535 0 0
536536 −18.0059 −0.777736
537537 −12.1016 −0.522221
538538 −16.8872 −0.728057
539539 4.06537 0.175108
540540 0 0
541541 23.9003 1.02756 0.513778 0.857923i 0.328246π-0.328246\pi
0.513778 + 0.857923i 0.328246π0.328246\pi
542542 24.9018 1.06962
543543 −7.43533 −0.319081
544544 −6.90175 −0.295910
545545 0 0
546546 −24.6253 −1.05387
547547 −8.55405 −0.365745 −0.182872 0.983137i 0.558539π-0.558539\pi
−0.182872 + 0.983137i 0.558539π0.558539\pi
548548 −3.92478 −0.167658
549549 26.4993 1.13096
550550 0 0
551551 3.61213 0.153882
552552 10.7005 0.455445
553553 2.80209 0.119157
554554 44.1232 1.87461
555555 0 0
556556 −3.41090 −0.144654
557557 4.23743 0.179546 0.0897728 0.995962i 0.471386π-0.471386\pi
0.0897728 + 0.995962i 0.471386π0.471386\pi
558558 20.6253 0.873139
559559 −25.4010 −1.07435
560560 0 0
561561 −4.89701 −0.206752
562562 −17.1998 −0.725530
563563 −16.4934 −0.695114 −0.347557 0.937659i 0.612989π-0.612989\pi
−0.347557 + 0.937659i 0.612989π0.612989\pi
564564 0.523730 0.0220530
565565 0 0
566566 −3.35026 −0.140822
567567 −11.9756 −0.502926
568568 2.07522 0.0870744
569569 −10.0000 −0.419222 −0.209611 0.977785i 0.567220π-0.567220\pi
−0.209611 + 0.977785i 0.567220π0.567220\pi
570570 0 0
571571 −26.2619 −1.09902 −0.549512 0.835486i 0.685186π-0.685186\pi
−0.549512 + 0.835486i 0.685186π0.685186\pi
572572 −1.14903 −0.0480434
573573 17.5515 0.733224
574574 −31.3258 −1.30751
575575 0 0
576576 −16.6424 −0.693435
577577 −30.1016 −1.25314 −0.626572 0.779363i 0.715543π-0.715543\pi
−0.626572 + 0.779363i 0.715543π0.715543\pi
578578 33.8446 1.40775
579579 10.1114 0.420216
580580 0 0
581581 −23.5778 −0.978174
582582 13.1246 0.544032
583583 −1.77433 −0.0734853
584584 1.03761 0.0429367
585585 0 0
586586 −2.73084 −0.112810
587587 35.1392 1.45035 0.725175 0.688565i 0.241759π-0.241759\pi
0.725175 + 0.688565i 0.241759π0.241759\pi
588588 −0.660357 −0.0272327
589589 5.92478 0.244126
590590 0 0
591591 19.7889 0.814007
592592 44.1827 1.81590
593593 −34.3244 −1.40953 −0.704767 0.709439i 0.748949π-0.748949\pi
−0.704767 + 0.709439i 0.748949π0.748949\pi
594594 6.14762 0.252240
595595 0 0
596596 −1.44007 −0.0589877
597597 −18.5990 −0.761204
598598 −45.2506 −1.85043
599599 14.6107 0.596978 0.298489 0.954413i 0.403517π-0.403517\pi
0.298489 + 0.954413i 0.403517π0.403517\pi
600600 0 0
601601 23.5633 0.961165 0.480583 0.876949i 0.340425π-0.340425\pi
0.480583 + 0.876949i 0.340425π0.340425\pi
602602 −20.4749 −0.834493
603603 −15.8192 −0.644209
604604 −0.312650 −0.0127216
605605 0 0
606606 3.16362 0.128513
607607 8.80606 0.357427 0.178714 0.983901i 0.442806π-0.442806\pi
0.178714 + 0.983901i 0.442806π0.442806\pi
608608 1.09332 0.0443400
609609 −9.75463 −0.395278
610610 0 0
611611 20.6253 0.834410
612612 −2.87732 −0.116309
613613 −10.4142 −0.420626 −0.210313 0.977634i 0.567448π-0.567448\pi
−0.210313 + 0.977634i 0.567448π0.567448\pi
614614 −38.8178 −1.56656
615615 0 0
616616 8.62530 0.347523
617617 17.2849 0.695863 0.347932 0.937520i 0.386884π-0.386884\pi
0.347932 + 0.937520i 0.386884π0.386884\pi
618618 −12.8119 −0.515372
619619 −10.6351 −0.427463 −0.213731 0.976892i 0.568562π-0.568562\pi
−0.213731 + 0.976892i 0.568562π0.568562\pi
620620 0 0
621621 21.4010 0.858794
622622 9.64832 0.386863
623623 −23.7480 −0.951443
624624 −21.5877 −0.864199
625625 0 0
626626 −23.8105 −0.951660
627627 0.775746 0.0309803
628628 −0.850969 −0.0339574
629629 −64.1133 −2.55637
630630 0 0
631631 −16.5599 −0.659240 −0.329620 0.944114i 0.606921π-0.606921\pi
−0.329620 + 0.944114i 0.606921π0.606921\pi
632632 2.23743 0.0890001
633633 16.8773 0.670813
634634 8.43278 0.334908
635635 0 0
636636 0.288213 0.0114284
637637 −26.0059 −1.03039
638638 −5.14903 −0.203852
639639 1.82321 0.0721249
640640 0 0
641641 −16.7612 −0.662026 −0.331013 0.943626i 0.607390π-0.607390\pi
−0.331013 + 0.943626i 0.607390π0.607390\pi
642642 5.73813 0.226466
643643 −5.73813 −0.226290 −0.113145 0.993578i 0.536092π-0.536092\pi
−0.113145 + 0.993578i 0.536092π0.536092\pi
644644 −3.22425 −0.127053
645645 0 0
646646 −9.35026 −0.367881
647647 37.2144 1.46305 0.731525 0.681815i 0.238809π-0.238809\pi
0.731525 + 0.681815i 0.238809π0.238809\pi
648648 −9.56230 −0.375642
649649 −6.14762 −0.241315
650650 0 0
651651 −16.0000 −0.627089
652652 0.126008 0.00493485
653653 −11.7626 −0.460305 −0.230153 0.973155i 0.573923π-0.573923\pi
−0.230153 + 0.973155i 0.573923π0.573923\pi
654654 3.31406 0.129590
655655 0 0
656656 −27.4617 −1.07220
657657 0.911603 0.0355650
658658 16.6253 0.648122
659659 1.23884 0.0482584 0.0241292 0.999709i 0.492319π-0.492319\pi
0.0241292 + 0.999709i 0.492319π0.492319\pi
660660 0 0
661661 −9.53690 −0.370943 −0.185471 0.982650i 0.559381π-0.559381\pi
−0.185471 + 0.982650i 0.559381π0.559381\pi
662662 −18.2374 −0.708818
663663 31.3258 1.21659
664664 −18.8265 −0.730611
665665 0 0
666666 35.3561 1.37002
667667 −17.9248 −0.694050
668668 2.97812 0.115227
669669 −0.0244376 −0.000944811 0
670670 0 0
671671 −10.8510 −0.418897
672672 −2.95254 −0.113897
673673 −39.9307 −1.53921 −0.769607 0.638518i 0.779548π-0.779548\pi
−0.769607 + 0.638518i 0.779548π0.779548\pi
674674 −5.58181 −0.215003
675675 0 0
676676 4.82909 0.185734
677677 3.05334 0.117349 0.0586747 0.998277i 0.481313π-0.481313\pi
0.0586747 + 0.998277i 0.481313π0.481313\pi
678678 8.34885 0.320636
679679 36.8284 1.41335
680680 0 0
681681 3.87399 0.148452
682682 −8.44568 −0.323402
683683 −29.2692 −1.11995 −0.559977 0.828508i 0.689190π-0.689190\pi
−0.559977 + 0.828508i 0.689190π0.689190\pi
684684 0.455802 0.0174280
685685 0 0
686686 13.7743 0.525906
687687 −1.51056 −0.0576313
688688 −17.9492 −0.684307
689689 11.3503 0.432411
690690 0 0
691691 2.63515 0.100246 0.0501229 0.998743i 0.484039π-0.484039\pi
0.0501229 + 0.998743i 0.484039π0.484039\pi
692692 −0.629270 −0.0239213
693693 7.57784 0.287858
694694 33.1246 1.25739
695695 0 0
696696 −7.78892 −0.295238
697697 39.8496 1.50941
698698 −14.8119 −0.560640
699699 −8.98683 −0.339913
700700 0 0
701701 −25.0494 −0.946102 −0.473051 0.881035i 0.656847π-0.656847\pi
−0.473051 + 0.881035i 0.656847π0.656847\pi
702702 −39.3258 −1.48426
703703 10.1563 0.383053
704704 6.81477 0.256841
705705 0 0
706706 −8.20123 −0.308657
707707 8.87732 0.333866
708708 0.998585 0.0375291
709709 −41.6991 −1.56604 −0.783021 0.621995i 0.786323π-0.786323\pi
−0.783021 + 0.621995i 0.786323π0.786323\pi
710710 0 0
711711 1.96571 0.0737200
712712 −18.9624 −0.710646
713713 −29.4010 −1.10108
714714 25.2506 0.944980
715715 0 0
716716 2.91160 0.108812
717717 −7.49597 −0.279942
718718 −15.3503 −0.572867
719719 30.6351 1.14250 0.571249 0.820777i 0.306459π-0.306459\pi
0.571249 + 0.820777i 0.306459π0.306459\pi
720720 0 0
721721 −35.9511 −1.33889
722722 1.48119 0.0551243
723723 1.86414 0.0693282
724724 1.78892 0.0664847
725725 0 0
726726 12.0275 0.446382
727727 −7.50071 −0.278186 −0.139093 0.990279i 0.544419π-0.544419\pi
−0.139093 + 0.990279i 0.544419π0.544419\pi
728728 −55.1754 −2.04494
729729 2.02776 0.0751023
730730 0 0
731731 26.0460 0.963348
732732 1.76257 0.0651466
733733 −9.84955 −0.363802 −0.181901 0.983317i 0.558225π-0.558225\pi
−0.181901 + 0.983317i 0.558225π0.558225\pi
734734 −4.96239 −0.183165
735735 0 0
736736 −5.42548 −0.199986
737737 6.47768 0.238609
738738 −21.9756 −0.808932
739739 −20.0000 −0.735712 −0.367856 0.929883i 0.619908π-0.619908\pi
−0.367856 + 0.929883i 0.619908π0.619908\pi
740740 0 0
741741 −4.96239 −0.182298
742742 9.14903 0.335871
743743 15.7177 0.576625 0.288313 0.957536i 0.406906π-0.406906\pi
0.288313 + 0.957536i 0.406906π0.406906\pi
744744 −12.7757 −0.468382
745745 0 0
746746 18.6702 0.683565
747747 −16.5402 −0.605175
748748 1.17821 0.0430795
749749 16.1016 0.588339
750750 0 0
751751 −43.7400 −1.59610 −0.798048 0.602593i 0.794134π-0.794134\pi
−0.798048 + 0.602593i 0.794134π0.794134\pi
752752 14.5745 0.531478
753753 −19.4274 −0.707974
754754 32.9380 1.19953
755755 0 0
756756 −2.80209 −0.101911
757757 15.7743 0.573328 0.286664 0.958031i 0.407454π-0.407454\pi
0.286664 + 0.958031i 0.407454π0.407454\pi
758758 −55.1754 −2.00406
759759 −3.84955 −0.139730
760760 0 0
761761 43.2262 1.56695 0.783474 0.621425i 0.213446π-0.213446\pi
0.783474 + 0.621425i 0.213446π0.213446\pi
762762 16.0362 0.580930
763763 9.29948 0.336664
764764 −4.22284 −0.152777
765765 0 0
766766 −45.6688 −1.65008
767767 39.3258 1.41997
768768 −3.71767 −0.134150
769769 −19.1246 −0.689650 −0.344825 0.938667i 0.612062π-0.612062\pi
−0.344825 + 0.938667i 0.612062π0.612062\pi
770770 0 0
771771 −10.7367 −0.386674
772772 −2.43278 −0.0875576
773773 −25.8846 −0.931005 −0.465502 0.885047i 0.654126π-0.654126\pi
−0.465502 + 0.885047i 0.654126π0.654126\pi
774774 −14.3634 −0.516283
775775 0 0
776776 29.4069 1.05565
777777 −27.4274 −0.983952
778778 −2.03620 −0.0730012
779779 −6.31265 −0.226174
780780 0 0
781781 −0.746569 −0.0267144
782782 46.3996 1.65925
783783 −15.5778 −0.556707
784784 −18.3766 −0.656307
785785 0 0
786786 −24.6253 −0.878355
787787 −19.9814 −0.712261 −0.356131 0.934436i 0.615904π-0.615904\pi
−0.356131 + 0.934436i 0.615904π0.615904\pi
788788 −4.76116 −0.169609
789789 10.4485 0.371977
790790 0 0
791791 23.4274 0.832982
792792 6.05079 0.215005
793793 69.4128 2.46492
794794 13.9032 0.493405
795795 0 0
796796 4.47486 0.158607
797797 −28.6458 −1.01469 −0.507343 0.861744i 0.669372π-0.669372\pi
−0.507343 + 0.861744i 0.669372π0.669372\pi
798798 −4.00000 −0.141598
799799 −21.1490 −0.748199
800800 0 0
801801 −16.6596 −0.588638
802802 20.8872 0.737551
803803 −0.373285 −0.0131729
804804 −1.05220 −0.0371082
805805 0 0
806806 54.0263 1.90300
807807 9.18997 0.323502
808808 7.08840 0.249369
809809 −17.2243 −0.605573 −0.302786 0.953058i 0.597917π-0.597917\pi
−0.302786 + 0.953058i 0.597917π0.597917\pi
810810 0 0
811811 −15.6267 −0.548728 −0.274364 0.961626i 0.588467π-0.588467\pi
−0.274364 + 0.961626i 0.588467π0.588467\pi
812812 2.34694 0.0823613
813813 −13.5515 −0.475272
814814 −14.4777 −0.507443
815815 0 0
816816 22.1359 0.774910
817817 −4.12601 −0.144351
818818 52.0625 1.82032
819819 −48.4749 −1.69385
820820 0 0
821821 39.2506 1.36986 0.684928 0.728611i 0.259834π-0.259834\pi
0.684928 + 0.728611i 0.259834π0.259834\pi
822822 24.1622 0.842754
823823 45.5271 1.58697 0.793487 0.608588i 0.208264π-0.208264\pi
0.793487 + 0.608588i 0.208264π0.208264\pi
824824 −28.7064 −1.00003
825825 0 0
826826 31.6991 1.10295
827827 −17.0698 −0.593576 −0.296788 0.954943i 0.595916π-0.595916\pi
−0.296788 + 0.954943i 0.595916π0.595916\pi
828828 −2.26187 −0.0786052
829829 1.69911 0.0590125 0.0295062 0.999565i 0.490607π-0.490607\pi
0.0295062 + 0.999565i 0.490607π0.490607\pi
830830 0 0
831831 −24.0118 −0.832959
832832 −43.5936 −1.51134
833833 26.6662 0.923930
834834 20.9986 0.727122
835835 0 0
836836 −0.186642 −0.00645516
837837 −25.5515 −0.883189
838838 13.3719 0.461924
839839 −50.5910 −1.74660 −0.873298 0.487187i 0.838023π-0.838023\pi
−0.873298 + 0.487187i 0.838023π0.838023\pi
840840 0 0
841841 −15.9525 −0.550088
842842 22.5285 0.776382
843843 9.36011 0.322379
844844 −4.06063 −0.139773
845845 0 0
846846 11.6629 0.400979
847847 33.7499 1.15966
848848 8.02047 0.275424
849849 1.82321 0.0625723
850850 0 0
851851 −50.3996 −1.72768
852852 0.121269 0.00415460
853853 22.5237 0.771198 0.385599 0.922667i 0.373995π-0.373995\pi
0.385599 + 0.922667i 0.373995π0.373995\pi
854854 55.9511 1.91461
855855 0 0
856856 12.8568 0.439438
857857 23.6180 0.806776 0.403388 0.915029i 0.367833π-0.367833\pi
0.403388 + 0.915029i 0.367833π0.367833\pi
858858 7.07381 0.241496
859859 15.1754 0.517777 0.258889 0.965907i 0.416644π-0.416644\pi
0.258889 + 0.965907i 0.416644π0.416644\pi
860860 0 0
861861 17.0475 0.580976
862862 24.1622 0.822968
863863 −30.1055 −1.02480 −0.512402 0.858746i 0.671244π-0.671244\pi
−0.512402 + 0.858746i 0.671244π0.671244\pi
864864 −4.71511 −0.160411
865865 0 0
866866 −16.5052 −0.560869
867867 −18.4182 −0.625515
868868 3.84955 0.130662
869869 −0.804923 −0.0273051
870870 0 0
871871 −41.4372 −1.40405
872872 7.42548 0.251459
873873 25.8357 0.874407
874874 −7.35026 −0.248626
875875 0 0
876876 0.0606343 0.00204864
877877 5.53102 0.186769 0.0933847 0.995630i 0.470231π-0.470231\pi
0.0933847 + 0.995630i 0.470231π0.470231\pi
878878 40.5647 1.36899
879879 1.48612 0.0501255
880880 0 0
881881 20.8265 0.701664 0.350832 0.936438i 0.385899π-0.385899\pi
0.350832 + 0.936438i 0.385899π0.385899\pi
882882 −14.7054 −0.495158
883883 −43.1509 −1.45214 −0.726072 0.687618i 0.758656π-0.758656\pi
−0.726072 + 0.687618i 0.758656π0.758656\pi
884884 −7.53690 −0.253494
885885 0 0
886886 −28.9018 −0.970973
887887 44.5461 1.49571 0.747856 0.663861i 0.231083π-0.231083\pi
0.747856 + 0.663861i 0.231083π0.231083\pi
888888 −21.9003 −0.734927
889889 44.9986 1.50920
890890 0 0
891891 3.44007 0.115247
892892 0.00587961 0.000196864 0
893893 3.35026 0.112112
894894 8.86556 0.296509
895895 0 0
896896 −42.4650 −1.41866
897897 24.6253 0.822215
898898 −32.7367 −1.09244
899899 21.4010 0.713765
900900 0 0
901901 −11.6385 −0.387734
902902 8.99859 0.299620
903903 11.1424 0.370795
904904 18.7064 0.622166
905905 0 0
906906 1.92478 0.0639464
907907 −53.7558 −1.78493 −0.892466 0.451115i 0.851026π-0.851026\pi
−0.892466 + 0.451115i 0.851026π0.851026\pi
908908 −0.932071 −0.0309319
909909 6.22758 0.206556
910910 0 0
911911 −2.28630 −0.0757486 −0.0378743 0.999283i 0.512059π-0.512059\pi
−0.0378743 + 0.999283i 0.512059π0.512059\pi
912912 −3.50659 −0.116115
913913 6.77292 0.224151
914914 26.4387 0.874513
915915 0 0
916916 0.363436 0.0120082
917917 −69.1002 −2.28189
918918 40.3244 1.33090
919919 −34.8510 −1.14963 −0.574814 0.818284i 0.694925π-0.694925\pi
−0.574814 + 0.818284i 0.694925π0.694925\pi
920920 0 0
921921 21.1246 0.696079
922922 −52.2130 −1.71954
923923 4.77575 0.157196
924924 0.504032 0.0165814
925925 0 0
926926 39.0494 1.28324
927927 −25.2203 −0.828343
928928 3.94921 0.129639
929929 41.6991 1.36810 0.684052 0.729434i 0.260216π-0.260216\pi
0.684052 + 0.729434i 0.260216π0.260216\pi
930930 0 0
931931 −4.22425 −0.138444
932932 2.16220 0.0708254
933933 −5.25060 −0.171897
934934 10.0508 0.328872
935935 0 0
936936 −38.7064 −1.26516
937937 −21.9102 −0.715775 −0.357887 0.933765i 0.616503π-0.616503\pi
−0.357887 + 0.933765i 0.616503π0.616503\pi
938938 −33.4010 −1.09058
939939 12.9576 0.422857
940940 0 0
941941 −3.55149 −0.115775 −0.0578877 0.998323i 0.518437π-0.518437\pi
−0.0578877 + 0.998323i 0.518437π0.518437\pi
942942 5.23884 0.170691
943943 31.3258 1.02011
944944 27.7889 0.904452
945945 0 0
946946 5.88156 0.191226
947947 −38.3634 −1.24664 −0.623322 0.781965i 0.714217π-0.714217\pi
−0.623322 + 0.781965i 0.714217π0.714217\pi
948948 0.130747 0.00424648
949949 2.38787 0.0775136
950950 0 0
951951 −4.58910 −0.148812
952952 56.5764 1.83365
953953 22.8714 0.740879 0.370439 0.928857i 0.379207π-0.379207\pi
0.370439 + 0.928857i 0.379207π0.379207\pi
954954 6.41819 0.207797
955955 0 0
956956 1.80351 0.0583296
957957 2.80209 0.0905788
958958 18.8265 0.608258
959959 67.8007 2.18940
960960 0 0
961961 4.10299 0.132354
962962 92.6126 2.98595
963963 11.2955 0.363993
964964 −0.448507 −0.0144455
965965 0 0
966966 19.8496 0.638649
967967 −27.6629 −0.889579 −0.444790 0.895635i 0.646722π-0.646722\pi
−0.444790 + 0.895635i 0.646722π0.646722\pi
968968 26.9488 0.866166
969969 5.08840 0.163463
970970 0 0
971971 −42.1768 −1.35352 −0.676759 0.736205i 0.736616π-0.736616\pi
−0.676759 + 0.736205i 0.736616π0.736616\pi
972972 −3.06793 −0.0984039
973973 58.9234 1.88900
974974 23.3416 0.747912
975975 0 0
976976 49.0494 1.57003
977977 −0.856849 −0.0274130 −0.0137065 0.999906i 0.504363π-0.504363\pi
−0.0137065 + 0.999906i 0.504363π0.504363\pi
978978 −0.775746 −0.0248056
979979 6.82179 0.218025
980980 0 0
981981 6.52373 0.208287
982982 −21.5515 −0.687736
983983 −45.2809 −1.44424 −0.722119 0.691769i 0.756831π-0.756831\pi
−0.722119 + 0.691769i 0.756831π0.756831\pi
984984 13.6121 0.433939
985985 0 0
986986 −33.7743 −1.07559
987987 −9.04746 −0.287984
988988 1.19394 0.0379842
989989 20.4749 0.651063
990990 0 0
991991 47.0132 1.49342 0.746711 0.665148i 0.231632π-0.231632\pi
0.746711 + 0.665148i 0.231632π0.231632\pi
992992 6.47768 0.205667
993993 9.92478 0.314953
994994 3.84955 0.122100
995995 0 0
996996 −1.10016 −0.0348598
997997 −13.6873 −0.433483 −0.216741 0.976229i 0.569543π-0.569543\pi
−0.216741 + 0.976229i 0.569543π0.569543\pi
998998 −8.12601 −0.257224
999999 −43.8007 −1.38579
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.a.f.1.3 3
3.2 odd 2 4275.2.a.bk.1.1 3
4.3 odd 2 7600.2.a.bx.1.2 3
5.2 odd 4 475.2.b.d.324.5 6
5.3 odd 4 475.2.b.d.324.2 6
5.4 even 2 95.2.a.a.1.1 3
15.14 odd 2 855.2.a.i.1.3 3
19.18 odd 2 9025.2.a.bb.1.1 3
20.19 odd 2 1520.2.a.p.1.2 3
35.34 odd 2 4655.2.a.u.1.1 3
40.19 odd 2 6080.2.a.by.1.2 3
40.29 even 2 6080.2.a.bo.1.2 3
95.94 odd 2 1805.2.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.a.1.1 3 5.4 even 2
475.2.a.f.1.3 3 1.1 even 1 trivial
475.2.b.d.324.2 6 5.3 odd 4
475.2.b.d.324.5 6 5.2 odd 4
855.2.a.i.1.3 3 15.14 odd 2
1520.2.a.p.1.2 3 20.19 odd 2
1805.2.a.f.1.3 3 95.94 odd 2
4275.2.a.bk.1.1 3 3.2 odd 2
4655.2.a.u.1.1 3 35.34 odd 2
6080.2.a.bo.1.2 3 40.29 even 2
6080.2.a.by.1.2 3 40.19 odd 2
7600.2.a.bx.1.2 3 4.3 odd 2
9025.2.a.bb.1.1 3 19.18 odd 2