Properties

Label 475.2.a.g
Level $475$
Weight $2$
Character orbit 475.a
Self dual yes
Analytic conductor $3.793$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.169.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} + 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + (\beta_{2} - 2 \beta_1) q^{6} + ( - \beta_{2} + 1) q^{7} + (2 \beta_{2} - \beta_1 + 2) q^{8} + \beta_1 q^{9} - \beta_{2} q^{11}+ \cdots + ( - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 2 q^{3} + 4 q^{4} - 3 q^{6} + 4 q^{7} + 3 q^{8} + q^{9} + q^{11} + 7 q^{12} + 3 q^{13} + 7 q^{14} - 6 q^{16} + 14 q^{17} - 8 q^{18} + 3 q^{19} - 6 q^{21} + 5 q^{22} + 8 q^{23} + 15 q^{24}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.65109
−0.273891
−1.37720
−1.65109 2.37720 0.726109 0 −3.92498 −0.377203 2.10331 2.65109 0
1.2 1.27389 −1.65109 −0.377203 0 −2.10331 3.65109 −3.02830 −0.273891 0
1.3 2.37720 1.27389 3.65109 0 3.02830 0.726109 3.92498 −1.37720 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.a.g yes 3
3.b odd 2 1 4275.2.a.ba 3
4.b odd 2 1 7600.2.a.bh 3
5.b even 2 1 475.2.a.e 3
5.c odd 4 2 475.2.b.b 6
15.d odd 2 1 4275.2.a.bm 3
19.b odd 2 1 9025.2.a.y 3
20.d odd 2 1 7600.2.a.cc 3
95.d odd 2 1 9025.2.a.bc 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
475.2.a.e 3 5.b even 2 1
475.2.a.g yes 3 1.a even 1 1 trivial
475.2.b.b 6 5.c odd 4 2
4275.2.a.ba 3 3.b odd 2 1
4275.2.a.bm 3 15.d odd 2 1
7600.2.a.bh 3 4.b odd 2 1
7600.2.a.cc 3 20.d odd 2 1
9025.2.a.y 3 19.b odd 2 1
9025.2.a.bc 3 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 2T_{2}^{2} - 3T_{2} + 5 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(475))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - T^{2} - 4T - 1 \) Copy content Toggle raw display
$13$ \( T^{3} - 3 T^{2} + \cdots + 103 \) Copy content Toggle raw display
$17$ \( T^{3} - 14 T^{2} + \cdots - 79 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 8 T^{2} + \cdots + 125 \) Copy content Toggle raw display
$29$ \( T^{3} + 5 T^{2} + \cdots - 5 \) Copy content Toggle raw display
$31$ \( T^{3} + T^{2} + \cdots + 53 \) Copy content Toggle raw display
$37$ \( T^{3} - 5 T^{2} + \cdots + 395 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots + 155 \) Copy content Toggle raw display
$43$ \( T^{3} + 5 T^{2} + \cdots - 317 \) Copy content Toggle raw display
$47$ \( T^{3} - 9 T^{2} + \cdots + 311 \) Copy content Toggle raw display
$53$ \( T^{3} - 31 T^{2} + \cdots - 905 \) Copy content Toggle raw display
$59$ \( T^{3} + 6 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$61$ \( T^{3} - 3 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$67$ \( T^{3} + 13T^{2} - 169 \) Copy content Toggle raw display
$71$ \( T^{3} - 7T^{2} - T + 47 \) Copy content Toggle raw display
$73$ \( T^{3} - T^{2} + \cdots - 53 \) Copy content Toggle raw display
$79$ \( T^{3} + 18 T^{2} + \cdots - 395 \) Copy content Toggle raw display
$83$ \( T^{3} - 3 T^{2} + \cdots - 131 \) Copy content Toggle raw display
$89$ \( T^{3} + 20 T^{2} + \cdots - 125 \) Copy content Toggle raw display
$97$ \( T^{3} + 13T^{2} - 169 \) Copy content Toggle raw display
show more
show less