Properties

Label 475.2.e.e.201.4
Level $475$
Weight $2$
Character 475.201
Analytic conductor $3.793$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.4601315889.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 3x^{5} + 26x^{4} - 14x^{3} + 31x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 201.4
Root \(-0.245959 + 0.426014i\) of defining polynomial
Character \(\chi\) \(=\) 475.201
Dual form 475.2.e.e.26.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37901 - 2.38851i) q^{2} +(0.745959 - 1.29204i) q^{3} +(-2.80333 - 4.85550i) q^{4} +(-2.05737 - 3.56347i) q^{6} +2.84864 q^{7} -9.94721 q^{8} +(0.387090 + 0.670459i) q^{9} -0.864801 q^{11} -8.36467 q^{12} +(0.321640 + 0.557098i) q^{13} +(3.92829 - 6.80401i) q^{14} +(-8.11063 + 14.0480i) q^{16} +(1.87093 - 3.24054i) q^{17} +2.13520 q^{18} +(-3.36069 + 2.77592i) q^{19} +(2.12497 - 3.68055i) q^{21} +(-1.19257 + 2.06559i) q^{22} +(0.208730 + 0.361531i) q^{23} +(-7.42021 + 12.8522i) q^{24} +1.77418 q^{26} +5.63077 q^{27} +(-7.98566 - 13.8316i) q^{28} +(4.85261 + 8.40497i) q^{29} +4.93349 q^{31} +(12.4220 + 21.5156i) q^{32} +(-0.645106 + 1.11736i) q^{33} +(-5.16005 - 8.93746i) q^{34} +(2.17028 - 3.75903i) q^{36} -6.36467 q^{37} +(1.99589 + 11.8551i) q^{38} +0.959723 q^{39} +(2.00686 - 3.47598i) q^{41} +(-5.86069 - 10.1510i) q^{42} +(-1.02915 + 1.78254i) q^{43} +(2.42432 + 4.19904i) q^{44} +1.15136 q^{46} +(-1.97698 - 3.42423i) q^{47} +(12.1004 + 20.9585i) q^{48} +1.11474 q^{49} +(-2.79127 - 4.83462i) q^{51} +(1.80333 - 3.12345i) q^{52} +(-5.49374 - 9.51544i) q^{53} +(7.76487 - 13.4492i) q^{54} -28.3360 q^{56} +(1.07966 + 6.41287i) q^{57} +26.7672 q^{58} +(-1.22980 + 2.13007i) q^{59} +(-3.16740 - 5.48609i) q^{61} +(6.80333 - 11.7837i) q^{62} +(1.10268 + 1.90989i) q^{63} +36.0778 q^{64} +(1.77921 + 3.08169i) q^{66} +(-1.26610 - 2.19295i) q^{67} -20.9793 q^{68} +0.622817 q^{69} +(0.891065 - 1.54337i) q^{71} +(-3.85046 - 6.66920i) q^{72} +(-3.56545 + 6.17554i) q^{73} +(-8.77693 + 15.2021i) q^{74} +(22.8996 + 8.53606i) q^{76} -2.46350 q^{77} +(1.32347 - 2.29231i) q^{78} +(-0.912262 + 1.58008i) q^{79} +(3.03905 - 5.26380i) q^{81} +(-5.53495 - 9.58681i) q^{82} +7.43913 q^{83} -23.8279 q^{84} +(2.83841 + 4.91626i) q^{86} +14.4794 q^{87} +8.60235 q^{88} +(-2.22294 - 3.85024i) q^{89} +(0.916237 + 1.58697i) q^{91} +(1.17028 - 2.02698i) q^{92} +(3.68018 - 6.37427i) q^{93} -10.9051 q^{94} +37.0653 q^{96} +(-5.42707 + 9.39996i) q^{97} +(1.53723 - 2.66256i) q^{98} +(-0.334755 - 0.579813i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 3 q^{3} - 5 q^{4} - 2 q^{6} + 8 q^{7} - 24 q^{8} - q^{9} - 4 q^{11} - 12 q^{12} + 7 q^{13} + q^{14} - 7 q^{16} - q^{17} + 20 q^{18} + 5 q^{19} + 4 q^{21} + 2 q^{22} + 2 q^{23} - 23 q^{24}+ \cdots - 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37901 2.38851i 0.975106 1.68893i 0.295521 0.955336i \(-0.404507\pi\)
0.679585 0.733597i \(-0.262160\pi\)
\(3\) 0.745959 1.29204i 0.430680 0.745959i −0.566252 0.824232i \(-0.691607\pi\)
0.996932 + 0.0782728i \(0.0249405\pi\)
\(4\) −2.80333 4.85550i −1.40166 2.42775i
\(5\) 0 0
\(6\) −2.05737 3.56347i −0.839917 1.45478i
\(7\) 2.84864 1.07668 0.538342 0.842727i \(-0.319051\pi\)
0.538342 + 0.842727i \(0.319051\pi\)
\(8\) −9.94721 −3.51687
\(9\) 0.387090 + 0.670459i 0.129030 + 0.223486i
\(10\) 0 0
\(11\) −0.864801 −0.260747 −0.130374 0.991465i \(-0.541618\pi\)
−0.130374 + 0.991465i \(0.541618\pi\)
\(12\) −8.36467 −2.41467
\(13\) 0.321640 + 0.557098i 0.0892070 + 0.154511i 0.907176 0.420751i \(-0.138233\pi\)
−0.817969 + 0.575262i \(0.804900\pi\)
\(14\) 3.92829 6.80401i 1.04988 1.81845i
\(15\) 0 0
\(16\) −8.11063 + 14.0480i −2.02766 + 3.51201i
\(17\) 1.87093 3.24054i 0.453766 0.785946i −0.544850 0.838534i \(-0.683413\pi\)
0.998616 + 0.0525872i \(0.0167467\pi\)
\(18\) 2.13520 0.503271
\(19\) −3.36069 + 2.77592i −0.770996 + 0.636840i
\(20\) 0 0
\(21\) 2.12497 3.68055i 0.463706 0.803162i
\(22\) −1.19257 + 2.06559i −0.254256 + 0.440385i
\(23\) 0.208730 + 0.361531i 0.0435233 + 0.0753845i 0.886966 0.461834i \(-0.152808\pi\)
−0.843443 + 0.537218i \(0.819475\pi\)
\(24\) −7.42021 + 12.8522i −1.51464 + 2.62344i
\(25\) 0 0
\(26\) 1.77418 0.347945
\(27\) 5.63077 1.08364
\(28\) −7.98566 13.8316i −1.50915 2.61392i
\(29\) 4.85261 + 8.40497i 0.901108 + 1.56076i 0.826059 + 0.563584i \(0.190578\pi\)
0.0750490 + 0.997180i \(0.476089\pi\)
\(30\) 0 0
\(31\) 4.93349 0.886081 0.443041 0.896501i \(-0.353900\pi\)
0.443041 + 0.896501i \(0.353900\pi\)
\(32\) 12.4220 + 21.5156i 2.19593 + 3.80346i
\(33\) −0.645106 + 1.11736i −0.112299 + 0.194507i
\(34\) −5.16005 8.93746i −0.884941 1.53276i
\(35\) 0 0
\(36\) 2.17028 3.75903i 0.361713 0.626505i
\(37\) −6.36467 −1.04635 −0.523173 0.852227i \(-0.675252\pi\)
−0.523173 + 0.852227i \(0.675252\pi\)
\(38\) 1.99589 + 11.8551i 0.323777 + 1.92315i
\(39\) 0.959723 0.153679
\(40\) 0 0
\(41\) 2.00686 3.47598i 0.313419 0.542857i −0.665681 0.746236i \(-0.731859\pi\)
0.979100 + 0.203379i \(0.0651924\pi\)
\(42\) −5.86069 10.1510i −0.904325 1.56634i
\(43\) −1.02915 + 1.78254i −0.156944 + 0.271834i −0.933765 0.357887i \(-0.883497\pi\)
0.776821 + 0.629721i \(0.216831\pi\)
\(44\) 2.42432 + 4.19904i 0.365480 + 0.633030i
\(45\) 0 0
\(46\) 1.15136 0.169759
\(47\) −1.97698 3.42423i −0.288372 0.499475i 0.685049 0.728497i \(-0.259781\pi\)
−0.973421 + 0.229022i \(0.926447\pi\)
\(48\) 12.1004 + 20.9585i 1.74654 + 3.02510i
\(49\) 1.11474 0.159248
\(50\) 0 0
\(51\) −2.79127 4.83462i −0.390856 0.676982i
\(52\) 1.80333 3.12345i 0.250076 0.433145i
\(53\) −5.49374 9.51544i −0.754624 1.30705i −0.945561 0.325444i \(-0.894486\pi\)
0.190937 0.981602i \(-0.438847\pi\)
\(54\) 7.76487 13.4492i 1.05667 1.83020i
\(55\) 0 0
\(56\) −28.3360 −3.78656
\(57\) 1.07966 + 6.41287i 0.143004 + 0.849406i
\(58\) 26.7672 3.51470
\(59\) −1.22980 + 2.13007i −0.160106 + 0.277311i −0.934906 0.354894i \(-0.884517\pi\)
0.774801 + 0.632206i \(0.217850\pi\)
\(60\) 0 0
\(61\) −3.16740 5.48609i −0.405543 0.702422i 0.588841 0.808249i \(-0.299584\pi\)
−0.994385 + 0.105827i \(0.966251\pi\)
\(62\) 6.80333 11.7837i 0.864023 1.49653i
\(63\) 1.10268 + 1.90989i 0.138924 + 0.240624i
\(64\) 36.0778 4.50973
\(65\) 0 0
\(66\) 1.77921 + 3.08169i 0.219006 + 0.379329i
\(67\) −1.26610 2.19295i −0.154678 0.267911i 0.778263 0.627938i \(-0.216101\pi\)
−0.932942 + 0.360027i \(0.882767\pi\)
\(68\) −20.9793 −2.54411
\(69\) 0.622817 0.0749783
\(70\) 0 0
\(71\) 0.891065 1.54337i 0.105750 0.183164i −0.808294 0.588779i \(-0.799609\pi\)
0.914044 + 0.405614i \(0.132942\pi\)
\(72\) −3.85046 6.66920i −0.453781 0.785972i
\(73\) −3.56545 + 6.17554i −0.417304 + 0.722792i −0.995667 0.0929873i \(-0.970358\pi\)
0.578363 + 0.815780i \(0.303692\pi\)
\(74\) −8.77693 + 15.2021i −1.02030 + 1.76721i
\(75\) 0 0
\(76\) 22.8996 + 8.53606i 2.62677 + 0.979153i
\(77\) −2.46350 −0.280742
\(78\) 1.32347 2.29231i 0.149853 0.259553i
\(79\) −0.912262 + 1.58008i −0.102637 + 0.177773i −0.912771 0.408473i \(-0.866061\pi\)
0.810133 + 0.586246i \(0.199395\pi\)
\(80\) 0 0
\(81\) 3.03905 5.26380i 0.337673 0.584866i
\(82\) −5.53495 9.58681i −0.611233 1.05869i
\(83\) 7.43913 0.816550 0.408275 0.912859i \(-0.366130\pi\)
0.408275 + 0.912859i \(0.366130\pi\)
\(84\) −23.8279 −2.59984
\(85\) 0 0
\(86\) 2.83841 + 4.91626i 0.306073 + 0.530134i
\(87\) 14.4794 1.55236
\(88\) 8.60235 0.917014
\(89\) −2.22294 3.85024i −0.235631 0.408125i 0.723825 0.689984i \(-0.242382\pi\)
−0.959456 + 0.281859i \(0.909049\pi\)
\(90\) 0 0
\(91\) 0.916237 + 1.58697i 0.0960478 + 0.166360i
\(92\) 1.17028 2.02698i 0.122010 0.211327i
\(93\) 3.68018 6.37427i 0.381617 0.660981i
\(94\) −10.9051 −1.12477
\(95\) 0 0
\(96\) 37.0653 3.78296
\(97\) −5.42707 + 9.39996i −0.551036 + 0.954422i 0.447165 + 0.894452i \(0.352434\pi\)
−0.998200 + 0.0599699i \(0.980900\pi\)
\(98\) 1.53723 2.66256i 0.155284 0.268959i
\(99\) −0.334755 0.579813i −0.0336442 0.0582734i
\(100\) 0 0
\(101\) 2.64799 + 4.58645i 0.263485 + 0.456369i 0.967166 0.254147i \(-0.0817948\pi\)
−0.703681 + 0.710516i \(0.748461\pi\)
\(102\) −15.3967 −1.52450
\(103\) 0.385134 0.0379484 0.0189742 0.999820i \(-0.493960\pi\)
0.0189742 + 0.999820i \(0.493960\pi\)
\(104\) −3.19943 5.54157i −0.313729 0.543395i
\(105\) 0 0
\(106\) −30.3037 −2.94335
\(107\) 6.43336 0.621937 0.310968 0.950420i \(-0.399347\pi\)
0.310968 + 0.950420i \(0.399347\pi\)
\(108\) −15.7849 27.3402i −1.51890 2.63081i
\(109\) −3.28441 + 5.68877i −0.314590 + 0.544885i −0.979350 0.202171i \(-0.935200\pi\)
0.664761 + 0.747056i \(0.268534\pi\)
\(110\) 0 0
\(111\) −4.74778 + 8.22340i −0.450640 + 0.780531i
\(112\) −23.1042 + 40.0177i −2.18315 + 3.78132i
\(113\) −0.294513 −0.0277054 −0.0138527 0.999904i \(-0.504410\pi\)
−0.0138527 + 0.999904i \(0.504410\pi\)
\(114\) 16.8061 + 6.26463i 1.57403 + 0.586736i
\(115\) 0 0
\(116\) 27.2069 47.1238i 2.52610 4.37533i
\(117\) −0.249007 + 0.431294i −0.0230207 + 0.0398731i
\(118\) 3.39180 + 5.87477i 0.312240 + 0.540816i
\(119\) 5.32959 9.23112i 0.488563 0.846216i
\(120\) 0 0
\(121\) −10.2521 −0.932011
\(122\) −17.4715 −1.58179
\(123\) −2.99407 5.18588i −0.269966 0.467595i
\(124\) −13.8302 23.9546i −1.24199 2.15119i
\(125\) 0 0
\(126\) 6.08241 0.541864
\(127\) 4.41746 + 7.65127i 0.391986 + 0.678940i 0.992711 0.120516i \(-0.0384548\pi\)
−0.600725 + 0.799456i \(0.705121\pi\)
\(128\) 24.9076 43.1412i 2.20154 3.81318i
\(129\) 1.53540 + 2.65940i 0.135185 + 0.234147i
\(130\) 0 0
\(131\) −10.4564 + 18.1110i −0.913578 + 1.58236i −0.104609 + 0.994513i \(0.533359\pi\)
−0.808969 + 0.587851i \(0.799974\pi\)
\(132\) 7.23377 0.629619
\(133\) −9.57340 + 7.90759i −0.830119 + 0.685675i
\(134\) −6.98384 −0.603312
\(135\) 0 0
\(136\) −18.6105 + 32.2343i −1.59584 + 2.76407i
\(137\) 2.60739 + 4.51613i 0.222764 + 0.385839i 0.955646 0.294517i \(-0.0951587\pi\)
−0.732882 + 0.680356i \(0.761825\pi\)
\(138\) 0.858870 1.48761i 0.0731118 0.126633i
\(139\) 5.36192 + 9.28711i 0.454792 + 0.787723i 0.998676 0.0514375i \(-0.0163803\pi\)
−0.543884 + 0.839160i \(0.683047\pi\)
\(140\) 0 0
\(141\) −5.89898 −0.496784
\(142\) −2.45757 4.25664i −0.206235 0.357209i
\(143\) −0.278155 0.481778i −0.0232605 0.0402883i
\(144\) −12.5582 −1.04651
\(145\) 0 0
\(146\) 9.83357 + 17.0322i 0.813832 + 1.40960i
\(147\) 0.831547 1.44028i 0.0685848 0.118792i
\(148\) 17.8423 + 30.9037i 1.46662 + 2.54027i
\(149\) 7.45578 12.9138i 0.610801 1.05794i −0.380304 0.924861i \(-0.624181\pi\)
0.991106 0.133078i \(-0.0424860\pi\)
\(150\) 0 0
\(151\) 21.4589 1.74630 0.873152 0.487448i \(-0.162072\pi\)
0.873152 + 0.487448i \(0.162072\pi\)
\(152\) 33.4295 27.6127i 2.71149 2.23968i
\(153\) 2.89687 0.234198
\(154\) −3.39719 + 5.88411i −0.273753 + 0.474155i
\(155\) 0 0
\(156\) −2.69042 4.65994i −0.215406 0.373094i
\(157\) −1.21559 + 2.10546i −0.0970145 + 0.168034i −0.910448 0.413624i \(-0.864263\pi\)
0.813433 + 0.581659i \(0.197596\pi\)
\(158\) 2.51603 + 4.35790i 0.200165 + 0.346696i
\(159\) −16.3924 −1.30000
\(160\) 0 0
\(161\) 0.594597 + 1.02987i 0.0468608 + 0.0811653i
\(162\) −8.38176 14.5176i −0.658533 1.14061i
\(163\) −17.8175 −1.39558 −0.697788 0.716305i \(-0.745832\pi\)
−0.697788 + 0.716305i \(0.745832\pi\)
\(164\) −22.5035 −1.75723
\(165\) 0 0
\(166\) 10.2586 17.7684i 0.796223 1.37910i
\(167\) −0.202799 0.351258i −0.0156931 0.0271812i 0.858072 0.513529i \(-0.171662\pi\)
−0.873765 + 0.486348i \(0.838329\pi\)
\(168\) −21.1375 + 36.6112i −1.63079 + 2.82462i
\(169\) 6.29309 10.9000i 0.484084 0.838458i
\(170\) 0 0
\(171\) −3.16203 1.17868i −0.241807 0.0901358i
\(172\) 11.5401 0.879928
\(173\) 9.01051 15.6067i 0.685056 1.18655i −0.288363 0.957521i \(-0.593111\pi\)
0.973419 0.229031i \(-0.0735557\pi\)
\(174\) 19.9672 34.5842i 1.51371 2.62182i
\(175\) 0 0
\(176\) 7.01408 12.1487i 0.528706 0.915746i
\(177\) 1.83476 + 3.17789i 0.137909 + 0.238865i
\(178\) −12.2618 −0.919061
\(179\) 20.1523 1.50625 0.753127 0.657875i \(-0.228545\pi\)
0.753127 + 0.657875i \(0.228545\pi\)
\(180\) 0 0
\(181\) 8.55541 + 14.8184i 0.635919 + 1.10144i 0.986320 + 0.164844i \(0.0527120\pi\)
−0.350401 + 0.936600i \(0.613955\pi\)
\(182\) 5.05399 0.374627
\(183\) −9.45099 −0.698637
\(184\) −2.07628 3.59623i −0.153066 0.265117i
\(185\) 0 0
\(186\) −10.1500 17.5803i −0.744235 1.28905i
\(187\) −1.61798 + 2.80242i −0.118318 + 0.204933i
\(188\) −11.0842 + 19.1985i −0.808401 + 1.40019i
\(189\) 16.0400 1.16674
\(190\) 0 0
\(191\) 5.28080 0.382105 0.191053 0.981580i \(-0.438810\pi\)
0.191053 + 0.981580i \(0.438810\pi\)
\(192\) 26.9126 46.6140i 1.94225 3.36408i
\(193\) 9.00182 15.5916i 0.647966 1.12231i −0.335642 0.941989i \(-0.608953\pi\)
0.983608 0.180320i \(-0.0577133\pi\)
\(194\) 14.9679 + 25.9252i 1.07464 + 1.86132i
\(195\) 0 0
\(196\) −3.12497 5.41260i −0.223212 0.386614i
\(197\) −8.07785 −0.575523 −0.287761 0.957702i \(-0.592911\pi\)
−0.287761 + 0.957702i \(0.592911\pi\)
\(198\) −1.84652 −0.131227
\(199\) −0.701872 1.21568i −0.0497544 0.0861771i 0.840076 0.542469i \(-0.182511\pi\)
−0.889830 + 0.456292i \(0.849177\pi\)
\(200\) 0 0
\(201\) −3.77783 −0.266468
\(202\) 14.6064 1.02770
\(203\) 13.8233 + 23.9427i 0.970208 + 1.68045i
\(204\) −15.6497 + 27.1060i −1.09570 + 1.89780i
\(205\) 0 0
\(206\) 0.531103 0.919897i 0.0370037 0.0640923i
\(207\) −0.161595 + 0.279890i −0.0112316 + 0.0194537i
\(208\) −10.4348 −0.723525
\(209\) 2.90633 2.40062i 0.201035 0.166054i
\(210\) 0 0
\(211\) −9.45817 + 16.3820i −0.651128 + 1.12779i 0.331722 + 0.943377i \(0.392370\pi\)
−0.982850 + 0.184409i \(0.940963\pi\)
\(212\) −30.8015 + 53.3498i −2.11546 + 3.66408i
\(213\) −1.32940 2.30258i −0.0910888 0.157770i
\(214\) 8.87166 15.3662i 0.606454 1.05041i
\(215\) 0 0
\(216\) −56.0104 −3.81103
\(217\) 14.0537 0.954030
\(218\) 9.05846 + 15.6897i 0.613516 + 1.06264i
\(219\) 5.31936 + 9.21340i 0.359449 + 0.622584i
\(220\) 0 0
\(221\) 2.40706 0.161917
\(222\) 13.0945 + 22.6803i 0.878843 + 1.52220i
\(223\) −8.07400 + 13.9846i −0.540675 + 0.936477i 0.458190 + 0.888854i \(0.348498\pi\)
−0.998865 + 0.0476227i \(0.984835\pi\)
\(224\) 35.3859 + 61.2901i 2.36432 + 4.09512i
\(225\) 0 0
\(226\) −0.406136 + 0.703448i −0.0270157 + 0.0467926i
\(227\) −26.3186 −1.74683 −0.873414 0.486978i \(-0.838099\pi\)
−0.873414 + 0.486978i \(0.838099\pi\)
\(228\) 28.1111 23.2197i 1.86170 1.53776i
\(229\) −13.3323 −0.881026 −0.440513 0.897746i \(-0.645203\pi\)
−0.440513 + 0.897746i \(0.645203\pi\)
\(230\) 0 0
\(231\) −1.83767 + 3.18294i −0.120910 + 0.209422i
\(232\) −48.2700 83.6060i −3.16908 5.48900i
\(233\) 12.6547 21.9186i 0.829038 1.43594i −0.0697556 0.997564i \(-0.522222\pi\)
0.898794 0.438372i \(-0.144445\pi\)
\(234\) 0.686767 + 1.18951i 0.0448953 + 0.0777610i
\(235\) 0 0
\(236\) 13.7901 0.897658
\(237\) 1.36102 + 2.35736i 0.0884077 + 0.153127i
\(238\) −14.6991 25.4596i −0.952801 1.65030i
\(239\) −23.5500 −1.52332 −0.761660 0.647977i \(-0.775615\pi\)
−0.761660 + 0.647977i \(0.775615\pi\)
\(240\) 0 0
\(241\) −4.19208 7.26089i −0.270035 0.467715i 0.698835 0.715283i \(-0.253702\pi\)
−0.968871 + 0.247568i \(0.920369\pi\)
\(242\) −14.1378 + 24.4873i −0.908809 + 1.57410i
\(243\) 3.91213 + 6.77601i 0.250963 + 0.434681i
\(244\) −17.7585 + 30.7586i −1.13687 + 1.96912i
\(245\) 0 0
\(246\) −16.5154 −1.05298
\(247\) −2.62739 0.979387i −0.167177 0.0623169i
\(248\) −49.0745 −3.11623
\(249\) 5.54929 9.61165i 0.351672 0.609113i
\(250\) 0 0
\(251\) −9.12391 15.8031i −0.575896 0.997481i −0.995944 0.0899792i \(-0.971320\pi\)
0.420048 0.907502i \(-0.362013\pi\)
\(252\) 6.18233 10.7081i 0.389450 0.674548i
\(253\) −0.180510 0.312652i −0.0113486 0.0196563i
\(254\) 24.3669 1.52891
\(255\) 0 0
\(256\) −32.6176 56.4954i −2.03860 3.53096i
\(257\) 7.04989 + 12.2108i 0.439760 + 0.761687i 0.997671 0.0682144i \(-0.0217302\pi\)
−0.557911 + 0.829901i \(0.688397\pi\)
\(258\) 8.46934 0.527278
\(259\) −18.1306 −1.12658
\(260\) 0 0
\(261\) −3.75679 + 6.50696i −0.232540 + 0.402770i
\(262\) 28.8389 + 49.9504i 1.78167 + 3.08595i
\(263\) −3.20536 + 5.55184i −0.197651 + 0.342341i −0.947766 0.318966i \(-0.896665\pi\)
0.750116 + 0.661307i \(0.229998\pi\)
\(264\) 6.41700 11.1146i 0.394939 0.684055i
\(265\) 0 0
\(266\) 5.68558 + 33.7708i 0.348605 + 2.07062i
\(267\) −6.63288 −0.405926
\(268\) −7.09857 + 12.2951i −0.433614 + 0.751042i
\(269\) −8.99557 + 15.5808i −0.548469 + 0.949977i 0.449910 + 0.893074i \(0.351456\pi\)
−0.998380 + 0.0569032i \(0.981877\pi\)
\(270\) 0 0
\(271\) −5.94095 + 10.2900i −0.360887 + 0.625075i −0.988107 0.153767i \(-0.950859\pi\)
0.627220 + 0.778842i \(0.284193\pi\)
\(272\) 30.3488 + 52.5656i 1.84017 + 3.18726i
\(273\) 2.73390 0.165463
\(274\) 14.3824 0.868874
\(275\) 0 0
\(276\) −1.74596 3.02409i −0.105094 0.182029i
\(277\) −23.6240 −1.41943 −0.709715 0.704489i \(-0.751176\pi\)
−0.709715 + 0.704489i \(0.751176\pi\)
\(278\) 29.5765 1.77388
\(279\) 1.90970 + 3.30770i 0.114331 + 0.198027i
\(280\) 0 0
\(281\) −6.90465 11.9592i −0.411897 0.713426i 0.583200 0.812328i \(-0.301800\pi\)
−0.995097 + 0.0989020i \(0.968467\pi\)
\(282\) −8.13474 + 14.0898i −0.484417 + 0.839035i
\(283\) −5.87868 + 10.1822i −0.349451 + 0.605268i −0.986152 0.165843i \(-0.946965\pi\)
0.636701 + 0.771111i \(0.280299\pi\)
\(284\) −9.99179 −0.592904
\(285\) 0 0
\(286\) −1.53431 −0.0907257
\(287\) 5.71681 9.90181i 0.337453 0.584485i
\(288\) −9.61689 + 16.6569i −0.566680 + 0.981519i
\(289\) 1.49927 + 2.59681i 0.0881922 + 0.152753i
\(290\) 0 0
\(291\) 8.09675 + 14.0240i 0.474640 + 0.822100i
\(292\) 39.9805 2.33968
\(293\) 27.0576 1.58072 0.790362 0.612640i \(-0.209892\pi\)
0.790362 + 0.612640i \(0.209892\pi\)
\(294\) −2.29342 3.97232i −0.133755 0.231670i
\(295\) 0 0
\(296\) 63.3107 3.67986
\(297\) −4.86949 −0.282557
\(298\) −20.5632 35.6165i −1.19119 2.06321i
\(299\) −0.134272 + 0.232566i −0.00776516 + 0.0134497i
\(300\) 0 0
\(301\) −2.93167 + 5.07780i −0.168979 + 0.292679i
\(302\) 29.5921 51.2549i 1.70283 2.94939i
\(303\) 7.90117 0.453910
\(304\) −11.7388 69.7256i −0.673269 3.99904i
\(305\) 0 0
\(306\) 3.99480 6.91920i 0.228368 0.395544i
\(307\) 4.41912 7.65414i 0.252212 0.436845i −0.711922 0.702258i \(-0.752175\pi\)
0.964135 + 0.265414i \(0.0855085\pi\)
\(308\) 6.90601 + 11.9616i 0.393506 + 0.681573i
\(309\) 0.287294 0.497608i 0.0163436 0.0283080i
\(310\) 0 0
\(311\) −0.651493 −0.0369428 −0.0184714 0.999829i \(-0.505880\pi\)
−0.0184714 + 0.999829i \(0.505880\pi\)
\(312\) −9.54656 −0.540468
\(313\) −1.48278 2.56825i −0.0838116 0.145166i 0.821073 0.570824i \(-0.193376\pi\)
−0.904884 + 0.425658i \(0.860043\pi\)
\(314\) 3.35261 + 5.80690i 0.189199 + 0.327702i
\(315\) 0 0
\(316\) 10.2295 0.575453
\(317\) −5.18993 8.98921i −0.291495 0.504885i 0.682668 0.730728i \(-0.260819\pi\)
−0.974164 + 0.225844i \(0.927486\pi\)
\(318\) −22.6053 + 39.1535i −1.26764 + 2.19562i
\(319\) −4.19654 7.26862i −0.234961 0.406965i
\(320\) 0 0
\(321\) 4.79903 8.31216i 0.267856 0.463939i
\(322\) 3.27981 0.182777
\(323\) 2.70787 + 16.0840i 0.150670 + 0.894938i
\(324\) −34.0778 −1.89321
\(325\) 0 0
\(326\) −24.5705 + 42.5574i −1.36083 + 2.35703i
\(327\) 4.90007 + 8.48718i 0.270975 + 0.469342i
\(328\) −19.9626 + 34.5763i −1.10225 + 1.90916i
\(329\) −5.63170 9.75438i −0.310485 0.537776i
\(330\) 0 0
\(331\) 15.0922 0.829543 0.414772 0.909926i \(-0.363861\pi\)
0.414772 + 0.909926i \(0.363861\pi\)
\(332\) −20.8543 36.1207i −1.14453 1.98238i
\(333\) −2.46370 4.26725i −0.135010 0.233844i
\(334\) −1.11865 −0.0612096
\(335\) 0 0
\(336\) 34.4696 + 59.7032i 1.88047 + 3.25708i
\(337\) 7.89872 13.6810i 0.430271 0.745251i −0.566626 0.823975i \(-0.691751\pi\)
0.996896 + 0.0787246i \(0.0250848\pi\)
\(338\) −17.3565 30.0623i −0.944067 1.63517i
\(339\) −0.219695 + 0.380522i −0.0119322 + 0.0206671i
\(340\) 0 0
\(341\) −4.26649 −0.231043
\(342\) −7.17575 + 5.92714i −0.388020 + 0.320503i
\(343\) −16.7650 −0.905224
\(344\) 10.2371 17.7313i 0.551950 0.956005i
\(345\) 0 0
\(346\) −24.8511 43.0434i −1.33600 2.31403i
\(347\) −10.6761 + 18.4915i −0.573122 + 0.992676i 0.423121 + 0.906073i \(0.360935\pi\)
−0.996243 + 0.0866031i \(0.972399\pi\)
\(348\) −40.5905 70.3048i −2.17588 3.76873i
\(349\) −32.3897 −1.73378 −0.866891 0.498497i \(-0.833885\pi\)
−0.866891 + 0.498497i \(0.833885\pi\)
\(350\) 0 0
\(351\) 1.81108 + 3.13689i 0.0966685 + 0.167435i
\(352\) −10.7426 18.6067i −0.572582 0.991741i
\(353\) −0.730583 −0.0388850 −0.0194425 0.999811i \(-0.506189\pi\)
−0.0194425 + 0.999811i \(0.506189\pi\)
\(354\) 10.1206 0.537902
\(355\) 0 0
\(356\) −12.4632 + 21.5870i −0.660551 + 1.14411i
\(357\) −7.95132 13.7721i −0.420828 0.728896i
\(358\) 27.7902 48.1340i 1.46876 2.54396i
\(359\) 13.4248 23.2524i 0.708533 1.22722i −0.256868 0.966447i \(-0.582691\pi\)
0.965401 0.260769i \(-0.0839761\pi\)
\(360\) 0 0
\(361\) 3.58853 18.6580i 0.188870 0.982002i
\(362\) 47.1919 2.48035
\(363\) −7.64766 + 13.2461i −0.401398 + 0.695242i
\(364\) 5.13702 8.89759i 0.269253 0.466360i
\(365\) 0 0
\(366\) −13.0330 + 22.5738i −0.681245 + 1.17995i
\(367\) −11.4822 19.8877i −0.599364 1.03813i −0.992915 0.118826i \(-0.962087\pi\)
0.393551 0.919303i \(-0.371246\pi\)
\(368\) −6.77173 −0.353001
\(369\) 3.10734 0.161761
\(370\) 0 0
\(371\) −15.6497 27.1060i −0.812491 1.40728i
\(372\) −41.2670 −2.13960
\(373\) −29.5305 −1.52903 −0.764515 0.644606i \(-0.777021\pi\)
−0.764515 + 0.644606i \(0.777021\pi\)
\(374\) 4.46241 + 7.72912i 0.230746 + 0.399663i
\(375\) 0 0
\(376\) 19.6654 + 34.0615i 1.01417 + 1.75659i
\(377\) −3.12159 + 5.40676i −0.160770 + 0.278462i
\(378\) 22.1193 38.3118i 1.13769 1.97054i
\(379\) 17.5117 0.899517 0.449759 0.893150i \(-0.351510\pi\)
0.449759 + 0.893150i \(0.351510\pi\)
\(380\) 0 0
\(381\) 13.1810 0.675282
\(382\) 7.28226 12.6132i 0.372593 0.645350i
\(383\) 4.05326 7.02045i 0.207112 0.358728i −0.743692 0.668523i \(-0.766927\pi\)
0.950804 + 0.309794i \(0.100260\pi\)
\(384\) −37.1601 64.3631i −1.89632 3.28452i
\(385\) 0 0
\(386\) −24.8272 43.0019i −1.26367 2.18874i
\(387\) −1.59349 −0.0810016
\(388\) 60.8554 3.08947
\(389\) −8.65392 14.9890i −0.438771 0.759974i 0.558824 0.829286i \(-0.311253\pi\)
−0.997595 + 0.0693125i \(0.977919\pi\)
\(390\) 0 0
\(391\) 1.56208 0.0789976
\(392\) −11.0885 −0.560054
\(393\) 15.6001 + 27.0201i 0.786920 + 1.36298i
\(394\) −11.1394 + 19.2940i −0.561196 + 0.972019i
\(395\) 0 0
\(396\) −1.87686 + 3.25081i −0.0943156 + 0.163359i
\(397\) −5.69472 + 9.86354i −0.285810 + 0.495037i −0.972805 0.231625i \(-0.925596\pi\)
0.686996 + 0.726662i \(0.258929\pi\)
\(398\) −3.87155 −0.194063
\(399\) 3.07555 + 18.2679i 0.153970 + 0.914541i
\(400\) 0 0
\(401\) 4.46930 7.74106i 0.223186 0.386570i −0.732587 0.680673i \(-0.761687\pi\)
0.955774 + 0.294103i \(0.0950208\pi\)
\(402\) −5.20966 + 9.02339i −0.259834 + 0.450046i
\(403\) 1.58681 + 2.74844i 0.0790447 + 0.136909i
\(404\) 14.8464 25.7146i 0.738634 1.27935i
\(405\) 0 0
\(406\) 76.2500 3.78422
\(407\) 5.50417 0.272832
\(408\) 27.7653 + 48.0910i 1.37459 + 2.38086i
\(409\) 3.27235 + 5.66788i 0.161808 + 0.280259i 0.935517 0.353282i \(-0.114934\pi\)
−0.773709 + 0.633541i \(0.781601\pi\)
\(410\) 0 0
\(411\) 7.78001 0.383760
\(412\) −1.07966 1.87002i −0.0531909 0.0921293i
\(413\) −3.50324 + 6.06780i −0.172383 + 0.298577i
\(414\) 0.445681 + 0.771941i 0.0219040 + 0.0379389i
\(415\) 0 0
\(416\) −7.99086 + 13.8406i −0.391784 + 0.678590i
\(417\) 15.9991 0.783479
\(418\) −1.72605 10.2523i −0.0844239 0.501455i
\(419\) 21.8441 1.06715 0.533576 0.845752i \(-0.320848\pi\)
0.533576 + 0.845752i \(0.320848\pi\)
\(420\) 0 0
\(421\) 14.6717 25.4121i 0.715054 1.23851i −0.247885 0.968789i \(-0.579736\pi\)
0.962939 0.269720i \(-0.0869311\pi\)
\(422\) 26.0858 + 45.1819i 1.26984 + 2.19942i
\(423\) 1.53054 2.65097i 0.0744172 0.128894i
\(424\) 54.6474 + 94.6521i 2.65391 + 4.59671i
\(425\) 0 0
\(426\) −7.33299 −0.355285
\(427\) −9.02276 15.6279i −0.436642 0.756286i
\(428\) −18.0348 31.2372i −0.871746 1.50991i
\(429\) −0.829969 −0.0400713
\(430\) 0 0
\(431\) 6.44336 + 11.1602i 0.310366 + 0.537570i 0.978442 0.206524i \(-0.0662151\pi\)
−0.668076 + 0.744093i \(0.732882\pi\)
\(432\) −45.6691 + 79.1011i −2.19725 + 3.80576i
\(433\) −6.92144 11.9883i −0.332623 0.576120i 0.650402 0.759590i \(-0.274600\pi\)
−0.983025 + 0.183470i \(0.941267\pi\)
\(434\) 19.3802 33.5675i 0.930280 1.61129i
\(435\) 0 0
\(436\) 36.8291 1.76379
\(437\) −1.70506 0.635578i −0.0815641 0.0304038i
\(438\) 29.3418 1.40200
\(439\) 0.0354040 0.0613216i 0.00168974 0.00292672i −0.865179 0.501463i \(-0.832795\pi\)
0.866869 + 0.498536i \(0.166129\pi\)
\(440\) 0 0
\(441\) 0.431503 + 0.747384i 0.0205477 + 0.0355897i
\(442\) 3.31936 5.74930i 0.157886 0.273466i
\(443\) −1.89457 3.28149i −0.0900137 0.155908i 0.817503 0.575924i \(-0.195358\pi\)
−0.907517 + 0.420016i \(0.862024\pi\)
\(444\) 53.2384 2.52658
\(445\) 0 0
\(446\) 22.2682 + 38.5697i 1.05443 + 1.82633i
\(447\) −11.1234 19.2663i −0.526120 0.911266i
\(448\) 102.773 4.85555
\(449\) −26.5765 −1.25422 −0.627112 0.778929i \(-0.715763\pi\)
−0.627112 + 0.778929i \(0.715763\pi\)
\(450\) 0 0
\(451\) −1.73553 + 3.00603i −0.0817230 + 0.141548i
\(452\) 0.825616 + 1.43001i 0.0388337 + 0.0672620i
\(453\) 16.0075 27.7258i 0.752098 1.30267i
\(454\) −36.2936 + 62.8624i −1.70334 + 2.95028i
\(455\) 0 0
\(456\) −10.7396 63.7902i −0.502927 2.98725i
\(457\) 33.1523 1.55080 0.775400 0.631471i \(-0.217548\pi\)
0.775400 + 0.631471i \(0.217548\pi\)
\(458\) −18.3854 + 31.8445i −0.859094 + 1.48799i
\(459\) 10.5348 18.2467i 0.491720 0.851684i
\(460\) 0 0
\(461\) 9.62679 16.6741i 0.448364 0.776590i −0.549915 0.835220i \(-0.685340\pi\)
0.998280 + 0.0586304i \(0.0186734\pi\)
\(462\) 5.06833 + 8.77861i 0.235800 + 0.408418i
\(463\) −39.1713 −1.82044 −0.910222 0.414120i \(-0.864089\pi\)
−0.910222 + 0.414120i \(0.864089\pi\)
\(464\) −157.431 −7.30855
\(465\) 0 0
\(466\) −34.9019 60.4519i −1.61680 2.80038i
\(467\) 39.0650 1.80771 0.903856 0.427836i \(-0.140724\pi\)
0.903856 + 0.427836i \(0.140724\pi\)
\(468\) 2.79220 0.129069
\(469\) −3.60665 6.24691i −0.166540 0.288455i
\(470\) 0 0
\(471\) 1.81356 + 3.14118i 0.0835644 + 0.144738i
\(472\) 12.2330 21.1882i 0.563071 0.975268i
\(473\) 0.890007 1.54154i 0.0409226 0.0708800i
\(474\) 7.50743 0.344828
\(475\) 0 0
\(476\) −59.7623 −2.73920
\(477\) 4.25314 7.36666i 0.194738 0.337296i
\(478\) −32.4756 + 56.2493i −1.48540 + 2.57279i
\(479\) 12.3775 + 21.4385i 0.565543 + 0.979550i 0.996999 + 0.0774158i \(0.0246669\pi\)
−0.431455 + 0.902134i \(0.642000\pi\)
\(480\) 0 0
\(481\) −2.04714 3.54574i −0.0933413 0.161672i
\(482\) −23.1236 −1.05325
\(483\) 1.77418 0.0807280
\(484\) 28.7400 + 49.7792i 1.30637 + 2.26269i
\(485\) 0 0
\(486\) 21.5794 0.978863
\(487\) −21.8871 −0.991797 −0.495899 0.868380i \(-0.665161\pi\)
−0.495899 + 0.868380i \(0.665161\pi\)
\(488\) 31.5067 + 54.5713i 1.42624 + 2.47033i
\(489\) −13.2911 + 23.0209i −0.601046 + 1.04104i
\(490\) 0 0
\(491\) −4.69777 + 8.13677i −0.212007 + 0.367207i −0.952343 0.305030i \(-0.901333\pi\)
0.740335 + 0.672238i \(0.234667\pi\)
\(492\) −16.7867 + 29.0754i −0.756803 + 1.31082i
\(493\) 36.3155 1.63557
\(494\) −5.96247 + 4.92498i −0.268264 + 0.221585i
\(495\) 0 0
\(496\) −40.0137 + 69.3058i −1.79667 + 3.11192i
\(497\) 2.53832 4.39650i 0.113859 0.197210i
\(498\) −15.3050 26.5091i −0.685834 1.18790i
\(499\) −12.4558 + 21.5740i −0.557596 + 0.965785i 0.440100 + 0.897949i \(0.354943\pi\)
−0.997696 + 0.0678367i \(0.978390\pi\)
\(500\) 0 0
\(501\) −0.605119 −0.0270347
\(502\) −50.3278 −2.24624
\(503\) −15.6590 27.1222i −0.698200 1.20932i −0.969090 0.246707i \(-0.920651\pi\)
0.270890 0.962610i \(-0.412682\pi\)
\(504\) −10.9686 18.9981i −0.488579 0.846244i
\(505\) 0 0
\(506\) −0.995699 −0.0442642
\(507\) −9.38878 16.2619i −0.416971 0.722214i
\(508\) 24.7672 42.8980i 1.09887 1.90329i
\(509\) 4.83310 + 8.37117i 0.214223 + 0.371045i 0.953032 0.302870i \(-0.0979447\pi\)
−0.738809 + 0.673915i \(0.764611\pi\)
\(510\) 0 0
\(511\) −10.1567 + 17.5919i −0.449305 + 0.778219i
\(512\) −80.2896 −3.54833
\(513\) −18.9233 + 15.6306i −0.835484 + 0.690106i
\(514\) 38.8874 1.71525
\(515\) 0 0
\(516\) 8.60848 14.9103i 0.378967 0.656390i
\(517\) 1.70969 + 2.96127i 0.0751922 + 0.130237i
\(518\) −25.0023 + 43.3052i −1.09854 + 1.90272i
\(519\) −13.4429 23.2839i −0.590080 1.02205i
\(520\) 0 0
\(521\) −0.982633 −0.0430499 −0.0215250 0.999768i \(-0.506852\pi\)
−0.0215250 + 0.999768i \(0.506852\pi\)
\(522\) 10.3613 + 17.9463i 0.453502 + 0.785488i
\(523\) 19.8604 + 34.3993i 0.868436 + 1.50418i 0.863594 + 0.504187i \(0.168208\pi\)
0.00484172 + 0.999988i \(0.498459\pi\)
\(524\) 117.251 5.12212
\(525\) 0 0
\(526\) 8.84043 + 15.3121i 0.385461 + 0.667638i
\(527\) 9.23020 15.9872i 0.402074 0.696413i
\(528\) −10.4644 18.1249i −0.455406 0.788786i
\(529\) 11.4129 19.7677i 0.496211 0.859463i
\(530\) 0 0
\(531\) −1.90417 −0.0826337
\(532\) 65.2327 + 24.3161i 2.82820 + 1.05424i
\(533\) 2.58195 0.111837
\(534\) −9.14680 + 15.8427i −0.395821 + 0.685582i
\(535\) 0 0
\(536\) 12.5941 + 21.8137i 0.543984 + 0.942208i
\(537\) 15.0328 26.0376i 0.648713 1.12360i
\(538\) 24.8099 + 42.9720i 1.06963 + 1.85266i
\(539\) −0.964024 −0.0415234
\(540\) 0 0
\(541\) −15.3887 26.6541i −0.661614 1.14595i −0.980191 0.198052i \(-0.936538\pi\)
0.318577 0.947897i \(-0.396795\pi\)
\(542\) 16.3852 + 28.3801i 0.703807 + 1.21903i
\(543\) 25.5280 1.09551
\(544\) 92.9629 3.98575
\(545\) 0 0
\(546\) 3.77007 6.52996i 0.161344 0.279456i
\(547\) −8.93287 15.4722i −0.381942 0.661543i 0.609398 0.792865i \(-0.291411\pi\)
−0.991340 + 0.131322i \(0.958078\pi\)
\(548\) 14.6187 25.3203i 0.624480 1.08163i
\(549\) 2.45213 4.24722i 0.104654 0.181267i
\(550\) 0 0
\(551\) −39.6397 14.7761i −1.68871 0.629482i
\(552\) −6.19529 −0.263689
\(553\) −2.59870 + 4.50109i −0.110508 + 0.191406i
\(554\) −32.5777 + 56.4263i −1.38409 + 2.39732i
\(555\) 0 0
\(556\) 30.0624 52.0696i 1.27493 2.20824i
\(557\) −5.32878 9.22971i −0.225787 0.391075i 0.730768 0.682626i \(-0.239162\pi\)
−0.956555 + 0.291551i \(0.905829\pi\)
\(558\) 10.5340 0.445939
\(559\) −1.32406 −0.0560019
\(560\) 0 0
\(561\) 2.41389 + 4.18098i 0.101915 + 0.176521i
\(562\) −38.0863 −1.60657
\(563\) −7.75961 −0.327029 −0.163514 0.986541i \(-0.552283\pi\)
−0.163514 + 0.986541i \(0.552283\pi\)
\(564\) 16.5368 + 28.6425i 0.696324 + 1.20607i
\(565\) 0 0
\(566\) 16.2135 + 28.0826i 0.681504 + 1.18040i
\(567\) 8.65716 14.9946i 0.363567 0.629716i
\(568\) −8.86361 + 15.3522i −0.371909 + 0.644165i
\(569\) 5.72754 0.240111 0.120056 0.992767i \(-0.461693\pi\)
0.120056 + 0.992767i \(0.461693\pi\)
\(570\) 0 0
\(571\) −20.8347 −0.871903 −0.435952 0.899970i \(-0.643588\pi\)
−0.435952 + 0.899970i \(0.643588\pi\)
\(572\) −1.55952 + 2.70116i −0.0652067 + 0.112941i
\(573\) 3.93926 6.82300i 0.164565 0.285035i
\(574\) −15.7671 27.3093i −0.658104 1.13987i
\(575\) 0 0
\(576\) 13.9654 + 24.1887i 0.581890 + 1.00786i
\(577\) 5.11190 0.212811 0.106406 0.994323i \(-0.466066\pi\)
0.106406 + 0.994323i \(0.466066\pi\)
\(578\) 8.27001 0.343987
\(579\) −13.4300 23.2614i −0.558131 0.966712i
\(580\) 0 0
\(581\) 21.1914 0.879167
\(582\) 44.6619 1.85130
\(583\) 4.75099 + 8.22896i 0.196766 + 0.340809i
\(584\) 35.4663 61.4294i 1.46760 2.54197i
\(585\) 0 0
\(586\) 37.3127 64.6275i 1.54137 2.66974i
\(587\) −5.33462 + 9.23984i −0.220184 + 0.381369i −0.954864 0.297045i \(-0.903999\pi\)
0.734680 + 0.678414i \(0.237332\pi\)
\(588\) −9.32439 −0.384531
\(589\) −16.5800 + 13.6950i −0.683165 + 0.564292i
\(590\) 0 0
\(591\) −6.02574 + 10.4369i −0.247866 + 0.429316i
\(592\) 51.6215 89.4110i 2.12163 3.67477i
\(593\) −8.50133 14.7247i −0.349108 0.604673i 0.636983 0.770878i \(-0.280182\pi\)
−0.986091 + 0.166205i \(0.946849\pi\)
\(594\) −6.71507 + 11.6308i −0.275523 + 0.477219i
\(595\) 0 0
\(596\) −83.6040 −3.42455
\(597\) −2.09427 −0.0857128
\(598\) 0.370325 + 0.641421i 0.0151437 + 0.0262297i
\(599\) −14.3375 24.8334i −0.585816 1.01466i −0.994773 0.102110i \(-0.967441\pi\)
0.408957 0.912554i \(-0.365893\pi\)
\(600\) 0 0
\(601\) 27.4370 1.11918 0.559590 0.828770i \(-0.310959\pi\)
0.559590 + 0.828770i \(0.310959\pi\)
\(602\) 8.08559 + 14.0046i 0.329544 + 0.570787i
\(603\) 0.980187 1.69773i 0.0399163 0.0691371i
\(604\) −60.1564 104.194i −2.44773 4.23959i
\(605\) 0 0
\(606\) 10.8958 18.8720i 0.442611 0.766624i
\(607\) 17.7547 0.720639 0.360320 0.932829i \(-0.382668\pi\)
0.360320 + 0.932829i \(0.382668\pi\)
\(608\) −101.472 37.8248i −4.11524 1.53400i
\(609\) 41.2466 1.67140
\(610\) 0 0
\(611\) 1.27175 2.20274i 0.0514496 0.0891133i
\(612\) −8.12086 14.0657i −0.328266 0.568574i
\(613\) 17.3196 29.9983i 0.699530 1.21162i −0.269099 0.963112i \(-0.586726\pi\)
0.968629 0.248509i \(-0.0799407\pi\)
\(614\) −12.1880 21.1102i −0.491868 0.851940i
\(615\) 0 0
\(616\) 24.5050 0.987334
\(617\) 2.23284 + 3.86740i 0.0898909 + 0.155696i 0.907465 0.420128i \(-0.138015\pi\)
−0.817574 + 0.575824i \(0.804681\pi\)
\(618\) −0.792362 1.37241i −0.0318735 0.0552065i
\(619\) −17.9112 −0.719913 −0.359957 0.932969i \(-0.617209\pi\)
−0.359957 + 0.932969i \(0.617209\pi\)
\(620\) 0 0
\(621\) 1.17531 + 2.03570i 0.0471636 + 0.0816898i
\(622\) −0.898414 + 1.55610i −0.0360231 + 0.0623939i
\(623\) −6.33234 10.9679i −0.253700 0.439421i
\(624\) −7.78396 + 13.4822i −0.311608 + 0.539720i
\(625\) 0 0
\(626\) −8.17906 −0.326901
\(627\) −0.933688 5.54586i −0.0372879 0.221480i
\(628\) 13.6308 0.543927
\(629\) −11.9078 + 20.6250i −0.474796 + 0.822371i
\(630\) 0 0
\(631\) −2.48440 4.30311i −0.0989026 0.171304i 0.812328 0.583201i \(-0.198200\pi\)
−0.911231 + 0.411896i \(0.864867\pi\)
\(632\) 9.07446 15.7174i 0.360963 0.625205i
\(633\) 14.1108 + 24.4407i 0.560855 + 0.971429i
\(634\) −28.6278 −1.13696
\(635\) 0 0
\(636\) 45.9534 + 79.5935i 1.82217 + 3.15609i
\(637\) 0.358544 + 0.621016i 0.0142060 + 0.0246056i
\(638\) −23.1483 −0.916449
\(639\) 1.37969 0.0545796
\(640\) 0 0
\(641\) 18.9760 32.8675i 0.749508 1.29819i −0.198550 0.980091i \(-0.563623\pi\)
0.948059 0.318096i \(-0.103043\pi\)
\(642\) −13.2358 22.9251i −0.522375 0.904780i
\(643\) 17.6251 30.5276i 0.695067 1.20389i −0.275092 0.961418i \(-0.588708\pi\)
0.970158 0.242473i \(-0.0779585\pi\)
\(644\) 3.33370 5.77413i 0.131366 0.227533i
\(645\) 0 0
\(646\) 42.1510 + 15.7122i 1.65841 + 0.618188i
\(647\) −35.5219 −1.39651 −0.698254 0.715850i \(-0.746040\pi\)
−0.698254 + 0.715850i \(0.746040\pi\)
\(648\) −30.2301 + 52.3601i −1.18755 + 2.05690i
\(649\) 1.06353 1.84209i 0.0417471 0.0723082i
\(650\) 0 0
\(651\) 10.4835 18.1580i 0.410881 0.711667i
\(652\) 49.9483 + 86.5130i 1.95613 + 3.38811i
\(653\) −8.02411 −0.314008 −0.157004 0.987598i \(-0.550184\pi\)
−0.157004 + 0.987598i \(0.550184\pi\)
\(654\) 27.0290 1.05692
\(655\) 0 0
\(656\) 32.5538 + 56.3848i 1.27101 + 2.20146i
\(657\) −5.52059 −0.215379
\(658\) −31.0646 −1.21102
\(659\) 23.6098 + 40.8933i 0.919706 + 1.59298i 0.799861 + 0.600185i \(0.204906\pi\)
0.119844 + 0.992793i \(0.461760\pi\)
\(660\) 0 0
\(661\) 13.0580 + 22.6171i 0.507896 + 0.879702i 0.999958 + 0.00914181i \(0.00290997\pi\)
−0.492062 + 0.870560i \(0.663757\pi\)
\(662\) 20.8123 36.0479i 0.808892 1.40104i
\(663\) 1.79557 3.11002i 0.0697342 0.120783i
\(664\) −73.9986 −2.87170
\(665\) 0 0
\(666\) −13.5898 −0.526596
\(667\) −2.02577 + 3.50874i −0.0784383 + 0.135859i
\(668\) −1.13702 + 1.96938i −0.0439928 + 0.0761978i
\(669\) 12.0458 + 20.8639i 0.465716 + 0.806643i
\(670\) 0 0
\(671\) 2.73917 + 4.74437i 0.105744 + 0.183154i
\(672\) 105.586 4.07306
\(673\) −15.3820 −0.592931 −0.296466 0.955044i \(-0.595808\pi\)
−0.296466 + 0.955044i \(0.595808\pi\)
\(674\) −21.7848 37.7324i −0.839119 1.45340i
\(675\) 0 0
\(676\) −70.5664 −2.71409
\(677\) −24.4763 −0.940701 −0.470350 0.882480i \(-0.655872\pi\)
−0.470350 + 0.882480i \(0.655872\pi\)
\(678\) 0.605921 + 1.04949i 0.0232703 + 0.0403053i
\(679\) −15.4598 + 26.7771i −0.593291 + 1.02761i
\(680\) 0 0
\(681\) −19.6326 + 34.0047i −0.752324 + 1.30306i
\(682\) −5.88352 + 10.1906i −0.225292 + 0.390217i
\(683\) 17.8502 0.683018 0.341509 0.939879i \(-0.389062\pi\)
0.341509 + 0.939879i \(0.389062\pi\)
\(684\) 3.14113 + 18.6575i 0.120104 + 0.713386i
\(685\) 0 0
\(686\) −23.1191 + 40.0434i −0.882689 + 1.52886i
\(687\) −9.94538 + 17.2259i −0.379440 + 0.657210i
\(688\) −16.6941 28.9150i −0.636455 1.10237i
\(689\) 3.53402 6.12110i 0.134635 0.233195i
\(690\) 0 0
\(691\) −9.27242 −0.352739 −0.176370 0.984324i \(-0.556435\pi\)
−0.176370 + 0.984324i \(0.556435\pi\)
\(692\) −101.038 −3.84087
\(693\) −0.953597 1.65168i −0.0362241 0.0627421i
\(694\) 29.4448 + 50.9999i 1.11771 + 1.93593i
\(695\) 0 0
\(696\) −144.030 −5.45943
\(697\) −7.50937 13.0066i −0.284438 0.492660i
\(698\) −44.6657 + 77.3633i −1.69062 + 2.92824i
\(699\) −18.8798 32.7008i −0.714100 1.23686i
\(700\) 0 0
\(701\) 3.84453 6.65892i 0.145206 0.251504i −0.784244 0.620453i \(-0.786949\pi\)
0.929450 + 0.368949i \(0.120282\pi\)
\(702\) 9.98999 0.377048
\(703\) 21.3897 17.6678i 0.806728 0.666354i
\(704\) −31.2001 −1.17590
\(705\) 0 0
\(706\) −1.00748 + 1.74501i −0.0379170 + 0.0656742i
\(707\) 7.54316 + 13.0651i 0.283690 + 0.491365i
\(708\) 10.2868 17.8173i 0.386603 0.669616i
\(709\) −12.2187 21.1635i −0.458885 0.794812i 0.540018 0.841654i \(-0.318418\pi\)
−0.998902 + 0.0468421i \(0.985084\pi\)
\(710\) 0 0
\(711\) −1.41251 −0.0529732
\(712\) 22.1120 + 38.2992i 0.828683 + 1.43532i
\(713\) 1.02977 + 1.78361i 0.0385652 + 0.0667968i
\(714\) −43.8597 −1.64141
\(715\) 0 0
\(716\) −56.4935 97.8496i −2.11126 3.65681i
\(717\) −17.5673 + 30.4275i −0.656063 + 1.13633i
\(718\) −37.0258 64.1305i −1.38179 2.39333i
\(719\) 11.0563 19.1501i 0.412331 0.714178i −0.582813 0.812606i \(-0.698048\pi\)
0.995144 + 0.0984282i \(0.0313815\pi\)
\(720\) 0 0
\(721\) 1.09711 0.0408584
\(722\) −39.6163 34.3008i −1.47437 1.27655i
\(723\) −12.5085 −0.465195
\(724\) 47.9672 83.0817i 1.78269 3.08771i
\(725\) 0 0
\(726\) 21.0924 + 36.5331i 0.782812 + 1.35587i
\(727\) −14.5247 + 25.1575i −0.538692 + 0.933042i 0.460283 + 0.887772i \(0.347748\pi\)
−0.998975 + 0.0452694i \(0.985585\pi\)
\(728\) −9.11400 15.7859i −0.337787 0.585065i
\(729\) 29.9075 1.10768
\(730\) 0 0
\(731\) 3.85092 + 6.66999i 0.142431 + 0.246698i
\(732\) 26.4942 + 45.8893i 0.979254 + 1.69612i
\(733\) −14.5428 −0.537151 −0.268576 0.963259i \(-0.586553\pi\)
−0.268576 + 0.963259i \(0.586553\pi\)
\(734\) −63.3360 −2.33777
\(735\) 0 0
\(736\) −5.18571 + 8.98191i −0.191148 + 0.331078i
\(737\) 1.09492 + 1.89646i 0.0403320 + 0.0698570i
\(738\) 4.28504 7.42191i 0.157735 0.273204i
\(739\) 2.37798 4.11878i 0.0874754 0.151512i −0.818968 0.573839i \(-0.805453\pi\)
0.906443 + 0.422327i \(0.138787\pi\)
\(740\) 0 0
\(741\) −3.22533 + 2.66411i −0.118486 + 0.0978687i
\(742\) −86.3242 −3.16906
\(743\) 2.93853 5.08968i 0.107804 0.186722i −0.807076 0.590447i \(-0.798951\pi\)
0.914880 + 0.403725i \(0.132285\pi\)
\(744\) −36.6076 + 63.4062i −1.34210 + 2.32458i
\(745\) 0 0
\(746\) −40.7228 + 70.5339i −1.49097 + 2.58243i
\(747\) 2.87961 + 4.98763i 0.105359 + 0.182488i
\(748\) 18.1429 0.663370
\(749\) 18.3263 0.669629
\(750\) 0 0
\(751\) −0.810481 1.40379i −0.0295749 0.0512252i 0.850859 0.525394i \(-0.176082\pi\)
−0.880434 + 0.474169i \(0.842749\pi\)
\(752\) 64.1382 2.33888
\(753\) −27.2243 −0.992107
\(754\) 8.60941 + 14.9119i 0.313536 + 0.543060i
\(755\) 0 0
\(756\) −44.9654 77.8824i −1.63538 2.83255i
\(757\) −14.0567 + 24.3470i −0.510901 + 0.884907i 0.489019 + 0.872273i \(0.337355\pi\)
−0.999920 + 0.0126336i \(0.995978\pi\)
\(758\) 24.1488 41.8270i 0.877125 1.51922i
\(759\) −0.538612 −0.0195504
\(760\) 0 0
\(761\) 20.1663 0.731027 0.365514 0.930806i \(-0.380893\pi\)
0.365514 + 0.930806i \(0.380893\pi\)
\(762\) 18.1767 31.4829i 0.658472 1.14051i
\(763\) −9.35610 + 16.2052i −0.338713 + 0.586669i
\(764\) −14.8038 25.6409i −0.535583 0.927656i
\(765\) 0 0
\(766\) −11.1790 19.3625i −0.403912 0.699597i
\(767\) −1.58221 −0.0571303
\(768\) −97.3257 −3.51194
\(769\) −22.6524 39.2350i −0.816865 1.41485i −0.907981 0.419011i \(-0.862377\pi\)
0.0911160 0.995840i \(-0.470957\pi\)
\(770\) 0 0
\(771\) 21.0357 0.757583
\(772\) −100.940 −3.63292
\(773\) −10.0881 17.4731i −0.362843 0.628462i 0.625585 0.780156i \(-0.284861\pi\)
−0.988428 + 0.151694i \(0.951527\pi\)
\(774\) −2.19744 + 3.80607i −0.0789852 + 0.136806i
\(775\) 0 0
\(776\) 53.9842 93.5034i 1.93792 3.35658i
\(777\) −13.5247 + 23.4255i −0.485196 + 0.840385i
\(778\) −47.7353 −1.71139
\(779\) 2.90461 + 17.2526i 0.104068 + 0.618138i
\(780\) 0 0
\(781\) −0.770594 + 1.33471i −0.0275740 + 0.0477596i
\(782\) 2.15411 3.73104i 0.0770310 0.133422i
\(783\) 27.3239 + 47.3264i 0.976478 + 1.69131i
\(784\) −9.04120 + 15.6598i −0.322900 + 0.559279i
\(785\) 0 0
\(786\) 86.0505 3.06932
\(787\) 46.1385 1.64466 0.822331 0.569010i \(-0.192673\pi\)
0.822331 + 0.569010i \(0.192673\pi\)
\(788\) 22.6448 + 39.2220i 0.806689 + 1.39723i
\(789\) 4.78213 + 8.28289i 0.170248 + 0.294879i
\(790\) 0 0
\(791\) −0.838961 −0.0298300
\(792\) 3.32988 + 5.76753i 0.118322 + 0.204940i
\(793\) 2.03753 3.52910i 0.0723546 0.125322i
\(794\) 15.7061 + 27.2038i 0.557389 + 0.965427i
\(795\) 0 0
\(796\) −3.93515 + 6.81588i −0.139478 + 0.241583i
\(797\) 1.86497 0.0660606 0.0330303 0.999454i \(-0.489484\pi\)
0.0330303 + 0.999454i \(0.489484\pi\)
\(798\) 47.8744 + 17.8457i 1.69474 + 0.631729i
\(799\) −14.7951 −0.523414
\(800\) 0 0
\(801\) 1.72095 2.98078i 0.0608069 0.105321i
\(802\) −12.3264 21.3500i −0.435261 0.753894i
\(803\) 3.08340 5.34061i 0.108811 0.188466i
\(804\) 10.5905 + 18.3433i 0.373498 + 0.646917i
\(805\) 0 0
\(806\) 8.75290 0.308308
\(807\) 13.4207 + 23.2453i 0.472429 + 0.818272i
\(808\) −26.3401 45.6224i −0.926641 1.60499i
\(809\) 18.2267 0.640816 0.320408 0.947280i \(-0.396180\pi\)
0.320408 + 0.947280i \(0.396180\pi\)
\(810\) 0 0
\(811\) 10.4890 + 18.1674i 0.368317 + 0.637944i 0.989303 0.145878i \(-0.0466008\pi\)
−0.620986 + 0.783822i \(0.713267\pi\)
\(812\) 77.5027 134.239i 2.71981 4.71085i
\(813\) 8.86342 + 15.3519i 0.310854 + 0.538414i
\(814\) 7.59030 13.1468i 0.266040 0.460794i
\(815\) 0 0
\(816\) 90.5558 3.17009
\(817\) −1.48953 8.84739i −0.0521119 0.309531i
\(818\) 18.0504 0.631118
\(819\) −0.709332 + 1.22860i −0.0247861 + 0.0429307i
\(820\) 0 0
\(821\) 11.0433 + 19.1276i 0.385415 + 0.667558i 0.991827 0.127593i \(-0.0407251\pi\)
−0.606412 + 0.795151i \(0.707392\pi\)
\(822\) 10.7287 18.5827i 0.374207 0.648145i
\(823\) 7.98847 + 13.8364i 0.278461 + 0.482308i 0.971002 0.239070i \(-0.0768425\pi\)
−0.692542 + 0.721378i \(0.743509\pi\)
\(824\) −3.83101 −0.133460
\(825\) 0 0
\(826\) 9.66200 + 16.7351i 0.336184 + 0.582288i
\(827\) 24.6004 + 42.6092i 0.855441 + 1.48167i 0.876235 + 0.481883i \(0.160047\pi\)
−0.0207946 + 0.999784i \(0.506620\pi\)
\(828\) 1.81201 0.0629717
\(829\) −35.8564 −1.24534 −0.622672 0.782483i \(-0.713953\pi\)
−0.622672 + 0.782483i \(0.713953\pi\)
\(830\) 0 0
\(831\) −17.6226 + 30.5232i −0.611320 + 1.05884i
\(832\) 11.6041 + 20.0989i 0.402300 + 0.696803i
\(833\) 2.08559 3.61234i 0.0722613 0.125160i
\(834\) 22.0629 38.2140i 0.763975 1.32324i
\(835\) 0 0
\(836\) −19.8036 7.38199i −0.684922 0.255311i
\(837\) 27.7794 0.960195
\(838\) 30.1232 52.1748i 1.04059 1.80235i
\(839\) 12.7415 22.0689i 0.439885 0.761903i −0.557795 0.829979i \(-0.688352\pi\)
0.997680 + 0.0680753i \(0.0216858\pi\)
\(840\) 0 0
\(841\) −32.5957 + 56.4574i −1.12399 + 1.94681i
\(842\) −40.4647 70.0870i −1.39451 2.41536i
\(843\) −20.6024 −0.709583
\(844\) 106.057 3.65065
\(845\) 0 0
\(846\) −4.22124 7.31141i −0.145129 0.251371i
\(847\) −29.2046 −1.00348
\(848\) 178.231 6.12047
\(849\) 8.77051 + 15.1910i 0.301003 + 0.521353i
\(850\) 0 0
\(851\) −1.32850 2.30103i −0.0455404 0.0788782i
\(852\) −7.45347 + 12.9098i −0.255352 + 0.442282i
\(853\) −28.5811 + 49.5039i −0.978598 + 1.69498i −0.311087 + 0.950382i \(0.600693\pi\)
−0.667511 + 0.744600i \(0.732640\pi\)
\(854\) −49.7698 −1.70309
\(855\) 0 0
\(856\) −63.9940 −2.18727
\(857\) 13.0987 22.6876i 0.447442 0.774993i −0.550776 0.834653i \(-0.685668\pi\)
0.998219 + 0.0596598i \(0.0190016\pi\)
\(858\) −1.14453 + 1.98239i −0.0390737 + 0.0676777i
\(859\) 8.87246 + 15.3675i 0.302724 + 0.524334i 0.976752 0.214372i \(-0.0687705\pi\)
−0.674028 + 0.738706i \(0.735437\pi\)
\(860\) 0 0
\(861\) −8.52902 14.7727i −0.290668 0.503452i
\(862\) 35.5418 1.21056
\(863\) −25.0867 −0.853960 −0.426980 0.904261i \(-0.640422\pi\)
−0.426980 + 0.904261i \(0.640422\pi\)
\(864\) 69.9456 + 121.149i 2.37960 + 4.12158i
\(865\) 0 0
\(866\) −38.1789 −1.29737
\(867\) 4.47357 0.151930
\(868\) −39.3972 68.2380i −1.33723 2.31615i
\(869\) 0.788924 1.36646i 0.0267624 0.0463539i
\(870\) 0 0
\(871\) 0.814457 1.41068i 0.0275968 0.0477991i
\(872\) 32.6707 56.5874i 1.10637 1.91629i
\(873\) −8.40305 −0.284400
\(874\) −3.86938 + 3.19609i −0.130884 + 0.108109i
\(875\) 0 0
\(876\) 29.8238 51.6563i 1.00765 1.74531i
\(877\) 5.00784 8.67383i 0.169103 0.292895i −0.769002 0.639246i \(-0.779246\pi\)
0.938105 + 0.346352i \(0.112580\pi\)
\(878\) −0.0976449 0.169126i −0.00329536 0.00570772i
\(879\) 20.1839 34.9595i 0.680786 1.17916i
\(880\) 0 0
\(881\) 33.3473 1.12350 0.561750 0.827307i \(-0.310128\pi\)
0.561750 + 0.827307i \(0.310128\pi\)
\(882\) 2.38018 0.0801449
\(883\) −13.6785 23.6919i −0.460319 0.797296i 0.538658 0.842525i \(-0.318932\pi\)
−0.998977 + 0.0452288i \(0.985598\pi\)
\(884\) −6.74778 11.6875i −0.226953 0.393093i
\(885\) 0 0
\(886\) −10.4505 −0.351092
\(887\) 8.58172 + 14.8640i 0.288146 + 0.499084i 0.973367 0.229251i \(-0.0736278\pi\)
−0.685221 + 0.728335i \(0.740294\pi\)
\(888\) 47.2272 81.7999i 1.58484 2.74503i
\(889\) 12.5837 + 21.7957i 0.422045 + 0.731004i
\(890\) 0 0
\(891\) −2.62818 + 4.55213i −0.0880472 + 0.152502i
\(892\) 90.5363 3.03138
\(893\) 16.1494 + 6.01985i 0.540419 + 0.201447i
\(894\) −61.3571 −2.05209
\(895\) 0 0
\(896\) 70.9526 122.894i 2.37036 4.10559i
\(897\) 0.200323 + 0.346970i 0.00668859 + 0.0115850i
\(898\) −36.6492 + 63.4783i −1.22300 + 2.11830i
\(899\) 23.9403 + 41.4659i 0.798455 + 1.38296i
\(900\) 0 0
\(901\) −41.1136 −1.36969
\(902\) 4.78663 + 8.29068i 0.159377 + 0.276049i
\(903\) 4.37381 + 7.57566i 0.145551 + 0.252102i
\(904\) 2.92958 0.0974364
\(905\) 0 0
\(906\) −44.1489 76.4682i −1.46675 2.54049i
\(907\) 1.51053 2.61631i 0.0501563 0.0868732i −0.839857 0.542807i \(-0.817361\pi\)
0.890014 + 0.455934i \(0.150695\pi\)
\(908\) 73.7797 + 127.790i 2.44847 + 4.24087i
\(909\) −2.05002 + 3.55074i −0.0679948 + 0.117770i
\(910\) 0 0
\(911\) −19.5682 −0.648324 −0.324162 0.946002i \(-0.605082\pi\)
−0.324162 + 0.946002i \(0.605082\pi\)
\(912\) −98.8449 36.8454i −3.27308 1.22007i
\(913\) −6.43336 −0.212913
\(914\) 45.7173 79.1847i 1.51219 2.61920i
\(915\) 0 0
\(916\) 37.3749 + 64.7353i 1.23490 + 2.13891i
\(917\) −29.7864 + 51.5916i −0.983635 + 1.70371i
\(918\) −29.0550 50.3248i −0.958959 1.66096i
\(919\) −1.81420 −0.0598448 −0.0299224 0.999552i \(-0.509526\pi\)
−0.0299224 + 0.999552i \(0.509526\pi\)
\(920\) 0 0
\(921\) −6.59297 11.4194i −0.217246 0.376280i
\(922\) −26.5508 45.9874i −0.874406 1.51452i
\(923\) 1.14641 0.0377346
\(924\) 20.6064 0.677901
\(925\) 0 0
\(926\) −54.0175 + 93.5611i −1.77513 + 3.07461i
\(927\) 0.149081 + 0.258217i 0.00489648 + 0.00848095i
\(928\) −120.559 + 208.814i −3.95753 + 6.85465i
\(929\) 11.2377 19.4643i 0.368698 0.638603i −0.620665 0.784076i \(-0.713137\pi\)
0.989362 + 0.145473i \(0.0464705\pi\)
\(930\) 0 0
\(931\) −3.74628 + 3.09442i −0.122780 + 0.101415i
\(932\) −141.901 −4.64813
\(933\) −0.485987 + 0.841755i −0.0159105 + 0.0275578i
\(934\) 53.8710 93.3072i 1.76271 3.05311i
\(935\) 0 0
\(936\) 2.47693 4.29017i 0.0809610 0.140229i
\(937\) 27.5193 + 47.6647i 0.899015 + 1.55714i 0.828756 + 0.559611i \(0.189049\pi\)
0.0702593 + 0.997529i \(0.477617\pi\)
\(938\) −19.8944 −0.649576
\(939\) −4.42437 −0.144384
\(940\) 0 0
\(941\) 6.09781 + 10.5617i 0.198783 + 0.344302i 0.948134 0.317871i \(-0.102968\pi\)
−0.749351 + 0.662173i \(0.769635\pi\)
\(942\) 10.0036 0.325937
\(943\) 1.67557 0.0545640
\(944\) −19.9488 34.5524i −0.649279 1.12458i
\(945\) 0 0
\(946\) −2.45465 4.25159i −0.0798077 0.138231i
\(947\) 15.2153 26.3537i 0.494432 0.856381i −0.505548 0.862799i \(-0.668710\pi\)
0.999979 + 0.00641783i \(0.00204287\pi\)
\(948\) 7.63077 13.2169i 0.247836 0.429264i
\(949\) −4.58717 −0.148906
\(950\) 0 0
\(951\) −15.4859 −0.502164
\(952\) −53.0146 + 91.8239i −1.71821 + 2.97603i
\(953\) 7.86891 13.6293i 0.254899 0.441498i −0.709969 0.704233i \(-0.751291\pi\)
0.964868 + 0.262735i \(0.0846245\pi\)
\(954\) −11.7302 20.3174i −0.379780 0.657799i
\(955\) 0 0
\(956\) 66.0182 + 114.347i 2.13518 + 3.69824i
\(957\) −12.5218 −0.404772
\(958\) 68.2748 2.20586
\(959\) 7.42750 + 12.8648i 0.239846 + 0.415426i
\(960\) 0 0
\(961\) −6.66065 −0.214860
\(962\) −11.2921 −0.364071
\(963\) 2.49029 + 4.31331i 0.0802484 + 0.138994i
\(964\) −23.5035 + 40.7093i −0.756997 + 1.31116i
\(965\) 0 0
\(966\) 2.44661 4.23765i 0.0787183 0.136344i
\(967\) 15.3186 26.5326i 0.492614 0.853232i −0.507350 0.861740i \(-0.669375\pi\)
0.999964 + 0.00850791i \(0.00270819\pi\)
\(968\) 101.980 3.27776
\(969\) 22.8011 + 8.49934i 0.732478 + 0.273038i
\(970\) 0 0
\(971\) −8.23824 + 14.2690i −0.264378 + 0.457915i −0.967400 0.253252i \(-0.918500\pi\)
0.703023 + 0.711167i \(0.251833\pi\)
\(972\) 21.9340 37.9907i 0.703532 1.21855i
\(973\) 15.2742 + 26.4556i 0.489667 + 0.848128i
\(974\) −30.1824 + 52.2775i −0.967108 + 1.67508i
\(975\) 0 0
\(976\) 102.758 3.28921
\(977\) 2.77995 0.0889383 0.0444692 0.999011i \(-0.485840\pi\)
0.0444692 + 0.999011i \(0.485840\pi\)
\(978\) 36.6572 + 63.4921i 1.17217 + 2.03025i
\(979\) 1.92240 + 3.32969i 0.0614401 + 0.106417i
\(980\) 0 0
\(981\) −5.08545 −0.162366
\(982\) 12.9565 + 22.4413i 0.413459 + 0.716132i
\(983\) −0.855856 + 1.48239i −0.0272976 + 0.0472808i −0.879351 0.476173i \(-0.842023\pi\)
0.852054 + 0.523454i \(0.175357\pi\)
\(984\) 29.7826 + 51.5850i 0.949436 + 1.64447i
\(985\) 0 0
\(986\) 50.0794 86.7401i 1.59485 2.76237i
\(987\) −16.8041 −0.534879
\(988\) 2.61003 + 15.5029i 0.0830360 + 0.493212i
\(989\) −0.859257 −0.0273228
\(990\) 0 0
\(991\) 4.83711 8.37811i 0.153656 0.266140i −0.778913 0.627132i \(-0.784229\pi\)
0.932569 + 0.360992i \(0.117562\pi\)
\(992\) 61.2840 + 106.147i 1.94577 + 3.37017i
\(993\) 11.2582 19.4997i 0.357267 0.618805i
\(994\) −7.00073 12.1256i −0.222050 0.384601i
\(995\) 0 0
\(996\) −62.2259 −1.97170
\(997\) 11.3656 + 19.6857i 0.359951 + 0.623454i 0.987952 0.154759i \(-0.0494600\pi\)
−0.628001 + 0.778212i \(0.716127\pi\)
\(998\) 34.3532 + 59.5015i 1.08743 + 1.88349i
\(999\) −35.8380 −1.13386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.e.e.201.4 8
5.2 odd 4 475.2.j.c.49.8 16
5.3 odd 4 475.2.j.c.49.1 16
5.4 even 2 95.2.e.c.11.1 8
15.14 odd 2 855.2.k.h.676.4 8
19.7 even 3 inner 475.2.e.e.26.4 8
19.8 odd 6 9025.2.a.bp.1.4 4
19.11 even 3 9025.2.a.bg.1.1 4
20.19 odd 2 1520.2.q.o.961.3 8
95.7 odd 12 475.2.j.c.349.1 16
95.49 even 6 1805.2.a.o.1.4 4
95.64 even 6 95.2.e.c.26.1 yes 8
95.83 odd 12 475.2.j.c.349.8 16
95.84 odd 6 1805.2.a.i.1.1 4
285.254 odd 6 855.2.k.h.406.4 8
380.159 odd 6 1520.2.q.o.881.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.1 8 5.4 even 2
95.2.e.c.26.1 yes 8 95.64 even 6
475.2.e.e.26.4 8 19.7 even 3 inner
475.2.e.e.201.4 8 1.1 even 1 trivial
475.2.j.c.49.1 16 5.3 odd 4
475.2.j.c.49.8 16 5.2 odd 4
475.2.j.c.349.1 16 95.7 odd 12
475.2.j.c.349.8 16 95.83 odd 12
855.2.k.h.406.4 8 285.254 odd 6
855.2.k.h.676.4 8 15.14 odd 2
1520.2.q.o.881.3 8 380.159 odd 6
1520.2.q.o.961.3 8 20.19 odd 2
1805.2.a.i.1.1 4 95.84 odd 6
1805.2.a.o.1.4 4 95.49 even 6
9025.2.a.bg.1.1 4 19.11 even 3
9025.2.a.bp.1.4 4 19.8 odd 6