Properties

Label 475.2.e.e.26.3
Level $475$
Weight $2$
Character 475.26
Analytic conductor $3.793$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.4601315889.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 3x^{5} + 26x^{4} - 14x^{3} + 31x^{2} + 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.3
Root \(0.689667 + 1.19454i\) of defining polynomial
Character \(\chi\) \(=\) 475.26
Dual form 475.2.e.e.201.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.548719 + 0.950409i) q^{2} +(-0.189667 - 0.328513i) q^{3} +(0.397815 - 0.689035i) q^{4} +(0.208148 - 0.360522i) q^{6} -1.89307 q^{7} +3.06803 q^{8} +(1.42805 - 2.47346i) q^{9} +0.134400 q^{11} -0.301809 q^{12} +(1.75687 - 3.04298i) q^{13} +(-1.03876 - 1.79919i) q^{14} +(0.887858 + 1.53781i) q^{16} +(-0.830615 - 1.43867i) q^{17} +3.13440 q^{18} +(2.10596 + 3.81640i) q^{19} +(0.359052 + 0.621897i) q^{21} +(0.0737478 + 0.127735i) q^{22} +(2.68492 - 4.65042i) q^{23} +(-0.581904 - 1.00789i) q^{24} +3.85611 q^{26} -2.22142 q^{27} +(-0.753090 + 1.30439i) q^{28} +(-2.48530 + 4.30466i) q^{29} +6.56472 q^{31} +(2.09366 - 3.62633i) q^{32} +(-0.0254912 - 0.0441521i) q^{33} +(0.911548 - 1.57885i) q^{34} +(-1.13620 - 1.96796i) q^{36} +1.69819 q^{37} +(-2.47156 + 4.09566i) q^{38} -1.33288 q^{39} +(-5.31637 - 9.20823i) q^{41} +(-0.394038 + 0.682493i) q^{42} +(4.25392 + 7.36801i) q^{43} +(0.0534662 - 0.0926063i) q^{44} +5.89307 q^{46} +(-5.55771 + 9.62623i) q^{47} +(0.336794 - 0.583345i) q^{48} -3.41630 q^{49} +(-0.315080 + 0.545735i) q^{51} +(-1.39781 - 2.42109i) q^{52} +(-0.132424 + 0.229365i) q^{53} +(-1.21894 - 2.11126i) q^{54} -5.80799 q^{56} +(0.854305 - 1.41568i) q^{57} -5.45492 q^{58} +(3.44833 + 5.97269i) q^{59} +(-4.58794 + 7.94655i) q^{61} +(3.60219 + 6.23917i) q^{62} +(-2.70340 + 4.68243i) q^{63} +8.14676 q^{64} +(0.0279750 - 0.0484542i) q^{66} +(-1.47677 + 2.55784i) q^{67} -1.32172 q^{68} -2.03696 q^{69} +(-0.664176 - 1.15039i) q^{71} +(4.38131 - 7.58865i) q^{72} +(-3.17119 - 5.49266i) q^{73} +(0.931830 + 1.61398i) q^{74} +(3.46742 + 0.0671384i) q^{76} -0.254428 q^{77} +(-0.731376 - 1.26678i) q^{78} +(0.733639 + 1.27070i) q^{79} +(-3.86283 - 6.69062i) q^{81} +(5.83439 - 10.1055i) q^{82} -7.44736 q^{83} +0.571345 q^{84} +(-4.66842 + 8.08593i) q^{86} +1.88551 q^{87} +0.412343 q^{88} +(-4.86804 + 8.43169i) q^{89} +(-3.32587 + 5.76057i) q^{91} +(-2.13620 - 3.70001i) q^{92} +(-1.24511 - 2.15659i) q^{93} -12.1985 q^{94} -1.58839 q^{96} +(8.73447 + 15.1285i) q^{97} +(-1.87459 - 3.24688i) q^{98} +(0.191930 - 0.332433i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 3 q^{3} - 5 q^{4} - 2 q^{6} + 8 q^{7} - 24 q^{8} - q^{9} - 4 q^{11} - 12 q^{12} + 7 q^{13} + q^{14} - 7 q^{16} - q^{17} + 20 q^{18} + 5 q^{19} + 4 q^{21} + 2 q^{22} + 2 q^{23} - 23 q^{24}+ \cdots - 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.548719 + 0.950409i 0.388003 + 0.672041i 0.992181 0.124809i \(-0.0398317\pi\)
−0.604178 + 0.796850i \(0.706498\pi\)
\(3\) −0.189667 0.328513i −0.109504 0.189667i 0.806065 0.591827i \(-0.201593\pi\)
−0.915570 + 0.402160i \(0.868260\pi\)
\(4\) 0.397815 0.689035i 0.198907 0.344518i
\(5\) 0 0
\(6\) 0.208148 0.360522i 0.0849759 0.147183i
\(7\) −1.89307 −0.715512 −0.357756 0.933815i \(-0.616458\pi\)
−0.357756 + 0.933815i \(0.616458\pi\)
\(8\) 3.06803 1.08471
\(9\) 1.42805 2.47346i 0.476018 0.824487i
\(10\) 0 0
\(11\) 0.134400 0.0405231 0.0202615 0.999795i \(-0.493550\pi\)
0.0202615 + 0.999795i \(0.493550\pi\)
\(12\) −0.301809 −0.0871248
\(13\) 1.75687 3.04298i 0.487267 0.843972i −0.512626 0.858612i \(-0.671327\pi\)
0.999893 + 0.0146407i \(0.00466045\pi\)
\(14\) −1.03876 1.79919i −0.277621 0.480854i
\(15\) 0 0
\(16\) 0.887858 + 1.53781i 0.221964 + 0.384454i
\(17\) −0.830615 1.43867i −0.201454 0.348928i 0.747543 0.664213i \(-0.231233\pi\)
−0.948997 + 0.315285i \(0.897900\pi\)
\(18\) 3.13440 0.738785
\(19\) 2.10596 + 3.81640i 0.483141 + 0.875543i
\(20\) 0 0
\(21\) 0.359052 + 0.621897i 0.0783516 + 0.135709i
\(22\) 0.0737478 + 0.127735i 0.0157231 + 0.0272332i
\(23\) 2.68492 4.65042i 0.559844 0.969679i −0.437664 0.899138i \(-0.644194\pi\)
0.997509 0.0705407i \(-0.0224725\pi\)
\(24\) −0.581904 1.00789i −0.118781 0.205734i
\(25\) 0 0
\(26\) 3.85611 0.756245
\(27\) −2.22142 −0.427512
\(28\) −0.753090 + 1.30439i −0.142321 + 0.246507i
\(29\) −2.48530 + 4.30466i −0.461508 + 0.799355i −0.999036 0.0438905i \(-0.986025\pi\)
0.537528 + 0.843246i \(0.319358\pi\)
\(30\) 0 0
\(31\) 6.56472 1.17906 0.589529 0.807747i \(-0.299313\pi\)
0.589529 + 0.807747i \(0.299313\pi\)
\(32\) 2.09366 3.62633i 0.370111 0.641050i
\(33\) −0.0254912 0.0441521i −0.00443745 0.00768589i
\(34\) 0.911548 1.57885i 0.156329 0.270770i
\(35\) 0 0
\(36\) −1.13620 1.96796i −0.189367 0.327993i
\(37\) 1.69819 0.279181 0.139590 0.990209i \(-0.455421\pi\)
0.139590 + 0.990209i \(0.455421\pi\)
\(38\) −2.47156 + 4.09566i −0.400940 + 0.664404i
\(39\) −1.33288 −0.213431
\(40\) 0 0
\(41\) −5.31637 9.20823i −0.830278 1.43808i −0.897818 0.440367i \(-0.854848\pi\)
0.0675398 0.997717i \(-0.478485\pi\)
\(42\) −0.394038 + 0.682493i −0.0608013 + 0.105311i
\(43\) 4.25392 + 7.36801i 0.648717 + 1.12361i 0.983430 + 0.181290i \(0.0580274\pi\)
−0.334713 + 0.942320i \(0.608639\pi\)
\(44\) 0.0534662 0.0926063i 0.00806034 0.0139609i
\(45\) 0 0
\(46\) 5.89307 0.868885
\(47\) −5.55771 + 9.62623i −0.810675 + 1.40413i 0.101718 + 0.994813i \(0.467566\pi\)
−0.912392 + 0.409316i \(0.865767\pi\)
\(48\) 0.336794 0.583345i 0.0486121 0.0841986i
\(49\) −3.41630 −0.488042
\(50\) 0 0
\(51\) −0.315080 + 0.545735i −0.0441201 + 0.0764182i
\(52\) −1.39781 2.42109i −0.193842 0.335744i
\(53\) −0.132424 + 0.229365i −0.0181898 + 0.0315057i −0.874977 0.484164i \(-0.839124\pi\)
0.856787 + 0.515670i \(0.172457\pi\)
\(54\) −1.21894 2.11126i −0.165876 0.287306i
\(55\) 0 0
\(56\) −5.80799 −0.776125
\(57\) 0.854305 1.41568i 0.113155 0.187511i
\(58\) −5.45492 −0.716266
\(59\) 3.44833 + 5.97269i 0.448935 + 0.777578i 0.998317 0.0579932i \(-0.0184702\pi\)
−0.549382 + 0.835571i \(0.685137\pi\)
\(60\) 0 0
\(61\) −4.58794 + 7.94655i −0.587426 + 1.01745i 0.407142 + 0.913365i \(0.366525\pi\)
−0.994568 + 0.104087i \(0.966808\pi\)
\(62\) 3.60219 + 6.23917i 0.457478 + 0.792375i
\(63\) −2.70340 + 4.68243i −0.340596 + 0.589930i
\(64\) 8.14676 1.01834
\(65\) 0 0
\(66\) 0.0279750 0.0484542i 0.00344349 0.00596430i
\(67\) −1.47677 + 2.55784i −0.180416 + 0.312490i −0.942022 0.335550i \(-0.891078\pi\)
0.761606 + 0.648040i \(0.224411\pi\)
\(68\) −1.32172 −0.160282
\(69\) −2.03696 −0.245221
\(70\) 0 0
\(71\) −0.664176 1.15039i −0.0788232 0.136526i 0.823919 0.566707i \(-0.191783\pi\)
−0.902742 + 0.430181i \(0.858450\pi\)
\(72\) 4.38131 7.58865i 0.516342 0.894331i
\(73\) −3.17119 5.49266i −0.371159 0.642867i 0.618585 0.785718i \(-0.287706\pi\)
−0.989744 + 0.142851i \(0.954373\pi\)
\(74\) 0.931830 + 1.61398i 0.108323 + 0.187621i
\(75\) 0 0
\(76\) 3.46742 + 0.0671384i 0.397740 + 0.00770130i
\(77\) −0.254428 −0.0289948
\(78\) −0.731376 1.26678i −0.0828120 0.143435i
\(79\) 0.733639 + 1.27070i 0.0825408 + 0.142965i 0.904341 0.426811i \(-0.140363\pi\)
−0.821800 + 0.569776i \(0.807030\pi\)
\(80\) 0 0
\(81\) −3.86283 6.69062i −0.429203 0.743402i
\(82\) 5.83439 10.1055i 0.644301 1.11596i
\(83\) −7.44736 −0.817454 −0.408727 0.912657i \(-0.634027\pi\)
−0.408727 + 0.912657i \(0.634027\pi\)
\(84\) 0.571345 0.0623388
\(85\) 0 0
\(86\) −4.66842 + 8.08593i −0.503408 + 0.871929i
\(87\) 1.88551 0.202148
\(88\) 0.412343 0.0439559
\(89\) −4.86804 + 8.43169i −0.516011 + 0.893757i 0.483816 + 0.875170i \(0.339250\pi\)
−0.999827 + 0.0185878i \(0.994083\pi\)
\(90\) 0 0
\(91\) −3.32587 + 5.76057i −0.348646 + 0.603872i
\(92\) −2.13620 3.70001i −0.222714 0.385753i
\(93\) −1.24511 2.15659i −0.129112 0.223628i
\(94\) −12.1985 −1.25818
\(95\) 0 0
\(96\) −1.58839 −0.162115
\(97\) 8.73447 + 15.1285i 0.886851 + 1.53607i 0.843577 + 0.537008i \(0.180445\pi\)
0.0432737 + 0.999063i \(0.486221\pi\)
\(98\) −1.87459 3.24688i −0.189362 0.327984i
\(99\) 0.191930 0.332433i 0.0192897 0.0334108i
\(100\) 0 0
\(101\) −2.69865 + 4.67420i −0.268526 + 0.465101i −0.968481 0.249086i \(-0.919870\pi\)
0.699955 + 0.714187i \(0.253203\pi\)
\(102\) −0.691562 −0.0684749
\(103\) −2.14750 −0.211599 −0.105800 0.994387i \(-0.533740\pi\)
−0.105800 + 0.994387i \(0.533740\pi\)
\(104\) 5.39012 9.33596i 0.528545 0.915467i
\(105\) 0 0
\(106\) −0.290654 −0.0282308
\(107\) 1.00093 0.0967631 0.0483815 0.998829i \(-0.484594\pi\)
0.0483815 + 0.998829i \(0.484594\pi\)
\(108\) −0.883713 + 1.53064i −0.0850353 + 0.147285i
\(109\) −8.13145 14.0841i −0.778852 1.34901i −0.932604 0.360902i \(-0.882469\pi\)
0.153752 0.988109i \(-0.450864\pi\)
\(110\) 0 0
\(111\) −0.322091 0.557877i −0.0305715 0.0529514i
\(112\) −1.68077 2.91119i −0.158818 0.275081i
\(113\) −0.843010 −0.0793037 −0.0396519 0.999214i \(-0.512625\pi\)
−0.0396519 + 0.999214i \(0.512625\pi\)
\(114\) 1.81425 + 0.0351287i 0.169920 + 0.00329010i
\(115\) 0 0
\(116\) 1.97737 + 3.42491i 0.183595 + 0.317995i
\(117\) −5.01780 8.69108i −0.463896 0.803491i
\(118\) −3.78433 + 6.55466i −0.348376 + 0.603405i
\(119\) 1.57241 + 2.72349i 0.144143 + 0.249662i
\(120\) 0 0
\(121\) −10.9819 −0.998358
\(122\) −10.0700 −0.911692
\(123\) −2.01668 + 3.49299i −0.181838 + 0.314953i
\(124\) 2.61154 4.52332i 0.234523 0.406206i
\(125\) 0 0
\(126\) −5.93363 −0.528610
\(127\) 9.36984 16.2290i 0.831439 1.44009i −0.0654584 0.997855i \(-0.520851\pi\)
0.896897 0.442239i \(-0.145816\pi\)
\(128\) 0.282960 + 0.490101i 0.0250104 + 0.0433193i
\(129\) 1.61366 2.79493i 0.142074 0.246080i
\(130\) 0 0
\(131\) −1.44322 2.49973i −0.126095 0.218402i 0.796066 0.605210i \(-0.206911\pi\)
−0.922160 + 0.386808i \(0.873578\pi\)
\(132\) −0.0405631 −0.00353057
\(133\) −3.98673 7.22471i −0.345693 0.626461i
\(134\) −3.24133 −0.280008
\(135\) 0 0
\(136\) −2.54835 4.41387i −0.218519 0.378487i
\(137\) −9.41579 + 16.3086i −0.804445 + 1.39334i 0.112220 + 0.993683i \(0.464204\pi\)
−0.916665 + 0.399656i \(0.869129\pi\)
\(138\) −1.11772 1.93595i −0.0951466 0.164799i
\(139\) 9.08974 15.7439i 0.770982 1.33538i −0.166043 0.986118i \(-0.553099\pi\)
0.937025 0.349262i \(-0.113568\pi\)
\(140\) 0 0
\(141\) 4.21645 0.355089
\(142\) 0.728892 1.26248i 0.0611672 0.105945i
\(143\) 0.236123 0.408977i 0.0197456 0.0342003i
\(144\) 5.07163 0.422636
\(145\) 0 0
\(146\) 3.48018 6.02785i 0.288022 0.498868i
\(147\) 0.647958 + 1.12230i 0.0534427 + 0.0925655i
\(148\) 0.675565 1.17011i 0.0555311 0.0961827i
\(149\) 11.1272 + 19.2728i 0.911573 + 1.57889i 0.811842 + 0.583877i \(0.198465\pi\)
0.0997308 + 0.995014i \(0.468202\pi\)
\(150\) 0 0
\(151\) 3.33482 0.271384 0.135692 0.990751i \(-0.456674\pi\)
0.135692 + 0.990751i \(0.456674\pi\)
\(152\) 6.46116 + 11.7088i 0.524069 + 0.949712i
\(153\) −4.74465 −0.383582
\(154\) −0.139610 0.241811i −0.0112501 0.0194857i
\(155\) 0 0
\(156\) −0.530238 + 0.918400i −0.0424530 + 0.0735308i
\(157\) 3.63145 + 6.28986i 0.289822 + 0.501986i 0.973767 0.227548i \(-0.0730707\pi\)
−0.683945 + 0.729533i \(0.739737\pi\)
\(158\) −0.805123 + 1.39451i −0.0640522 + 0.110942i
\(159\) 0.100466 0.00796744
\(160\) 0 0
\(161\) −5.08273 + 8.80355i −0.400576 + 0.693817i
\(162\) 4.23922 7.34254i 0.333064 0.576884i
\(163\) 19.7783 1.54916 0.774578 0.632478i \(-0.217962\pi\)
0.774578 + 0.632478i \(0.217962\pi\)
\(164\) −8.45972 −0.660593
\(165\) 0 0
\(166\) −4.08651 7.07805i −0.317175 0.549363i
\(167\) −1.70160 + 2.94726i −0.131674 + 0.228066i −0.924322 0.381614i \(-0.875368\pi\)
0.792648 + 0.609679i \(0.208702\pi\)
\(168\) 1.10158 + 1.90800i 0.0849890 + 0.147205i
\(169\) 0.326838 + 0.566100i 0.0251414 + 0.0435461i
\(170\) 0 0
\(171\) 12.4471 + 0.241010i 0.951857 + 0.0184305i
\(172\) 6.76909 0.516138
\(173\) −5.29286 9.16750i −0.402409 0.696992i 0.591607 0.806226i \(-0.298494\pi\)
−0.994016 + 0.109234i \(0.965160\pi\)
\(174\) 1.03462 + 1.79201i 0.0784341 + 0.135852i
\(175\) 0 0
\(176\) 0.119328 + 0.206682i 0.00899469 + 0.0155793i
\(177\) 1.30807 2.26564i 0.0983205 0.170296i
\(178\) −10.6847 −0.800855
\(179\) −14.6024 −1.09144 −0.545718 0.837969i \(-0.683743\pi\)
−0.545718 + 0.837969i \(0.683743\pi\)
\(180\) 0 0
\(181\) 2.71630 4.70478i 0.201901 0.349703i −0.747240 0.664555i \(-0.768621\pi\)
0.949141 + 0.314851i \(0.101955\pi\)
\(182\) −7.29987 −0.541102
\(183\) 3.48072 0.257303
\(184\) 8.23742 14.2676i 0.607270 1.05182i
\(185\) 0 0
\(186\) 1.36643 2.36673i 0.100192 0.173537i
\(187\) −0.111635 0.193357i −0.00816353 0.0141396i
\(188\) 4.42187 + 7.65891i 0.322498 + 0.558583i
\(189\) 4.20530 0.305890
\(190\) 0 0
\(191\) 20.4758 1.48157 0.740787 0.671740i \(-0.234453\pi\)
0.740787 + 0.671740i \(0.234453\pi\)
\(192\) −1.54517 2.67631i −0.111513 0.193146i
\(193\) 5.51176 + 9.54664i 0.396745 + 0.687182i 0.993322 0.115373i \(-0.0368064\pi\)
−0.596577 + 0.802556i \(0.703473\pi\)
\(194\) −9.58554 + 16.6026i −0.688202 + 1.19200i
\(195\) 0 0
\(196\) −1.35905 + 2.35395i −0.0970752 + 0.168139i
\(197\) 19.8532 1.41448 0.707242 0.706971i \(-0.249939\pi\)
0.707242 + 0.706971i \(0.249939\pi\)
\(198\) 0.421263 0.0299379
\(199\) −10.5013 + 18.1888i −0.744417 + 1.28937i 0.206050 + 0.978542i \(0.433939\pi\)
−0.950467 + 0.310826i \(0.899394\pi\)
\(200\) 0 0
\(201\) 1.12038 0.0790254
\(202\) −5.92321 −0.416756
\(203\) 4.70483 8.14901i 0.330215 0.571948i
\(204\) 0.250687 + 0.434203i 0.0175516 + 0.0304003i
\(205\) 0 0
\(206\) −1.17837 2.04100i −0.0821011 0.142203i
\(207\) −7.66842 13.2821i −0.532992 0.923169i
\(208\) 6.23939 0.432624
\(209\) 0.283041 + 0.512924i 0.0195784 + 0.0354797i
\(210\) 0 0
\(211\) 6.41284 + 11.1074i 0.441478 + 0.764663i 0.997799 0.0663046i \(-0.0211209\pi\)
−0.556321 + 0.830967i \(0.687788\pi\)
\(212\) 0.105360 + 0.182489i 0.00723617 + 0.0125334i
\(213\) −0.251944 + 0.436380i −0.0172629 + 0.0299003i
\(214\) 0.549227 + 0.951289i 0.0375444 + 0.0650288i
\(215\) 0 0
\(216\) −6.81538 −0.463728
\(217\) −12.4275 −0.843630
\(218\) 8.92377 15.4564i 0.604394 1.04684i
\(219\) −1.20294 + 2.08355i −0.0812870 + 0.140793i
\(220\) 0 0
\(221\) −5.83712 −0.392647
\(222\) 0.353475 0.612236i 0.0237237 0.0410906i
\(223\) 10.1972 + 17.6621i 0.682856 + 1.18274i 0.974105 + 0.226095i \(0.0725959\pi\)
−0.291249 + 0.956647i \(0.594071\pi\)
\(224\) −3.96344 + 6.86488i −0.264819 + 0.458679i
\(225\) 0 0
\(226\) −0.462576 0.801205i −0.0307701 0.0532954i
\(227\) −25.4172 −1.68700 −0.843500 0.537129i \(-0.819509\pi\)
−0.843500 + 0.537129i \(0.819509\pi\)
\(228\) −0.635598 1.15182i −0.0420935 0.0762814i
\(229\) 2.21553 0.146406 0.0732030 0.997317i \(-0.476678\pi\)
0.0732030 + 0.997317i \(0.476678\pi\)
\(230\) 0 0
\(231\) 0.0482566 + 0.0835829i 0.00317505 + 0.00549935i
\(232\) −7.62496 + 13.2068i −0.500603 + 0.867071i
\(233\) −7.07882 12.2609i −0.463749 0.803236i 0.535395 0.844602i \(-0.320163\pi\)
−0.999144 + 0.0413652i \(0.986829\pi\)
\(234\) 5.50672 9.53792i 0.359986 0.623514i
\(235\) 0 0
\(236\) 5.48719 0.357186
\(237\) 0.278294 0.482019i 0.0180771 0.0313105i
\(238\) −1.72562 + 2.98887i −0.111855 + 0.193739i
\(239\) 3.01476 0.195008 0.0975042 0.995235i \(-0.468914\pi\)
0.0975042 + 0.995235i \(0.468914\pi\)
\(240\) 0 0
\(241\) 11.8896 20.5934i 0.765877 1.32654i −0.173904 0.984763i \(-0.555638\pi\)
0.939781 0.341776i \(-0.111028\pi\)
\(242\) −6.02600 10.4373i −0.387366 0.670937i
\(243\) −4.79743 + 8.30939i −0.307755 + 0.533048i
\(244\) 3.65030 + 6.32251i 0.233687 + 0.404757i
\(245\) 0 0
\(246\) −4.42636 −0.282215
\(247\) 15.3131 + 0.296503i 0.974352 + 0.0188660i
\(248\) 20.1407 1.27894
\(249\) 1.41252 + 2.44655i 0.0895147 + 0.155044i
\(250\) 0 0
\(251\) −8.59495 + 14.8869i −0.542509 + 0.939653i 0.456250 + 0.889851i \(0.349192\pi\)
−0.998759 + 0.0498012i \(0.984141\pi\)
\(252\) 2.15090 + 3.72548i 0.135494 + 0.234683i
\(253\) 0.360853 0.625016i 0.0226866 0.0392944i
\(254\) 20.5656 1.29040
\(255\) 0 0
\(256\) 7.83623 13.5727i 0.489764 0.848297i
\(257\) −9.77143 + 16.9246i −0.609525 + 1.05573i 0.381794 + 0.924248i \(0.375307\pi\)
−0.991319 + 0.131481i \(0.958027\pi\)
\(258\) 3.54178 0.220501
\(259\) −3.21479 −0.199757
\(260\) 0 0
\(261\) 7.09827 + 12.2946i 0.439372 + 0.761014i
\(262\) 1.58384 2.74330i 0.0978502 0.169482i
\(263\) 4.40680 + 7.63280i 0.271735 + 0.470659i 0.969306 0.245857i \(-0.0790692\pi\)
−0.697571 + 0.716515i \(0.745736\pi\)
\(264\) −0.0782078 0.135460i −0.00481336 0.00833698i
\(265\) 0 0
\(266\) 4.67883 7.75336i 0.286878 0.475389i
\(267\) 3.69322 0.226022
\(268\) 1.17496 + 2.03510i 0.0717723 + 0.124313i
\(269\) −0.144181 0.249729i −0.00879088 0.0152263i 0.861596 0.507594i \(-0.169465\pi\)
−0.870387 + 0.492368i \(0.836132\pi\)
\(270\) 0 0
\(271\) 12.4356 + 21.5391i 0.755409 + 1.30841i 0.945171 + 0.326577i \(0.105895\pi\)
−0.189761 + 0.981830i \(0.560771\pi\)
\(272\) 1.47494 2.55466i 0.0894311 0.154899i
\(273\) 2.52323 0.152713
\(274\) −20.6665 −1.24851
\(275\) 0 0
\(276\) −0.810333 + 1.40354i −0.0487763 + 0.0844831i
\(277\) 4.40486 0.264662 0.132331 0.991206i \(-0.457754\pi\)
0.132331 + 0.991206i \(0.457754\pi\)
\(278\) 19.9509 1.19657
\(279\) 9.37476 16.2376i 0.561252 0.972118i
\(280\) 0 0
\(281\) 16.3607 28.3376i 0.975998 1.69048i 0.299398 0.954128i \(-0.403214\pi\)
0.676600 0.736350i \(-0.263452\pi\)
\(282\) 2.31365 + 4.00736i 0.137776 + 0.238635i
\(283\) −0.664463 1.15088i −0.0394982 0.0684129i 0.845600 0.533816i \(-0.179243\pi\)
−0.885099 + 0.465403i \(0.845909\pi\)
\(284\) −1.05688 −0.0627140
\(285\) 0 0
\(286\) 0.518260 0.0306454
\(287\) 10.0643 + 17.4318i 0.594074 + 1.02897i
\(288\) −5.97972 10.3572i −0.352358 0.610302i
\(289\) 7.12016 12.3325i 0.418833 0.725440i
\(290\) 0 0
\(291\) 3.31328 5.73877i 0.194228 0.336413i
\(292\) −5.04618 −0.295305
\(293\) 7.72365 0.451220 0.225610 0.974218i \(-0.427562\pi\)
0.225610 + 0.974218i \(0.427562\pi\)
\(294\) −0.711094 + 1.23165i −0.0414718 + 0.0718313i
\(295\) 0 0
\(296\) 5.21010 0.302831
\(297\) −0.298558 −0.0173241
\(298\) −12.2114 + 21.1507i −0.707386 + 1.22523i
\(299\) −9.43409 16.3403i −0.545588 0.944986i
\(300\) 0 0
\(301\) −8.05296 13.9481i −0.464165 0.803957i
\(302\) 1.82988 + 3.16944i 0.105298 + 0.182381i
\(303\) 2.04738 0.117619
\(304\) −3.99912 + 6.62700i −0.229366 + 0.380085i
\(305\) 0 0
\(306\) −2.60348 4.50936i −0.148831 0.257783i
\(307\) −4.55001 7.88085i −0.259683 0.449784i 0.706474 0.707739i \(-0.250285\pi\)
−0.966157 + 0.257955i \(0.916951\pi\)
\(308\) −0.101215 + 0.175310i −0.00576727 + 0.00998921i
\(309\) 0.407309 + 0.705480i 0.0231710 + 0.0401333i
\(310\) 0 0
\(311\) −12.4569 −0.706364 −0.353182 0.935555i \(-0.614900\pi\)
−0.353182 + 0.935555i \(0.614900\pi\)
\(312\) −4.08931 −0.231512
\(313\) 1.02277 1.77148i 0.0578101 0.100130i −0.835672 0.549229i \(-0.814922\pi\)
0.893482 + 0.449099i \(0.148255\pi\)
\(314\) −3.98530 + 6.90274i −0.224903 + 0.389544i
\(315\) 0 0
\(316\) 1.16741 0.0656719
\(317\) 11.7856 20.4133i 0.661947 1.14653i −0.318157 0.948038i \(-0.603064\pi\)
0.980103 0.198487i \(-0.0636029\pi\)
\(318\) 0.0551274 + 0.0954834i 0.00309139 + 0.00535445i
\(319\) −0.334024 + 0.578546i −0.0187017 + 0.0323923i
\(320\) 0 0
\(321\) −0.189842 0.328817i −0.0105960 0.0183528i
\(322\) −11.1560 −0.621698
\(323\) 3.74129 6.19974i 0.208171 0.344963i
\(324\) −6.14676 −0.341487
\(325\) 0 0
\(326\) 10.8527 + 18.7975i 0.601077 + 1.04110i
\(327\) −3.08454 + 5.34257i −0.170575 + 0.295445i
\(328\) −16.3108 28.2511i −0.900613 1.55991i
\(329\) 10.5211 18.2231i 0.580048 1.00467i
\(330\) 0 0
\(331\) −18.7175 −1.02881 −0.514403 0.857549i \(-0.671986\pi\)
−0.514403 + 0.857549i \(0.671986\pi\)
\(332\) −2.96267 + 5.13150i −0.162598 + 0.281627i
\(333\) 2.42511 4.20041i 0.132895 0.230181i
\(334\) −3.73480 −0.204359
\(335\) 0 0
\(336\) −0.637575 + 1.10431i −0.0347826 + 0.0602451i
\(337\) −16.3440 28.3087i −0.890316 1.54207i −0.839497 0.543365i \(-0.817150\pi\)
−0.0508197 0.998708i \(-0.516183\pi\)
\(338\) −0.358684 + 0.621259i −0.0195098 + 0.0337921i
\(339\) 0.159891 + 0.276940i 0.00868409 + 0.0150413i
\(340\) 0 0
\(341\) 0.882297 0.0477791
\(342\) 6.60093 + 11.9621i 0.356937 + 0.646838i
\(343\) 19.7188 1.06471
\(344\) 13.0512 + 22.6053i 0.703671 + 1.21879i
\(345\) 0 0
\(346\) 5.80859 10.0608i 0.312271 0.540870i
\(347\) −1.28333 2.22279i −0.0688927 0.119326i 0.829521 0.558475i \(-0.188613\pi\)
−0.898414 + 0.439149i \(0.855280\pi\)
\(348\) 0.750085 1.29919i 0.0402088 0.0696436i
\(349\) 16.6195 0.889619 0.444810 0.895625i \(-0.353271\pi\)
0.444810 + 0.895625i \(0.353271\pi\)
\(350\) 0 0
\(351\) −3.90274 + 6.75974i −0.208313 + 0.360808i
\(352\) 0.281388 0.487378i 0.0149980 0.0259773i
\(353\) −28.3629 −1.50961 −0.754803 0.655951i \(-0.772268\pi\)
−0.754803 + 0.655951i \(0.772268\pi\)
\(354\) 2.87105 0.152595
\(355\) 0 0
\(356\) 3.87315 + 6.70850i 0.205277 + 0.355550i
\(357\) 0.596468 1.03311i 0.0315684 0.0546781i
\(358\) −8.01262 13.8783i −0.423480 0.733489i
\(359\) −8.69427 15.0589i −0.458866 0.794780i 0.540035 0.841643i \(-0.318411\pi\)
−0.998901 + 0.0468628i \(0.985078\pi\)
\(360\) 0 0
\(361\) −10.1298 + 16.0744i −0.533150 + 0.846021i
\(362\) 5.96195 0.313353
\(363\) 2.08291 + 3.60771i 0.109324 + 0.189355i
\(364\) 2.64616 + 4.58328i 0.138696 + 0.240229i
\(365\) 0 0
\(366\) 1.90994 + 3.30811i 0.0998342 + 0.172918i
\(367\) 12.9024 22.3477i 0.673501 1.16654i −0.303404 0.952862i \(-0.598123\pi\)
0.976905 0.213676i \(-0.0685436\pi\)
\(368\) 9.53531 0.497062
\(369\) −30.3683 −1.58091
\(370\) 0 0
\(371\) 0.250687 0.434203i 0.0130150 0.0225427i
\(372\) −1.98129 −0.102725
\(373\) −27.0663 −1.40144 −0.700719 0.713437i \(-0.747138\pi\)
−0.700719 + 0.713437i \(0.747138\pi\)
\(374\) 0.122512 0.212197i 0.00633495 0.0109724i
\(375\) 0 0
\(376\) −17.0512 + 29.5336i −0.879349 + 1.52308i
\(377\) 8.73267 + 15.1254i 0.449755 + 0.778999i
\(378\) 2.30753 + 3.99675i 0.118686 + 0.205571i
\(379\) 12.4028 0.637092 0.318546 0.947907i \(-0.396806\pi\)
0.318546 + 0.947907i \(0.396806\pi\)
\(380\) 0 0
\(381\) −7.10859 −0.364184
\(382\) 11.2354 + 19.4604i 0.574855 + 0.995678i
\(383\) −2.67971 4.64139i −0.136927 0.237164i 0.789405 0.613873i \(-0.210389\pi\)
−0.926332 + 0.376709i \(0.877056\pi\)
\(384\) 0.107336 0.185912i 0.00547749 0.00948728i
\(385\) 0 0
\(386\) −6.04881 + 10.4769i −0.307877 + 0.533258i
\(387\) 24.2993 1.23520
\(388\) 13.8988 0.705605
\(389\) −4.28467 + 7.42126i −0.217241 + 0.376273i −0.953964 0.299923i \(-0.903039\pi\)
0.736722 + 0.676195i \(0.236372\pi\)
\(390\) 0 0
\(391\) −8.92053 −0.451131
\(392\) −10.4813 −0.529386
\(393\) −0.547462 + 0.948232i −0.0276158 + 0.0478320i
\(394\) 10.8939 + 18.8687i 0.548824 + 0.950592i
\(395\) 0 0
\(396\) −0.152705 0.264493i −0.00767373 0.0132913i
\(397\) −5.32227 9.21844i −0.267117 0.462660i 0.700999 0.713162i \(-0.252738\pi\)
−0.968116 + 0.250502i \(0.919404\pi\)
\(398\) −23.0490 −1.15534
\(399\) −1.61726 + 2.67998i −0.0809641 + 0.134167i
\(400\) 0 0
\(401\) −3.82604 6.62690i −0.191063 0.330932i 0.754539 0.656255i \(-0.227860\pi\)
−0.945603 + 0.325323i \(0.894527\pi\)
\(402\) 0.614773 + 1.06482i 0.0306621 + 0.0531083i
\(403\) 11.5333 19.9763i 0.574516 0.995091i
\(404\) 2.14713 + 3.71893i 0.106824 + 0.185024i
\(405\) 0 0
\(406\) 10.3265 0.512497
\(407\) 0.228237 0.0113133
\(408\) −0.966676 + 1.67433i −0.0478576 + 0.0828918i
\(409\) 8.84435 15.3189i 0.437325 0.757469i −0.560157 0.828386i \(-0.689259\pi\)
0.997482 + 0.0709173i \(0.0225927\pi\)
\(410\) 0 0
\(411\) 7.14345 0.352361
\(412\) −0.854305 + 1.47970i −0.0420886 + 0.0728996i
\(413\) −6.52793 11.3067i −0.321218 0.556367i
\(414\) 8.41561 14.5763i 0.413605 0.716384i
\(415\) 0 0
\(416\) −7.35657 12.7420i −0.360685 0.624726i
\(417\) −6.89609 −0.337703
\(418\) −0.332178 + 0.550456i −0.0162473 + 0.0269237i
\(419\) 1.18732 0.0580045 0.0290023 0.999579i \(-0.490767\pi\)
0.0290023 + 0.999579i \(0.490767\pi\)
\(420\) 0 0
\(421\) −16.6836 28.8969i −0.813111 1.40835i −0.910677 0.413120i \(-0.864439\pi\)
0.0975661 0.995229i \(-0.468894\pi\)
\(422\) −7.03770 + 12.1896i −0.342590 + 0.593383i
\(423\) 15.8734 + 27.4935i 0.771791 + 1.33678i
\(424\) −0.406280 + 0.703698i −0.0197307 + 0.0341746i
\(425\) 0 0
\(426\) −0.552987 −0.0267923
\(427\) 8.68529 15.0434i 0.420311 0.727999i
\(428\) 0.398183 0.689673i 0.0192469 0.0333366i
\(429\) −0.179139 −0.00864890
\(430\) 0 0
\(431\) 3.08799 5.34855i 0.148743 0.257631i −0.782020 0.623253i \(-0.785811\pi\)
0.930763 + 0.365623i \(0.119144\pi\)
\(432\) −1.97230 3.41613i −0.0948925 0.164359i
\(433\) −9.27761 + 16.0693i −0.445854 + 0.772241i −0.998111 0.0614325i \(-0.980433\pi\)
0.552258 + 0.833673i \(0.313766\pi\)
\(434\) −6.81918 11.8112i −0.327331 0.566954i
\(435\) 0 0
\(436\) −12.9392 −0.619677
\(437\) 23.4022 + 0.453129i 1.11948 + 0.0216761i
\(438\) −2.64030 −0.126158
\(439\) 0.113656 + 0.196858i 0.00542450 + 0.00939550i 0.868725 0.495295i \(-0.164940\pi\)
−0.863300 + 0.504690i \(0.831607\pi\)
\(440\) 0 0
\(441\) −4.87865 + 8.45007i −0.232317 + 0.402384i
\(442\) −3.20294 5.54765i −0.152348 0.263875i
\(443\) −17.4913 + 30.2959i −0.831038 + 1.43940i 0.0661770 + 0.997808i \(0.478920\pi\)
−0.897216 + 0.441593i \(0.854414\pi\)
\(444\) −0.512529 −0.0243236
\(445\) 0 0
\(446\) −11.1908 + 19.3831i −0.529901 + 0.917815i
\(447\) 4.22091 7.31083i 0.199642 0.345791i
\(448\) −15.4224 −0.728638
\(449\) −16.9509 −0.799961 −0.399980 0.916524i \(-0.630983\pi\)
−0.399980 + 0.916524i \(0.630983\pi\)
\(450\) 0 0
\(451\) −0.714520 1.23759i −0.0336454 0.0582756i
\(452\) −0.335362 + 0.580864i −0.0157741 + 0.0273215i
\(453\) −0.632505 1.09553i −0.0297177 0.0514725i
\(454\) −13.9469 24.1568i −0.654561 1.13373i
\(455\) 0 0
\(456\) 2.62103 4.34335i 0.122741 0.203396i
\(457\) −1.60241 −0.0749578 −0.0374789 0.999297i \(-0.511933\pi\)
−0.0374789 + 0.999297i \(0.511933\pi\)
\(458\) 1.21570 + 2.10566i 0.0568060 + 0.0983909i
\(459\) 1.84514 + 3.19588i 0.0861239 + 0.149171i
\(460\) 0 0
\(461\) 4.37081 + 7.57046i 0.203569 + 0.352592i 0.949676 0.313234i \(-0.101413\pi\)
−0.746107 + 0.665826i \(0.768079\pi\)
\(462\) −0.0529586 + 0.0917270i −0.00246386 + 0.00426753i
\(463\) −21.1886 −0.984718 −0.492359 0.870392i \(-0.663865\pi\)
−0.492359 + 0.870392i \(0.663865\pi\)
\(464\) −8.82636 −0.409753
\(465\) 0 0
\(466\) 7.76857 13.4556i 0.359872 0.623316i
\(467\) −20.4516 −0.946388 −0.473194 0.880958i \(-0.656899\pi\)
−0.473194 + 0.880958i \(0.656899\pi\)
\(468\) −7.98461 −0.369089
\(469\) 2.79563 4.84217i 0.129090 0.223591i
\(470\) 0 0
\(471\) 1.37753 2.38596i 0.0634734 0.109939i
\(472\) 10.5796 + 18.3244i 0.486965 + 0.843449i
\(473\) 0.571727 + 0.990259i 0.0262880 + 0.0455322i
\(474\) 0.610821 0.0280559
\(475\) 0 0
\(476\) 2.50211 0.114684
\(477\) 0.378216 + 0.655090i 0.0173173 + 0.0299945i
\(478\) 1.65425 + 2.86525i 0.0756639 + 0.131054i
\(479\) −11.7746 + 20.3942i −0.537994 + 0.931833i 0.461018 + 0.887391i \(0.347484\pi\)
−0.999012 + 0.0444419i \(0.985849\pi\)
\(480\) 0 0
\(481\) 2.98350 5.16757i 0.136036 0.235621i
\(482\) 26.0962 1.18865
\(483\) 3.85611 0.175459
\(484\) −4.36877 + 7.56694i −0.198581 + 0.343952i
\(485\) 0 0
\(486\) −10.5298 −0.477640
\(487\) −36.0392 −1.63309 −0.816546 0.577280i \(-0.804114\pi\)
−0.816546 + 0.577280i \(0.804114\pi\)
\(488\) −14.0760 + 24.3803i −0.637188 + 1.10364i
\(489\) −3.75129 6.49742i −0.169639 0.293824i
\(490\) 0 0
\(491\) −10.0297 17.3720i −0.452635 0.783988i 0.545913 0.837842i \(-0.316183\pi\)
−0.998549 + 0.0538541i \(0.982849\pi\)
\(492\) 1.60453 + 2.77913i 0.0723378 + 0.125293i
\(493\) 8.25729 0.371890
\(494\) 8.12081 + 14.7164i 0.365373 + 0.662124i
\(495\) 0 0
\(496\) 5.82853 + 10.0953i 0.261709 + 0.453293i
\(497\) 1.25733 + 2.17776i 0.0563989 + 0.0976858i
\(498\) −1.55015 + 2.68494i −0.0694640 + 0.120315i
\(499\) 18.4364 + 31.9328i 0.825328 + 1.42951i 0.901668 + 0.432429i \(0.142343\pi\)
−0.0763399 + 0.997082i \(0.524323\pi\)
\(500\) 0 0
\(501\) 1.29095 0.0576753
\(502\) −18.8649 −0.841980
\(503\) −10.8244 + 18.7483i −0.482634 + 0.835947i −0.999801 0.0199377i \(-0.993653\pi\)
0.517167 + 0.855884i \(0.326987\pi\)
\(504\) −8.29412 + 14.3658i −0.369449 + 0.639905i
\(505\) 0 0
\(506\) 0.792028 0.0352099
\(507\) 0.123981 0.214741i 0.00550617 0.00953697i
\(508\) −7.45492 12.9123i −0.330759 0.572891i
\(509\) 18.2279 31.5717i 0.807938 1.39939i −0.106351 0.994329i \(-0.533917\pi\)
0.914289 0.405062i \(-0.132750\pi\)
\(510\) 0 0
\(511\) 6.00327 + 10.3980i 0.265569 + 0.459979i
\(512\) 18.3314 0.810141
\(513\) −4.67822 8.47783i −0.206549 0.374305i
\(514\) −21.4471 −0.945990
\(515\) 0 0
\(516\) −1.28387 2.22373i −0.0565193 0.0978943i
\(517\) −0.746955 + 1.29376i −0.0328511 + 0.0568997i
\(518\) −1.76402 3.05537i −0.0775065 0.134245i
\(519\) −2.00776 + 3.47754i −0.0881309 + 0.152647i
\(520\) 0 0
\(521\) −22.6092 −0.990528 −0.495264 0.868742i \(-0.664929\pi\)
−0.495264 + 0.868742i \(0.664929\pi\)
\(522\) −7.78991 + 13.4925i −0.340955 + 0.590552i
\(523\) 0.266456 0.461515i 0.0116513 0.0201806i −0.860141 0.510056i \(-0.829625\pi\)
0.871792 + 0.489876i \(0.162958\pi\)
\(524\) −2.29654 −0.100325
\(525\) 0 0
\(526\) −4.83619 + 8.37653i −0.210868 + 0.365234i
\(527\) −5.45275 9.44444i −0.237525 0.411406i
\(528\) 0.0452651 0.0784015i 0.00196991 0.00341199i
\(529\) −2.91759 5.05341i −0.126852 0.219714i
\(530\) 0 0
\(531\) 19.6976 0.854804
\(532\) −6.56406 0.127098i −0.284588 0.00551038i
\(533\) −37.3606 −1.61827
\(534\) 2.02654 + 3.51007i 0.0876971 + 0.151896i
\(535\) 0 0
\(536\) −4.53078 + 7.84754i −0.195700 + 0.338962i
\(537\) 2.76959 + 4.79708i 0.119517 + 0.207009i
\(538\) 0.158230 0.274062i 0.00682178 0.0118157i
\(539\) −0.459150 −0.0197770
\(540\) 0 0
\(541\) −2.50820 + 4.34433i −0.107836 + 0.186777i −0.914893 0.403696i \(-0.867725\pi\)
0.807057 + 0.590473i \(0.201059\pi\)
\(542\) −13.6473 + 23.6378i −0.586202 + 1.01533i
\(543\) −2.06077 −0.0884362
\(544\) −6.95610 −0.298240
\(545\) 0 0
\(546\) 1.38454 + 2.39810i 0.0592530 + 0.102629i
\(547\) 11.3149 19.5981i 0.483792 0.837952i −0.516035 0.856568i \(-0.672592\pi\)
0.999827 + 0.0186154i \(0.00592582\pi\)
\(548\) 7.49148 + 12.9756i 0.320020 + 0.554291i
\(549\) 13.1037 + 22.6962i 0.559250 + 0.968650i
\(550\) 0 0
\(551\) −21.6622 0.419439i −0.922843 0.0178687i
\(552\) −6.24946 −0.265995
\(553\) −1.38883 2.40552i −0.0590590 0.102293i
\(554\) 2.41703 + 4.18642i 0.102690 + 0.177864i
\(555\) 0 0
\(556\) −7.23207 12.5263i −0.306708 0.531234i
\(557\) 17.6277 30.5321i 0.746910 1.29369i −0.202387 0.979306i \(-0.564870\pi\)
0.949297 0.314381i \(-0.101797\pi\)
\(558\) 20.5764 0.871070
\(559\) 29.8943 1.26439
\(560\) 0 0
\(561\) −0.0423468 + 0.0733467i −0.00178788 + 0.00309670i
\(562\) 35.9097 1.51476
\(563\) 24.6295 1.03801 0.519005 0.854771i \(-0.326302\pi\)
0.519005 + 0.854771i \(0.326302\pi\)
\(564\) 1.67737 2.90528i 0.0706298 0.122334i
\(565\) 0 0
\(566\) 0.729207 1.26302i 0.0306509 0.0530888i
\(567\) 7.31260 + 12.6658i 0.307100 + 0.531913i
\(568\) −2.03771 3.52942i −0.0855005 0.148091i
\(569\) −20.0193 −0.839252 −0.419626 0.907697i \(-0.637839\pi\)
−0.419626 + 0.907697i \(0.637839\pi\)
\(570\) 0 0
\(571\) −16.6121 −0.695195 −0.347597 0.937644i \(-0.613002\pi\)
−0.347597 + 0.937644i \(0.613002\pi\)
\(572\) −0.187866 0.325394i −0.00785508 0.0136054i
\(573\) −3.88357 6.72655i −0.162239 0.281006i
\(574\) −11.0449 + 19.1303i −0.461005 + 0.798484i
\(575\) 0 0
\(576\) 11.6340 20.1507i 0.484750 0.839612i
\(577\) −12.4486 −0.518244 −0.259122 0.965845i \(-0.583433\pi\)
−0.259122 + 0.965845i \(0.583433\pi\)
\(578\) 15.6279 0.650034
\(579\) 2.09080 3.62136i 0.0868905 0.150499i
\(580\) 0 0
\(581\) 14.0984 0.584899
\(582\) 7.27224 0.301444
\(583\) −0.0177977 + 0.0308266i −0.000737107 + 0.00127671i
\(584\) −9.72930 16.8516i −0.402601 0.697326i
\(585\) 0 0
\(586\) 4.23811 + 7.34063i 0.175075 + 0.303238i
\(587\) 2.25572 + 3.90702i 0.0931036 + 0.161260i 0.908816 0.417198i \(-0.136988\pi\)
−0.815712 + 0.578458i \(0.803655\pi\)
\(588\) 1.03107 0.0425206
\(589\) 13.8250 + 25.0536i 0.569651 + 1.03232i
\(590\) 0 0
\(591\) −3.76550 6.52204i −0.154892 0.268281i
\(592\) 1.50775 + 2.61150i 0.0619682 + 0.107332i
\(593\) 9.80411 16.9812i 0.402606 0.697335i −0.591433 0.806354i \(-0.701438\pi\)
0.994040 + 0.109019i \(0.0347710\pi\)
\(594\) −0.163825 0.283753i −0.00672181 0.0116425i
\(595\) 0 0
\(596\) 17.7062 0.725274
\(597\) 7.96699 0.326067
\(598\) 10.3533 17.9325i 0.423379 0.733315i
\(599\) −5.38795 + 9.33221i −0.220146 + 0.381304i −0.954852 0.297082i \(-0.903987\pi\)
0.734706 + 0.678385i \(0.237320\pi\)
\(600\) 0 0
\(601\) 15.0244 0.612860 0.306430 0.951893i \(-0.400866\pi\)
0.306430 + 0.951893i \(0.400866\pi\)
\(602\) 8.83763 15.3072i 0.360195 0.623876i
\(603\) 4.21782 + 7.30547i 0.171763 + 0.297502i
\(604\) 1.32664 2.29781i 0.0539802 0.0934964i
\(605\) 0 0
\(606\) 1.12344 + 1.94585i 0.0456365 + 0.0790448i
\(607\) −25.1901 −1.02243 −0.511217 0.859452i \(-0.670805\pi\)
−0.511217 + 0.859452i \(0.670805\pi\)
\(608\) 18.2487 + 0.353343i 0.740082 + 0.0143300i
\(609\) −3.56940 −0.144640
\(610\) 0 0
\(611\) 19.5283 + 33.8240i 0.790030 + 1.36837i
\(612\) −1.88749 + 3.26923i −0.0762973 + 0.132151i
\(613\) 8.11753 + 14.0600i 0.327864 + 0.567877i 0.982088 0.188424i \(-0.0603379\pi\)
−0.654224 + 0.756301i \(0.727005\pi\)
\(614\) 4.99336 8.64875i 0.201516 0.349035i
\(615\) 0 0
\(616\) −0.780593 −0.0314510
\(617\) 3.25913 5.64498i 0.131208 0.227258i −0.792935 0.609307i \(-0.791448\pi\)
0.924142 + 0.382048i \(0.124781\pi\)
\(618\) −0.446996 + 0.774220i −0.0179808 + 0.0311437i
\(619\) −4.39112 −0.176494 −0.0882470 0.996099i \(-0.528126\pi\)
−0.0882470 + 0.996099i \(0.528126\pi\)
\(620\) 0 0
\(621\) −5.96433 + 10.3305i −0.239340 + 0.414550i
\(622\) −6.83532 11.8391i −0.274071 0.474705i
\(623\) 9.21553 15.9618i 0.369212 0.639494i
\(624\) −1.18341 2.04972i −0.0473742 0.0820545i
\(625\) 0 0
\(626\) 2.24484 0.0897220
\(627\) 0.114819 0.190267i 0.00458541 0.00759855i
\(628\) 5.77858 0.230590
\(629\) −1.41054 2.44313i −0.0562420 0.0974140i
\(630\) 0 0
\(631\) 17.3104 29.9826i 0.689118 1.19359i −0.283006 0.959118i \(-0.591332\pi\)
0.972124 0.234469i \(-0.0753350\pi\)
\(632\) 2.25083 + 3.89855i 0.0895331 + 0.155076i
\(633\) 2.43261 4.21340i 0.0966875 0.167468i
\(634\) 25.8680 1.02735
\(635\) 0 0
\(636\) 0.0399667 0.0692243i 0.00158478 0.00274492i
\(637\) −6.00198 + 10.3957i −0.237807 + 0.411894i
\(638\) −0.733141 −0.0290253
\(639\) −3.79391 −0.150085
\(640\) 0 0
\(641\) −3.70621 6.41934i −0.146386 0.253549i 0.783503 0.621388i \(-0.213431\pi\)
−0.929889 + 0.367839i \(0.880098\pi\)
\(642\) 0.208340 0.360856i 0.00822253 0.0142418i
\(643\) −8.27294 14.3292i −0.326253 0.565087i 0.655512 0.755185i \(-0.272453\pi\)
−0.981765 + 0.190098i \(0.939120\pi\)
\(644\) 4.04397 + 7.00437i 0.159355 + 0.276011i
\(645\) 0 0
\(646\) 7.94520 + 0.153840i 0.312600 + 0.00605276i
\(647\) −29.4822 −1.15907 −0.579533 0.814949i \(-0.696765\pi\)
−0.579533 + 0.814949i \(0.696765\pi\)
\(648\) −11.8513 20.5270i −0.465562 0.806377i
\(649\) 0.463456 + 0.802729i 0.0181922 + 0.0315099i
\(650\) 0 0
\(651\) 2.35708 + 4.08258i 0.0923811 + 0.160009i
\(652\) 7.86810 13.6279i 0.308138 0.533712i
\(653\) −6.57421 −0.257269 −0.128634 0.991692i \(-0.541059\pi\)
−0.128634 + 0.991692i \(0.541059\pi\)
\(654\) −6.77017 −0.264735
\(655\) 0 0
\(656\) 9.44037 16.3512i 0.368584 0.638407i
\(657\) −18.1145 −0.706713
\(658\) 23.0925 0.900241
\(659\) 13.1685 22.8085i 0.512972 0.888494i −0.486915 0.873450i \(-0.661878\pi\)
0.999887 0.0150445i \(-0.00478898\pi\)
\(660\) 0 0
\(661\) −1.89210 + 3.27721i −0.0735941 + 0.127469i −0.900474 0.434910i \(-0.856780\pi\)
0.826880 + 0.562378i \(0.190114\pi\)
\(662\) −10.2706 17.7893i −0.399180 0.691399i
\(663\) 1.10711 + 1.91757i 0.0429965 + 0.0744721i
\(664\) −22.8487 −0.886703
\(665\) 0 0
\(666\) 5.32281 0.206255
\(667\) 13.3456 + 23.1153i 0.516745 + 0.895029i
\(668\) 1.35384 + 2.34492i 0.0523817 + 0.0907278i
\(669\) 3.86815 6.69983i 0.149551 0.259031i
\(670\) 0 0
\(671\) −0.616619 + 1.06802i −0.0238043 + 0.0412303i
\(672\) 3.00694 0.115995
\(673\) 21.0431 0.811150 0.405575 0.914062i \(-0.367071\pi\)
0.405575 + 0.914062i \(0.367071\pi\)
\(674\) 17.9366 31.0670i 0.690891 1.19666i
\(675\) 0 0
\(676\) 0.520083 0.0200032
\(677\) 15.2744 0.587043 0.293522 0.955952i \(-0.405173\pi\)
0.293522 + 0.955952i \(0.405173\pi\)
\(678\) −0.175471 + 0.303924i −0.00673891 + 0.0116721i
\(679\) −16.5349 28.6394i −0.634553 1.09908i
\(680\) 0 0
\(681\) 4.82081 + 8.34988i 0.184734 + 0.319968i
\(682\) 0.484133 + 0.838544i 0.0185384 + 0.0321095i
\(683\) 8.60225 0.329156 0.164578 0.986364i \(-0.447374\pi\)
0.164578 + 0.986364i \(0.447374\pi\)
\(684\) 5.11772 8.48064i 0.195681 0.324265i
\(685\) 0 0
\(686\) 10.8201 + 18.7409i 0.413112 + 0.715530i
\(687\) −0.420212 0.727828i −0.0160321 0.0277684i
\(688\) −7.55375 + 13.0835i −0.287984 + 0.498803i
\(689\) 0.465302 + 0.805926i 0.0177266 + 0.0307033i
\(690\) 0 0
\(691\) 34.1079 1.29753 0.648763 0.760990i \(-0.275286\pi\)
0.648763 + 0.760990i \(0.275286\pi\)
\(692\) −8.42231 −0.320168
\(693\) −0.363337 + 0.629318i −0.0138020 + 0.0239058i
\(694\) 1.40837 2.43937i 0.0534611 0.0925974i
\(695\) 0 0
\(696\) 5.78481 0.219273
\(697\) −8.83172 + 15.2970i −0.334525 + 0.579414i
\(698\) 9.11942 + 15.7953i 0.345175 + 0.597861i
\(699\) −2.68523 + 4.65096i −0.101565 + 0.175916i
\(700\) 0 0
\(701\) −5.36463 9.29181i −0.202619 0.350947i 0.746752 0.665102i \(-0.231612\pi\)
−0.949372 + 0.314155i \(0.898279\pi\)
\(702\) −8.56603 −0.323304
\(703\) 3.57633 + 6.48098i 0.134884 + 0.244435i
\(704\) 1.09492 0.0412665
\(705\) 0 0
\(706\) −15.5633 26.9564i −0.585732 1.01452i
\(707\) 5.10873 8.84859i 0.192134 0.332785i
\(708\) −1.04074 1.80261i −0.0391134 0.0677463i
\(709\) 14.4238 24.9828i 0.541697 0.938247i −0.457109 0.889410i \(-0.651115\pi\)
0.998807 0.0488369i \(-0.0155514\pi\)
\(710\) 0 0
\(711\) 4.19070 0.157164
\(712\) −14.9353 + 25.8687i −0.559724 + 0.969470i
\(713\) 17.6257 30.5287i 0.660089 1.14331i
\(714\) 1.30917 0.0489946
\(715\) 0 0
\(716\) −5.80905 + 10.0616i −0.217095 + 0.376019i
\(717\) −0.571800 0.990386i −0.0213542 0.0369866i
\(718\) 9.54143 16.5262i 0.356083 0.616754i
\(719\) 10.0278 + 17.3686i 0.373972 + 0.647739i 0.990173 0.139851i \(-0.0446622\pi\)
−0.616200 + 0.787589i \(0.711329\pi\)
\(720\) 0 0
\(721\) 4.06535 0.151402
\(722\) −20.8357 0.807171i −0.775424 0.0300398i
\(723\) −9.02026 −0.335467
\(724\) −2.16117 3.74326i −0.0803193 0.139117i
\(725\) 0 0
\(726\) −2.28587 + 3.95923i −0.0848364 + 0.146941i
\(727\) −0.390261 0.675951i −0.0144740 0.0250697i 0.858698 0.512482i \(-0.171274\pi\)
−0.873172 + 0.487413i \(0.837941\pi\)
\(728\) −10.2039 + 17.6736i −0.378180 + 0.655028i
\(729\) −19.5373 −0.723604
\(730\) 0 0
\(731\) 7.06674 12.2399i 0.261373 0.452711i
\(732\) 1.38468 2.39834i 0.0511794 0.0886452i
\(733\) 26.8391 0.991326 0.495663 0.868515i \(-0.334925\pi\)
0.495663 + 0.868515i \(0.334925\pi\)
\(734\) 28.3192 1.04528
\(735\) 0 0
\(736\) −11.2426 19.4728i −0.414409 0.717777i
\(737\) −0.198478 + 0.343774i −0.00731103 + 0.0126631i
\(738\) −16.6636 28.8623i −0.613397 1.06243i
\(739\) −10.3265 17.8861i −0.379867 0.657949i 0.611175 0.791495i \(-0.290697\pi\)
−0.991043 + 0.133546i \(0.957364\pi\)
\(740\) 0 0
\(741\) −2.80699 5.08680i −0.103117 0.186868i
\(742\) 0.550227 0.0201995
\(743\) 0.736585 + 1.27580i 0.0270227 + 0.0468047i 0.879220 0.476415i \(-0.158064\pi\)
−0.852198 + 0.523220i \(0.824731\pi\)
\(744\) −3.82003 6.61649i −0.140049 0.242572i
\(745\) 0 0
\(746\) −14.8518 25.7240i −0.543762 0.941824i
\(747\) −10.6352 + 18.4208i −0.389123 + 0.673980i
\(748\) −0.177639 −0.00649514
\(749\) −1.89482 −0.0692352
\(750\) 0 0
\(751\) −7.78121 + 13.4775i −0.283940 + 0.491799i −0.972352 0.233521i \(-0.924975\pi\)
0.688411 + 0.725321i \(0.258308\pi\)
\(752\) −19.7378 −0.719764
\(753\) 6.52071 0.237628
\(754\) −9.58356 + 16.5992i −0.349013 + 0.604508i
\(755\) 0 0
\(756\) 1.67293 2.89760i 0.0608438 0.105385i
\(757\) 10.0878 + 17.4726i 0.366647 + 0.635052i 0.989039 0.147654i \(-0.0471722\pi\)
−0.622392 + 0.782706i \(0.713839\pi\)
\(758\) 6.80568 + 11.7878i 0.247193 + 0.428152i
\(759\) −0.273767 −0.00993713
\(760\) 0 0
\(761\) −15.1076 −0.547649 −0.273825 0.961780i \(-0.588289\pi\)
−0.273825 + 0.961780i \(0.588289\pi\)
\(762\) −3.90062 6.75607i −0.141305 0.244747i
\(763\) 15.3934 + 26.6621i 0.557278 + 0.965234i
\(764\) 8.14556 14.1085i 0.294696 0.510428i
\(765\) 0 0
\(766\) 2.94082 5.09364i 0.106256 0.184041i
\(767\) 24.2331 0.875005
\(768\) −5.94509 −0.214525
\(769\) −25.8290 + 44.7372i −0.931418 + 1.61326i −0.150518 + 0.988607i \(0.548094\pi\)
−0.780900 + 0.624656i \(0.785239\pi\)
\(770\) 0 0
\(771\) 7.41327 0.266982
\(772\) 8.77063 0.315662
\(773\) 15.0779 26.1157i 0.542314 0.939316i −0.456457 0.889746i \(-0.650882\pi\)
0.998771 0.0495699i \(-0.0157851\pi\)
\(774\) 13.3335 + 23.0943i 0.479262 + 0.830107i
\(775\) 0 0
\(776\) 26.7976 + 46.4148i 0.961978 + 1.66620i
\(777\) 0.609739 + 1.05610i 0.0218743 + 0.0378874i
\(778\) −9.40431 −0.337161
\(779\) 23.9462 39.6816i 0.857962 1.42174i
\(780\) 0 0
\(781\) −0.0892652 0.154612i −0.00319416 0.00553244i
\(782\) −4.89487 8.47816i −0.175040 0.303178i
\(783\) 5.52088 9.56245i 0.197300 0.341734i
\(784\) −3.03318 5.25363i −0.108328 0.187630i
\(785\) 0 0
\(786\) −1.20161 −0.0428601
\(787\) −43.0969 −1.53624 −0.768119 0.640307i \(-0.778807\pi\)
−0.768119 + 0.640307i \(0.778807\pi\)
\(788\) 7.89791 13.6796i 0.281351 0.487315i
\(789\) 1.67165 2.89538i 0.0595123 0.103078i
\(790\) 0 0
\(791\) 1.59588 0.0567428
\(792\) 0.588848 1.01991i 0.0209238 0.0362411i
\(793\) 16.1208 + 27.9221i 0.572467 + 0.991542i
\(794\) 5.84086 10.1167i 0.207284 0.359027i
\(795\) 0 0
\(796\) 8.35514 + 14.4715i 0.296140 + 0.512929i
\(797\) 50.5062 1.78902 0.894510 0.447048i \(-0.147525\pi\)
0.894510 + 0.447048i \(0.147525\pi\)
\(798\) −3.43450 0.0665010i −0.121580 0.00235411i
\(799\) 18.4652 0.653253
\(800\) 0 0
\(801\) 13.9036 + 24.0818i 0.491261 + 0.850889i
\(802\) 4.19885 7.27261i 0.148266 0.256805i
\(803\) −0.426207 0.738212i −0.0150405 0.0260509i
\(804\) 0.445703 0.771981i 0.0157187 0.0272257i
\(805\) 0 0
\(806\) 25.3142 0.891656
\(807\) −0.0546928 + 0.0947307i −0.00192528 + 0.00333468i
\(808\) −8.27955 + 14.3406i −0.291274 + 0.504501i
\(809\) −30.0872 −1.05781 −0.528905 0.848681i \(-0.677397\pi\)
−0.528905 + 0.848681i \(0.677397\pi\)
\(810\) 0 0
\(811\) −11.4755 + 19.8761i −0.402958 + 0.697944i −0.994081 0.108637i \(-0.965351\pi\)
0.591123 + 0.806581i \(0.298685\pi\)
\(812\) −3.74330 6.48359i −0.131364 0.227529i
\(813\) 4.71725 8.17051i 0.165441 0.286552i
\(814\) 0.125238 + 0.216918i 0.00438958 + 0.00760298i
\(815\) 0 0
\(816\) −1.11899 −0.0391723
\(817\) −19.1607 + 31.7514i −0.670347 + 1.11084i
\(818\) 19.4123 0.678734
\(819\) 9.49903 + 16.4528i 0.331923 + 0.574907i
\(820\) 0 0
\(821\) 19.0403 32.9788i 0.664513 1.15097i −0.314905 0.949123i \(-0.601973\pi\)
0.979417 0.201846i \(-0.0646941\pi\)
\(822\) 3.91975 + 6.78921i 0.136717 + 0.236801i
\(823\) 26.8966 46.5862i 0.937556 1.62389i 0.167544 0.985865i \(-0.446416\pi\)
0.770012 0.638030i \(-0.220250\pi\)
\(824\) −6.58858 −0.229524
\(825\) 0 0
\(826\) 7.16400 12.4084i 0.249267 0.431744i
\(827\) 16.2046 28.0672i 0.563490 0.975993i −0.433699 0.901058i \(-0.642792\pi\)
0.997188 0.0749347i \(-0.0238748\pi\)
\(828\) −12.2024 −0.424064
\(829\) −18.5305 −0.643592 −0.321796 0.946809i \(-0.604287\pi\)
−0.321796 + 0.946809i \(0.604287\pi\)
\(830\) 0 0
\(831\) −0.835456 1.44705i −0.0289817 0.0501977i
\(832\) 14.3128 24.7904i 0.496206 0.859454i
\(833\) 2.83763 + 4.91491i 0.0983179 + 0.170292i
\(834\) −3.78402 6.55411i −0.131030 0.226950i
\(835\) 0 0
\(836\) 0.466021 + 0.00902339i 0.0161177 + 0.000312081i
\(837\) −14.5830 −0.504062
\(838\) 0.651507 + 1.12844i 0.0225059 + 0.0389814i
\(839\) −0.413304 0.715864i −0.0142688 0.0247144i 0.858803 0.512306i \(-0.171209\pi\)
−0.873072 + 0.487592i \(0.837875\pi\)
\(840\) 0 0
\(841\) 2.14661 + 3.71803i 0.0740209 + 0.128208i
\(842\) 18.3093 31.7126i 0.630979 1.09289i
\(843\) −12.4123 −0.427504
\(844\) 10.2045 0.351253
\(845\) 0 0
\(846\) −17.4201 + 30.1725i −0.598914 + 1.03735i
\(847\) 20.7895 0.714337
\(848\) −0.470294 −0.0161500
\(849\) −0.252053 + 0.436569i −0.00865044 + 0.0149830i
\(850\) 0 0
\(851\) 4.55951 7.89730i 0.156298 0.270716i
\(852\) 0.200454 + 0.347197i 0.00686745 + 0.0118948i
\(853\) −3.67469 6.36475i −0.125819 0.217925i 0.796234 0.604989i \(-0.206823\pi\)
−0.922053 + 0.387064i \(0.873489\pi\)
\(854\) 19.0631 0.652327
\(855\) 0 0
\(856\) 3.07087 0.104960
\(857\) −22.6748 39.2739i −0.774556 1.34157i −0.935044 0.354532i \(-0.884640\pi\)
0.160488 0.987038i \(-0.448693\pi\)
\(858\) −0.0982968 0.170255i −0.00335580 0.00581241i
\(859\) −14.8143 + 25.6590i −0.505456 + 0.875475i 0.494524 + 0.869164i \(0.335342\pi\)
−0.999980 + 0.00631148i \(0.997991\pi\)
\(860\) 0 0
\(861\) 3.81771 6.61247i 0.130107 0.225352i
\(862\) 6.77775 0.230851
\(863\) −41.0807 −1.39840 −0.699201 0.714925i \(-0.746461\pi\)
−0.699201 + 0.714925i \(0.746461\pi\)
\(864\) −4.65090 + 8.05559i −0.158227 + 0.274057i
\(865\) 0 0
\(866\) −20.3632 −0.691970
\(867\) −5.40183 −0.183456
\(868\) −4.94382 + 8.56295i −0.167804 + 0.290645i
\(869\) 0.0986010 + 0.170782i 0.00334481 + 0.00579338i
\(870\) 0 0
\(871\) 5.18898 + 8.98758i 0.175822 + 0.304533i
\(872\) −24.9475 43.2104i −0.844831 1.46329i
\(873\) 49.8931 1.68863
\(874\) 12.4106 + 22.4903i 0.419794 + 0.760746i
\(875\) 0 0
\(876\) 0.957093 + 1.65773i 0.0323372 + 0.0560096i
\(877\) 27.3154 + 47.3116i 0.922374 + 1.59760i 0.795731 + 0.605650i \(0.207087\pi\)
0.126643 + 0.991948i \(0.459580\pi\)
\(878\) −0.124730 + 0.216039i −0.00420944 + 0.00729097i
\(879\) −1.46492 2.53732i −0.0494105 0.0855815i
\(880\) 0 0
\(881\) −15.4805 −0.521552 −0.260776 0.965399i \(-0.583978\pi\)
−0.260776 + 0.965399i \(0.583978\pi\)
\(882\) −10.7080 −0.360558
\(883\) −22.6747 + 39.2738i −0.763066 + 1.32167i 0.178197 + 0.983995i \(0.442973\pi\)
−0.941263 + 0.337674i \(0.890360\pi\)
\(884\) −2.32209 + 4.02198i −0.0781004 + 0.135274i
\(885\) 0 0
\(886\) −38.3913 −1.28978
\(887\) −15.5700 + 26.9680i −0.522788 + 0.905496i 0.476860 + 0.878979i \(0.341775\pi\)
−0.999648 + 0.0265165i \(0.991559\pi\)
\(888\) −0.988184 1.71158i −0.0331613 0.0574370i
\(889\) −17.7377 + 30.7227i −0.594905 + 1.03041i
\(890\) 0 0
\(891\) −0.519164 0.899218i −0.0173926 0.0301249i
\(892\) 16.2264 0.543301
\(893\) −48.4419 0.937963i −1.62105 0.0313877i
\(894\) 9.26438 0.309847
\(895\) 0 0
\(896\) −0.535663 0.927795i −0.0178952 0.0309955i
\(897\) −3.57867 + 6.19844i −0.119488 + 0.206960i
\(898\) −9.30127 16.1103i −0.310387 0.537606i
\(899\) −16.3153 + 28.2589i −0.544145 + 0.942486i
\(900\) 0 0
\(901\) 0.439972 0.0146576
\(902\) 0.784142 1.35817i 0.0261091 0.0452222i
\(903\) −3.05476 + 5.29100i −0.101656 + 0.176073i
\(904\) −2.58638 −0.0860218
\(905\) 0 0
\(906\) 0.694135 1.20228i 0.0230611 0.0399430i
\(907\) 21.7707 + 37.7080i 0.722886 + 1.25207i 0.959838 + 0.280554i \(0.0905181\pi\)
−0.236952 + 0.971521i \(0.576149\pi\)
\(908\) −10.1113 + 17.5134i −0.335557 + 0.581201i
\(909\) 7.70764 + 13.3500i 0.255646 + 0.442792i
\(910\) 0 0
\(911\) 5.72789 0.189774 0.0948868 0.995488i \(-0.469751\pi\)
0.0948868 + 0.995488i \(0.469751\pi\)
\(912\) 2.93556 + 0.0568401i 0.0972060 + 0.00188217i
\(913\) −1.00093 −0.0331258
\(914\) −0.879275 1.52295i −0.0290838 0.0503747i
\(915\) 0 0
\(916\) 0.881369 1.52658i 0.0291212 0.0504395i
\(917\) 2.73211 + 4.73216i 0.0902223 + 0.156270i
\(918\) −2.02493 + 3.50728i −0.0668327 + 0.115758i
\(919\) 7.93860 0.261870 0.130935 0.991391i \(-0.458202\pi\)
0.130935 + 0.991391i \(0.458202\pi\)
\(920\) 0 0
\(921\) −1.72597 + 2.98947i −0.0568728 + 0.0985065i
\(922\) −4.79669 + 8.30812i −0.157971 + 0.273613i
\(923\) −4.66747 −0.153632
\(924\) 0.0767887 0.00252616
\(925\) 0 0
\(926\) −11.6266 20.1378i −0.382073 0.661771i
\(927\) −3.06674 + 5.31174i −0.100725 + 0.174461i
\(928\) 10.4067 + 18.0250i 0.341618 + 0.591700i
\(929\) 14.4784 + 25.0772i 0.475019 + 0.822758i 0.999591 0.0286089i \(-0.00910773\pi\)
−0.524571 + 0.851366i \(0.675774\pi\)
\(930\) 0 0
\(931\) −7.19459 13.0380i −0.235793 0.427302i
\(932\) −11.2642 −0.368972
\(933\) 2.36265 + 4.09224i 0.0773498 + 0.133974i
\(934\) −11.2222 19.4374i −0.367201 0.636011i
\(935\) 0 0
\(936\) −15.3948 26.6645i −0.503193 0.871556i
\(937\) −7.34080 + 12.7146i −0.239813 + 0.415369i −0.960661 0.277725i \(-0.910420\pi\)
0.720847 + 0.693094i \(0.243753\pi\)
\(938\) 6.13606 0.200349
\(939\) −0.775939 −0.0253218
\(940\) 0 0
\(941\) 0.0773773 0.134021i 0.00252243 0.00436897i −0.864761 0.502183i \(-0.832530\pi\)
0.867284 + 0.497814i \(0.165864\pi\)
\(942\) 3.02352 0.0985114
\(943\) −57.0961 −1.85931
\(944\) −6.12326 + 10.6058i −0.199295 + 0.345189i
\(945\) 0 0
\(946\) −0.627435 + 1.08675i −0.0203997 + 0.0353332i
\(947\) −3.75904 6.51084i −0.122152 0.211574i 0.798464 0.602043i \(-0.205646\pi\)
−0.920616 + 0.390469i \(0.872313\pi\)
\(948\) −0.221419 0.383509i −0.00719135 0.0124558i
\(949\) −22.2854 −0.723415
\(950\) 0 0
\(951\) −8.94137 −0.289944
\(952\) 4.82420 + 8.35576i 0.156353 + 0.270812i
\(953\) 11.3372 + 19.6365i 0.367247 + 0.636090i 0.989134 0.147017i \(-0.0469671\pi\)
−0.621887 + 0.783107i \(0.713634\pi\)
\(954\) −0.415069 + 0.718920i −0.0134384 + 0.0232759i
\(955\) 0 0
\(956\) 1.19931 2.07727i 0.0387886 0.0671838i
\(957\) 0.253413 0.00819167
\(958\) −25.8437 −0.834973
\(959\) 17.8247 30.8733i 0.575590 0.996952i
\(960\) 0 0
\(961\) 12.0955 0.390177
\(962\) 6.54840 0.211129
\(963\) 1.42937 2.47575i 0.0460609 0.0797799i
\(964\) −9.45972 16.3847i −0.304677 0.527716i
\(965\) 0 0
\(966\) 2.11592 + 3.66488i 0.0680786 + 0.117916i
\(967\) 14.4172 + 24.9714i 0.463627 + 0.803025i 0.999138 0.0415030i \(-0.0132146\pi\)
−0.535512 + 0.844528i \(0.679881\pi\)
\(968\) −33.6929 −1.08293
\(969\) −2.74629 0.0531755i −0.0882236 0.00170824i
\(970\) 0 0
\(971\) −13.1831 22.8338i −0.423065 0.732770i 0.573173 0.819435i \(-0.305712\pi\)
−0.996238 + 0.0866647i \(0.972379\pi\)
\(972\) 3.81698 + 6.61120i 0.122430 + 0.212054i
\(973\) −17.2075 + 29.8043i −0.551647 + 0.955481i
\(974\) −19.7754 34.2520i −0.633645 1.09750i
\(975\) 0 0
\(976\) −16.2938 −0.521551
\(977\) −4.59218 −0.146917 −0.0734585 0.997298i \(-0.523404\pi\)
−0.0734585 + 0.997298i \(0.523404\pi\)
\(978\) 4.11681 7.13052i 0.131641 0.228009i
\(979\) −0.654264 + 1.13322i −0.0209104 + 0.0362178i
\(980\) 0 0
\(981\) −46.4486 −1.48299
\(982\) 11.0070 19.0647i 0.351248 0.608379i
\(983\) 3.45737 + 5.98833i 0.110273 + 0.190998i 0.915880 0.401452i \(-0.131494\pi\)
−0.805607 + 0.592450i \(0.798161\pi\)
\(984\) −6.18724 + 10.7166i −0.197242 + 0.341633i
\(985\) 0 0
\(986\) 4.53094 + 7.84781i 0.144294 + 0.249925i
\(987\) −7.98203 −0.254071
\(988\) 6.29609 10.4333i 0.200305 0.331929i
\(989\) 45.6857 1.45272
\(990\) 0 0
\(991\) 19.0035 + 32.9150i 0.603666 + 1.04558i 0.992261 + 0.124172i \(0.0396274\pi\)
−0.388594 + 0.921409i \(0.627039\pi\)
\(992\) 13.7443 23.8058i 0.436382 0.755835i
\(993\) 3.55009 + 6.14893i 0.112659 + 0.195130i
\(994\) −1.37984 + 2.38996i −0.0437659 + 0.0758048i
\(995\) 0 0
\(996\) 2.24768 0.0712205
\(997\) 8.11326 14.0526i 0.256950 0.445050i −0.708474 0.705737i \(-0.750616\pi\)
0.965423 + 0.260688i \(0.0839493\pi\)
\(998\) −20.2329 + 35.0443i −0.640460 + 1.10931i
\(999\) −3.77239 −0.119353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.e.e.26.3 8
5.2 odd 4 475.2.j.c.349.4 16
5.3 odd 4 475.2.j.c.349.5 16
5.4 even 2 95.2.e.c.26.2 yes 8
15.14 odd 2 855.2.k.h.406.3 8
19.7 even 3 9025.2.a.bg.1.2 4
19.11 even 3 inner 475.2.e.e.201.3 8
19.12 odd 6 9025.2.a.bp.1.3 4
20.19 odd 2 1520.2.q.o.881.2 8
95.49 even 6 95.2.e.c.11.2 8
95.64 even 6 1805.2.a.o.1.3 4
95.68 odd 12 475.2.j.c.49.4 16
95.69 odd 6 1805.2.a.i.1.2 4
95.87 odd 12 475.2.j.c.49.5 16
285.239 odd 6 855.2.k.h.676.3 8
380.239 odd 6 1520.2.q.o.961.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.c.11.2 8 95.49 even 6
95.2.e.c.26.2 yes 8 5.4 even 2
475.2.e.e.26.3 8 1.1 even 1 trivial
475.2.e.e.201.3 8 19.11 even 3 inner
475.2.j.c.49.4 16 95.68 odd 12
475.2.j.c.49.5 16 95.87 odd 12
475.2.j.c.349.4 16 5.2 odd 4
475.2.j.c.349.5 16 5.3 odd 4
855.2.k.h.406.3 8 15.14 odd 2
855.2.k.h.676.3 8 285.239 odd 6
1520.2.q.o.881.2 8 20.19 odd 2
1520.2.q.o.961.2 8 380.239 odd 6
1805.2.a.i.1.2 4 95.69 odd 6
1805.2.a.o.1.3 4 95.64 even 6
9025.2.a.bg.1.2 4 19.7 even 3
9025.2.a.bp.1.3 4 19.12 odd 6