Properties

Label 475.2.l.b
Level 475475
Weight 22
Character orbit 475.l
Analytic conductor 3.7933.793
Analytic rank 00
Dimension 1818
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(101,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 475=5219 475 = 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 475.l (of order 99, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.792894096013.79289409601
Analytic rank: 00
Dimension: 1818
Relative dimension: 33 over Q(ζ9)\Q(\zeta_{9})
Coefficient field: Q[x]/(x18+)\mathbb{Q}[x]/(x^{18} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x18+12x168x15+96x1475x13+448x12405x11+1521x10++361 x^{18} + 12 x^{16} - 8 x^{15} + 96 x^{14} - 75 x^{13} + 448 x^{12} - 405 x^{11} + 1521 x^{10} + \cdots + 361 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β171,\beta_1,\ldots,\beta_{17} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β14q2+(β15+β7++β4)q3+(β10β9++β2)q4+(β16+β15++β3)q6+(β17β16β14++1)q7++(β153β12+β10+1)q99+O(q100) q + \beta_{14} q^{2} + (\beta_{15} + \beta_{7} + \cdots + \beta_{4}) q^{3} + (\beta_{10} - \beta_{9} + \cdots + \beta_{2}) q^{4} + (\beta_{16} + \beta_{15} + \cdots + \beta_{3}) q^{6} + ( - \beta_{17} - \beta_{16} - \beta_{14} + \cdots + 1) q^{7}+ \cdots + (\beta_{15} - 3 \beta_{12} + \beta_{10} + \cdots - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q3q2+3q33q46q6+12q821q96q12+3q13+24q14+21q16+24q17+12q1812q19+3q2115q2221q23+21q2421q26++3q99+O(q100) 18 q - 3 q^{2} + 3 q^{3} - 3 q^{4} - 6 q^{6} + 12 q^{8} - 21 q^{9} - 6 q^{12} + 3 q^{13} + 24 q^{14} + 21 q^{16} + 24 q^{17} + 12 q^{18} - 12 q^{19} + 3 q^{21} - 15 q^{22} - 21 q^{23} + 21 q^{24} - 21 q^{26}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x18+12x168x15+96x1475x13+448x12405x11+1521x10++361 x^{18} + 12 x^{16} - 8 x^{15} + 96 x^{14} - 75 x^{13} + 448 x^{12} - 405 x^{11} + 1521 x^{10} + \cdots + 361 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (136164871502623ν17+12 ⁣ ⁣58)/23 ⁣ ⁣13 ( - 136164871502623 \nu^{17} + \cdots - 12\!\cdots\!58 ) / 23\!\cdots\!13 Copy content Toggle raw display
β3\beta_{3}== (305669388244104ν17+493873766181026ν16++47 ⁣ ⁣16)/78 ⁣ ⁣71 ( - 305669388244104 \nu^{17} + 493873766181026 \nu^{16} + \cdots + 47\!\cdots\!16 ) / 78\!\cdots\!71 Copy content Toggle raw display
β4\beta_{4}== (13 ⁣ ⁣19ν17++40 ⁣ ⁣81)/23 ⁣ ⁣13 ( - 13\!\cdots\!19 \nu^{17} + \cdots + 40\!\cdots\!81 ) / 23\!\cdots\!13 Copy content Toggle raw display
β5\beta_{5}== (13 ⁣ ⁣95ν17++49 ⁣ ⁣59)/23 ⁣ ⁣13 ( - 13\!\cdots\!95 \nu^{17} + \cdots + 49\!\cdots\!59 ) / 23\!\cdots\!13 Copy content Toggle raw display
β6\beta_{6}== (38 ⁣ ⁣82ν17++73 ⁣ ⁣88)/23 ⁣ ⁣13 ( - 38\!\cdots\!82 \nu^{17} + \cdots + 73\!\cdots\!88 ) / 23\!\cdots\!13 Copy content Toggle raw display
β7\beta_{7}== (13 ⁣ ⁣56ν17+305669388244104ν16+15 ⁣ ⁣37)/78 ⁣ ⁣71 ( 13\!\cdots\!56 \nu^{17} + 305669388244104 \nu^{16} + \cdots - 15\!\cdots\!37 ) / 78\!\cdots\!71 Copy content Toggle raw display
β8\beta_{8}== (42 ⁣ ⁣70ν17+79 ⁣ ⁣20)/23 ⁣ ⁣13 ( 42\!\cdots\!70 \nu^{17} + \cdots - 79\!\cdots\!20 ) / 23\!\cdots\!13 Copy content Toggle raw display
β9\beta_{9}== (116934812256397ν17400329673137974ν16+19 ⁣ ⁣38)/63 ⁣ ⁣49 ( - 116934812256397 \nu^{17} - 400329673137974 \nu^{16} + \cdots - 19\!\cdots\!38 ) / 63\!\cdots\!49 Copy content Toggle raw display
β10\beta_{10}== (47 ⁣ ⁣03ν17++52 ⁣ ⁣54)/23 ⁣ ⁣13 ( 47\!\cdots\!03 \nu^{17} + \cdots + 52\!\cdots\!54 ) / 23\!\cdots\!13 Copy content Toggle raw display
β11\beta_{11}== (61 ⁣ ⁣77ν17+828266836359098ν16++60 ⁣ ⁣85)/23 ⁣ ⁣13 ( - 61\!\cdots\!77 \nu^{17} + 828266836359098 \nu^{16} + \cdots + 60\!\cdots\!85 ) / 23\!\cdots\!13 Copy content Toggle raw display
β12\beta_{12}== (84 ⁣ ⁣25ν17+58 ⁣ ⁣05)/23 ⁣ ⁣13 ( 84\!\cdots\!25 \nu^{17} + \cdots - 58\!\cdots\!05 ) / 23\!\cdots\!13 Copy content Toggle raw display
β13\beta_{13}== (84 ⁣ ⁣44ν17+15 ⁣ ⁣70)/23 ⁣ ⁣13 ( 84\!\cdots\!44 \nu^{17} + \cdots - 15\!\cdots\!70 ) / 23\!\cdots\!13 Copy content Toggle raw display
β14\beta_{14}== (87 ⁣ ⁣64ν17++47 ⁣ ⁣08)/23 ⁣ ⁣13 ( - 87\!\cdots\!64 \nu^{17} + \cdots + 47\!\cdots\!08 ) / 23\!\cdots\!13 Copy content Toggle raw display
β15\beta_{15}== (92 ⁣ ⁣56ν17++30 ⁣ ⁣25)/23 ⁣ ⁣13 ( 92\!\cdots\!56 \nu^{17} + \cdots + 30\!\cdots\!25 ) / 23\!\cdots\!13 Copy content Toggle raw display
β16\beta_{16}== (316478299376213ν17588887179277519ν16+38 ⁣ ⁣43)/63 ⁣ ⁣49 ( 316478299376213 \nu^{17} - 588887179277519 \nu^{16} + \cdots - 38\!\cdots\!43 ) / 63\!\cdots\!49 Copy content Toggle raw display
β17\beta_{17}== (17 ⁣ ⁣19ν17+11 ⁣ ⁣95)/23 ⁣ ⁣13 ( 17\!\cdots\!19 \nu^{17} + \cdots - 11\!\cdots\!95 ) / 23\!\cdots\!13 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β16+3β7+β2 -\beta_{16} + 3\beta_{7} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β17β122β10+β9β43β32β23β1+1 \beta_{17} - \beta_{12} - 2\beta_{10} + \beta_{9} - \beta_{4} - 3\beta_{3} - 2\beta_{2} - 3\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β17+6β16+β14β13+2β12+6β11+6β10+12 - \beta_{17} + 6 \beta_{16} + \beta_{14} - \beta_{13} + 2 \beta_{12} + 6 \beta_{11} + 6 \beta_{10} + \cdots - 12 Copy content Toggle raw display
ν5\nu^{5}== 9β16β15β14β13β127β11+9β10++7 - 9 \beta_{16} - \beta_{15} - \beta_{14} - \beta_{13} - \beta_{12} - 7 \beta_{11} + 9 \beta_{10} + \cdots + 7 Copy content Toggle raw display
ν6\nu^{6}== 3β178β16+10β159β14+10β1312β1233β11++57 3 \beta_{17} - 8 \beta_{16} + 10 \beta_{15} - 9 \beta_{14} + 10 \beta_{13} - 12 \beta_{12} - 33 \beta_{11} + \cdots + 57 Copy content Toggle raw display
ν7\nu^{7}== 46β17+69β1610β15+22β1412β13+77β12+112 - 46 \beta_{17} + 69 \beta_{16} - 10 \beta_{15} + 22 \beta_{14} - 12 \beta_{13} + 77 \beta_{12} + \cdots - 112 Copy content Toggle raw display
ν8\nu^{8}== 52β17176β1663β1514β1414β1376β12++39 52 \beta_{17} - 176 \beta_{16} - 63 \beta_{15} - 14 \beta_{14} - 14 \beta_{13} - 76 \beta_{12} + \cdots + 39 Copy content Toggle raw display
ν9\nu^{9}== 252β1753β16+181β15105β14+181β13417β12++518 252 \beta_{17} - 53 \beta_{16} + 181 \beta_{15} - 105 \beta_{14} + 181 \beta_{13} - 417 \beta_{12} + \cdots + 518 Copy content Toggle raw display
ν10\nu^{10}== 682β17+1497β16133β15+550β14417β13+1349β12+2209 - 682 \beta_{17} + 1497 \beta_{16} - 133 \beta_{15} + 550 \beta_{14} - 417 \beta_{13} + 1349 \beta_{12} + \cdots - 2209 Copy content Toggle raw display
ν11\nu^{11}== 487β173061β16816β15533β14533β131081β12++1560 487 \beta_{17} - 3061 \beta_{16} - 816 \beta_{15} - 533 \beta_{14} - 533 \beta_{13} - 1081 \beta_{12} + \cdots + 1560 Copy content Toggle raw display
ν12\nu^{12}== 2804β172093β16+3829β152748β14+3829β135996β12++11782 2804 \beta_{17} - 2093 \beta_{16} + 3829 \beta_{15} - 2748 \beta_{14} + 3829 \beta_{13} - 5996 \beta_{12} + \cdots + 11782 Copy content Toggle raw display
ν13\nu^{13}== 13860β17+24807β163646β15+9642β145996β13+36433 - 13860 \beta_{17} + 24807 \beta_{16} - 3646 \beta_{15} + 9642 \beta_{14} - 5996 \beta_{13} + \cdots - 36433 Copy content Toggle raw display
ν14\nu^{14}== 13621β1754352β1618275β158140β148140β13++20828 13621 \beta_{17} - 54352 \beta_{16} - 18275 \beta_{15} - 8140 \beta_{14} - 8140 \beta_{13} + \cdots + 20828 Copy content Toggle raw display
ν15\nu^{15}== 65420β1728968β16+67593β1542795β14+67593β13++185488 65420 \beta_{17} - 28968 \beta_{16} + 67593 \beta_{15} - 42795 \beta_{14} + 67593 \beta_{13} + \cdots + 185488 Copy content Toggle raw display
ν16\nu^{16}== 239831β17+463488β1658869β15+181667β14122798β13+669036 - 239831 \beta_{17} + 463488 \beta_{16} - 58869 \beta_{15} + 181667 \beta_{14} - 122798 \beta_{13} + \cdots - 669036 Copy content Toggle raw display
ν17\nu^{17}== 208482β17982637β16300623β15168782β14168782β13++436673 208482 \beta_{17} - 982637 \beta_{16} - 300623 \beta_{15} - 168782 \beta_{14} - 168782 \beta_{13} + \cdots + 436673 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/475Z)×\left(\mathbb{Z}/475\mathbb{Z}\right)^\times.

nn 7777 401401
χ(n)\chi(n) 11 β4+β8\beta_{4} + \beta_{8}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
101.1
−0.908512 1.57359i
0.296923 + 0.514286i
0.785237 + 1.36007i
1.01081 1.75077i
0.597039 1.03410i
−0.841804 + 1.45805i
−1.31112 + 2.27092i
−0.359728 + 0.623068i
0.731154 1.26640i
1.01081 + 1.75077i
0.597039 + 1.03410i
−0.841804 1.45805i
−0.908512 + 1.57359i
0.296923 0.514286i
0.785237 1.36007i
−1.31112 2.27092i
−0.359728 0.623068i
0.731154 + 1.26640i
−1.39192 + 1.16796i 0.166424 + 0.0605732i 0.226016 1.28180i 0 −0.302396 + 0.110063i 0.536732 0.929646i −0.634528 1.09903i −2.27411 1.90820i 0
101.2 0.454913 0.381717i −1.81364 0.660111i −0.286059 + 1.62232i 0 −1.07702 + 0.392004i 0.530259 0.918436i 1.08298 + 1.87578i 0.555408 + 0.466042i 0
101.3 1.20305 1.00948i 2.14722 + 0.781523i 0.0809872 0.459301i 0 3.37214 1.22736i −2.00668 + 3.47568i 1.20425 + 2.08582i 1.70162 + 1.42783i 0
176.1 −1.89970 + 0.691434i 0.330026 1.87167i 1.59869 1.34146i 0 0.667187 + 3.78381i 1.54609 + 2.67790i −0.0878797 + 0.152212i −0.575162 0.209342i 0
176.2 −1.12207 + 0.408399i −0.394733 + 2.23864i −0.439845 + 0.369074i 0 −0.471342 2.67312i −1.09825 1.90222i 1.53688 2.66196i −2.03663 0.741274i 0
176.3 1.58207 0.575828i 0.564707 3.20261i 0.639290 0.536428i 0 −0.950745 5.39194i −0.274194 0.474919i −0.981094 + 1.69930i −7.11876 2.59101i 0
226.1 −0.455347 + 2.58240i 0.711484 + 0.597006i −4.58206 1.66773i 0 −1.86568 + 1.56549i −1.91579 3.31824i 3.77094 6.53146i −0.371151 2.10490i 0
226.2 −0.124932 + 0.708527i 0.945515 + 0.793382i 1.39298 + 0.507004i 0 −0.680257 + 0.570804i 0.645970 + 1.11885i −1.25271 + 2.16976i −0.256400 1.45411i 0
226.3 0.253927 1.44009i −1.15700 0.970838i −0.130002 0.0473169i 0 −1.69189 + 1.41966i 2.03586 + 3.52622i 1.36116 2.35759i −0.124823 0.707907i 0
251.1 −1.89970 0.691434i 0.330026 + 1.87167i 1.59869 + 1.34146i 0 0.667187 3.78381i 1.54609 2.67790i −0.0878797 0.152212i −0.575162 + 0.209342i 0
251.2 −1.12207 0.408399i −0.394733 2.23864i −0.439845 0.369074i 0 −0.471342 + 2.67312i −1.09825 + 1.90222i 1.53688 + 2.66196i −2.03663 + 0.741274i 0
251.3 1.58207 + 0.575828i 0.564707 + 3.20261i 0.639290 + 0.536428i 0 −0.950745 + 5.39194i −0.274194 + 0.474919i −0.981094 1.69930i −7.11876 + 2.59101i 0
301.1 −1.39192 1.16796i 0.166424 0.0605732i 0.226016 + 1.28180i 0 −0.302396 0.110063i 0.536732 + 0.929646i −0.634528 + 1.09903i −2.27411 + 1.90820i 0
301.2 0.454913 + 0.381717i −1.81364 + 0.660111i −0.286059 1.62232i 0 −1.07702 0.392004i 0.530259 + 0.918436i 1.08298 1.87578i 0.555408 0.466042i 0
301.3 1.20305 + 1.00948i 2.14722 0.781523i 0.0809872 + 0.459301i 0 3.37214 + 1.22736i −2.00668 3.47568i 1.20425 2.08582i 1.70162 1.42783i 0
351.1 −0.455347 2.58240i 0.711484 0.597006i −4.58206 + 1.66773i 0 −1.86568 1.56549i −1.91579 + 3.31824i 3.77094 + 6.53146i −0.371151 + 2.10490i 0
351.2 −0.124932 0.708527i 0.945515 0.793382i 1.39298 0.507004i 0 −0.680257 0.570804i 0.645970 1.11885i −1.25271 2.16976i −0.256400 + 1.45411i 0
351.3 0.253927 + 1.44009i −1.15700 + 0.970838i −0.130002 + 0.0473169i 0 −1.69189 1.41966i 2.03586 3.52622i 1.36116 + 2.35759i −0.124823 + 0.707907i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 101.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.l.b 18
5.b even 2 1 95.2.k.b 18
5.c odd 4 2 475.2.u.c 36
15.d odd 2 1 855.2.bs.b 18
19.e even 9 1 inner 475.2.l.b 18
19.e even 9 1 9025.2.a.ce 9
19.f odd 18 1 9025.2.a.cd 9
95.o odd 18 1 1805.2.a.u 9
95.p even 18 1 95.2.k.b 18
95.p even 18 1 1805.2.a.t 9
95.q odd 36 2 475.2.u.c 36
285.bd odd 18 1 855.2.bs.b 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.k.b 18 5.b even 2 1
95.2.k.b 18 95.p even 18 1
475.2.l.b 18 1.a even 1 1 trivial
475.2.l.b 18 19.e even 9 1 inner
475.2.u.c 36 5.c odd 4 2
475.2.u.c 36 95.q odd 36 2
855.2.bs.b 18 15.d odd 2 1
855.2.bs.b 18 285.bd odd 18 1
1805.2.a.t 9 95.p even 18 1
1805.2.a.u 9 95.o odd 18 1
9025.2.a.cd 9 19.f odd 18 1
9025.2.a.ce 9 19.e even 9 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T218+3T217+6T216+5T21515T21424T213+70T212++361 T_{2}^{18} + 3 T_{2}^{17} + 6 T_{2}^{16} + 5 T_{2}^{15} - 15 T_{2}^{14} - 24 T_{2}^{13} + 70 T_{2}^{12} + \cdots + 361 acting on S2new(475,[χ])S_{2}^{\mathrm{new}}(475, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T18+3T17++361 T^{18} + 3 T^{17} + \cdots + 361 Copy content Toggle raw display
33 T183T17++361 T^{18} - 3 T^{17} + \cdots + 361 Copy content Toggle raw display
55 T18 T^{18} Copy content Toggle raw display
77 T18+33T16++117649 T^{18} + 33 T^{16} + \cdots + 117649 Copy content Toggle raw display
1111 T18+36T16++361 T^{18} + 36 T^{16} + \cdots + 361 Copy content Toggle raw display
1313 T183T17++98743969 T^{18} - 3 T^{17} + \cdots + 98743969 Copy content Toggle raw display
1717 T1824T17++1 T^{18} - 24 T^{17} + \cdots + 1 Copy content Toggle raw display
1919 T18++322687697779 T^{18} + \cdots + 322687697779 Copy content Toggle raw display
2323 T18++3993860809 T^{18} + \cdots + 3993860809 Copy content Toggle raw display
2929 T18++492805404001 T^{18} + \cdots + 492805404001 Copy content Toggle raw display
3131 T18++993257404129 T^{18} + \cdots + 993257404129 Copy content Toggle raw display
3737 (T930T8+27721)2 (T^{9} - 30 T^{8} + \cdots - 27721)^{2} Copy content Toggle raw display
4141 T18++132479256529 T^{18} + \cdots + 132479256529 Copy content Toggle raw display
4343 T18++101989801 T^{18} + \cdots + 101989801 Copy content Toggle raw display
4747 T18++32737816559809 T^{18} + \cdots + 32737816559809 Copy content Toggle raw display
5353 T18++19250147475001 T^{18} + \cdots + 19250147475001 Copy content Toggle raw display
5959 T18++333749999521 T^{18} + \cdots + 333749999521 Copy content Toggle raw display
6161 T18++3468418292161 T^{18} + \cdots + 3468418292161 Copy content Toggle raw display
6767 T18++36 ⁣ ⁣81 T^{18} + \cdots + 36\!\cdots\!81 Copy content Toggle raw display
7171 T18++8590138489 T^{18} + \cdots + 8590138489 Copy content Toggle raw display
7373 T18++1047660743809 T^{18} + \cdots + 1047660743809 Copy content Toggle raw display
7979 T18++316957384070209 T^{18} + \cdots + 316957384070209 Copy content Toggle raw display
8383 T18+171T16++96609241 T^{18} + 171 T^{16} + \cdots + 96609241 Copy content Toggle raw display
8989 T18++143304841 T^{18} + \cdots + 143304841 Copy content Toggle raw display
9797 T18++36 ⁣ ⁣09 T^{18} + \cdots + 36\!\cdots\!09 Copy content Toggle raw display
show more
show less