Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(101,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 14]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.101");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 475.l (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 95) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
−1.39192 | + | 1.16796i | 0.166424 | + | 0.0605732i | 0.226016 | − | 1.28180i | 0 | −0.302396 | + | 0.110063i | 0.536732 | − | 0.929646i | −0.634528 | − | 1.09903i | −2.27411 | − | 1.90820i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101.2 | 0.454913 | − | 0.381717i | −1.81364 | − | 0.660111i | −0.286059 | + | 1.62232i | 0 | −1.07702 | + | 0.392004i | 0.530259 | − | 0.918436i | 1.08298 | + | 1.87578i | 0.555408 | + | 0.466042i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101.3 | 1.20305 | − | 1.00948i | 2.14722 | + | 0.781523i | 0.0809872 | − | 0.459301i | 0 | 3.37214 | − | 1.22736i | −2.00668 | + | 3.47568i | 1.20425 | + | 2.08582i | 1.70162 | + | 1.42783i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
176.1 | −1.89970 | + | 0.691434i | 0.330026 | − | 1.87167i | 1.59869 | − | 1.34146i | 0 | 0.667187 | + | 3.78381i | 1.54609 | + | 2.67790i | −0.0878797 | + | 0.152212i | −0.575162 | − | 0.209342i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
176.2 | −1.12207 | + | 0.408399i | −0.394733 | + | 2.23864i | −0.439845 | + | 0.369074i | 0 | −0.471342 | − | 2.67312i | −1.09825 | − | 1.90222i | 1.53688 | − | 2.66196i | −2.03663 | − | 0.741274i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
176.3 | 1.58207 | − | 0.575828i | 0.564707 | − | 3.20261i | 0.639290 | − | 0.536428i | 0 | −0.950745 | − | 5.39194i | −0.274194 | − | 0.474919i | −0.981094 | + | 1.69930i | −7.11876 | − | 2.59101i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.1 | −0.455347 | + | 2.58240i | 0.711484 | + | 0.597006i | −4.58206 | − | 1.66773i | 0 | −1.86568 | + | 1.56549i | −1.91579 | − | 3.31824i | 3.77094 | − | 6.53146i | −0.371151 | − | 2.10490i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.2 | −0.124932 | + | 0.708527i | 0.945515 | + | 0.793382i | 1.39298 | + | 0.507004i | 0 | −0.680257 | + | 0.570804i | 0.645970 | + | 1.11885i | −1.25271 | + | 2.16976i | −0.256400 | − | 1.45411i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
226.3 | 0.253927 | − | 1.44009i | −1.15700 | − | 0.970838i | −0.130002 | − | 0.0473169i | 0 | −1.69189 | + | 1.41966i | 2.03586 | + | 3.52622i | 1.36116 | − | 2.35759i | −0.124823 | − | 0.707907i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.1 | −1.89970 | − | 0.691434i | 0.330026 | + | 1.87167i | 1.59869 | + | 1.34146i | 0 | 0.667187 | − | 3.78381i | 1.54609 | − | 2.67790i | −0.0878797 | − | 0.152212i | −0.575162 | + | 0.209342i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.2 | −1.12207 | − | 0.408399i | −0.394733 | − | 2.23864i | −0.439845 | − | 0.369074i | 0 | −0.471342 | + | 2.67312i | −1.09825 | + | 1.90222i | 1.53688 | + | 2.66196i | −2.03663 | + | 0.741274i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
251.3 | 1.58207 | + | 0.575828i | 0.564707 | + | 3.20261i | 0.639290 | + | 0.536428i | 0 | −0.950745 | + | 5.39194i | −0.274194 | + | 0.474919i | −0.981094 | − | 1.69930i | −7.11876 | + | 2.59101i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.1 | −1.39192 | − | 1.16796i | 0.166424 | − | 0.0605732i | 0.226016 | + | 1.28180i | 0 | −0.302396 | − | 0.110063i | 0.536732 | + | 0.929646i | −0.634528 | + | 1.09903i | −2.27411 | + | 1.90820i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.2 | 0.454913 | + | 0.381717i | −1.81364 | + | 0.660111i | −0.286059 | − | 1.62232i | 0 | −1.07702 | − | 0.392004i | 0.530259 | + | 0.918436i | 1.08298 | − | 1.87578i | 0.555408 | − | 0.466042i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
301.3 | 1.20305 | + | 1.00948i | 2.14722 | − | 0.781523i | 0.0809872 | + | 0.459301i | 0 | 3.37214 | + | 1.22736i | −2.00668 | − | 3.47568i | 1.20425 | − | 2.08582i | 1.70162 | − | 1.42783i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351.1 | −0.455347 | − | 2.58240i | 0.711484 | − | 0.597006i | −4.58206 | + | 1.66773i | 0 | −1.86568 | − | 1.56549i | −1.91579 | + | 3.31824i | 3.77094 | + | 6.53146i | −0.371151 | + | 2.10490i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351.2 | −0.124932 | − | 0.708527i | 0.945515 | − | 0.793382i | 1.39298 | − | 0.507004i | 0 | −0.680257 | − | 0.570804i | 0.645970 | − | 1.11885i | −1.25271 | − | 2.16976i | −0.256400 | + | 1.45411i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
351.3 | 0.253927 | + | 1.44009i | −1.15700 | + | 0.970838i | −0.130002 | + | 0.0473169i | 0 | −1.69189 | − | 1.41966i | 2.03586 | − | 3.52622i | 1.36116 | + | 2.35759i | −0.124823 | + | 0.707907i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.l.b | 18 | |
5.b | even | 2 | 1 | 95.2.k.b | ✓ | 18 | |
5.c | odd | 4 | 2 | 475.2.u.c | 36 | ||
15.d | odd | 2 | 1 | 855.2.bs.b | 18 | ||
19.e | even | 9 | 1 | inner | 475.2.l.b | 18 | |
19.e | even | 9 | 1 | 9025.2.a.ce | 9 | ||
19.f | odd | 18 | 1 | 9025.2.a.cd | 9 | ||
95.o | odd | 18 | 1 | 1805.2.a.u | 9 | ||
95.p | even | 18 | 1 | 95.2.k.b | ✓ | 18 | |
95.p | even | 18 | 1 | 1805.2.a.t | 9 | ||
95.q | odd | 36 | 2 | 475.2.u.c | 36 | ||
285.bd | odd | 18 | 1 | 855.2.bs.b | 18 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.k.b | ✓ | 18 | 5.b | even | 2 | 1 | |
95.2.k.b | ✓ | 18 | 95.p | even | 18 | 1 | |
475.2.l.b | 18 | 1.a | even | 1 | 1 | trivial | |
475.2.l.b | 18 | 19.e | even | 9 | 1 | inner | |
475.2.u.c | 36 | 5.c | odd | 4 | 2 | ||
475.2.u.c | 36 | 95.q | odd | 36 | 2 | ||
855.2.bs.b | 18 | 15.d | odd | 2 | 1 | ||
855.2.bs.b | 18 | 285.bd | odd | 18 | 1 | ||
1805.2.a.t | 9 | 95.p | even | 18 | 1 | ||
1805.2.a.u | 9 | 95.o | odd | 18 | 1 | ||
9025.2.a.cd | 9 | 19.f | odd | 18 | 1 | ||
9025.2.a.ce | 9 | 19.e | even | 9 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .