Properties

Label 475.4.b.e.324.2
Level $475$
Weight $4$
Character 475.324
Analytic conductor $28.026$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,4,Mod(324,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.324");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0259072527\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 475.324
Dual form 475.4.b.e.324.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{3} +8.00000 q^{4} +22.0000i q^{7} +11.0000 q^{9} -12.0000 q^{11} +32.0000i q^{12} +8.00000i q^{13} +64.0000 q^{16} +66.0000i q^{17} -19.0000 q^{19} -88.0000 q^{21} -30.0000i q^{23} +152.000i q^{27} +176.000i q^{28} +6.00000 q^{29} -64.0000 q^{31} -48.0000i q^{33} +88.0000 q^{36} +16.0000i q^{37} -32.0000 q^{39} +54.0000 q^{41} +182.000i q^{43} -96.0000 q^{44} -594.000i q^{47} +256.000i q^{48} -141.000 q^{49} -264.000 q^{51} +64.0000i q^{52} +396.000i q^{53} -76.0000i q^{57} +564.000 q^{59} -706.000 q^{61} +242.000i q^{63} +512.000 q^{64} +628.000i q^{67} +528.000i q^{68} +120.000 q^{69} -984.000 q^{71} +14.0000i q^{73} -152.000 q^{76} -264.000i q^{77} +328.000 q^{79} -311.000 q^{81} -294.000i q^{83} -704.000 q^{84} +24.0000i q^{87} -918.000 q^{89} -176.000 q^{91} -240.000i q^{92} -256.000i q^{93} +1564.00i q^{97} -132.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{4} + 22 q^{9} - 24 q^{11} + 128 q^{16} - 38 q^{19} - 176 q^{21} + 12 q^{29} - 128 q^{31} + 176 q^{36} - 64 q^{39} + 108 q^{41} - 192 q^{44} - 282 q^{49} - 528 q^{51} + 1128 q^{59} - 1412 q^{61}+ \cdots - 264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) 4.00000i 0.769800i 0.922958 + 0.384900i \(0.125764\pi\)
−0.922958 + 0.384900i \(0.874236\pi\)
\(4\) 8.00000 1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 22.0000i 1.18789i 0.804506 + 0.593944i \(0.202430\pi\)
−0.804506 + 0.593944i \(0.797570\pi\)
\(8\) 0 0
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) −12.0000 −0.328921 −0.164461 0.986384i \(-0.552588\pi\)
−0.164461 + 0.986384i \(0.552588\pi\)
\(12\) 32.0000i 0.769800i
\(13\) 8.00000i 0.170677i 0.996352 + 0.0853385i \(0.0271972\pi\)
−0.996352 + 0.0853385i \(0.972803\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) 66.0000i 0.941609i 0.882238 + 0.470804i \(0.156036\pi\)
−0.882238 + 0.470804i \(0.843964\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −88.0000 −0.914437
\(22\) 0 0
\(23\) − 30.0000i − 0.271975i −0.990711 0.135988i \(-0.956579\pi\)
0.990711 0.135988i \(-0.0434208\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 152.000i 1.08342i
\(28\) 176.000i 1.18789i
\(29\) 6.00000 0.0384197 0.0192099 0.999815i \(-0.493885\pi\)
0.0192099 + 0.999815i \(0.493885\pi\)
\(30\) 0 0
\(31\) −64.0000 −0.370798 −0.185399 0.982663i \(-0.559358\pi\)
−0.185399 + 0.982663i \(0.559358\pi\)
\(32\) 0 0
\(33\) − 48.0000i − 0.253204i
\(34\) 0 0
\(35\) 0 0
\(36\) 88.0000 0.407407
\(37\) 16.0000i 0.0710915i 0.999368 + 0.0355457i \(0.0113169\pi\)
−0.999368 + 0.0355457i \(0.988683\pi\)
\(38\) 0 0
\(39\) −32.0000 −0.131387
\(40\) 0 0
\(41\) 54.0000 0.205692 0.102846 0.994697i \(-0.467205\pi\)
0.102846 + 0.994697i \(0.467205\pi\)
\(42\) 0 0
\(43\) 182.000i 0.645459i 0.946491 + 0.322730i \(0.104600\pi\)
−0.946491 + 0.322730i \(0.895400\pi\)
\(44\) −96.0000 −0.328921
\(45\) 0 0
\(46\) 0 0
\(47\) − 594.000i − 1.84349i −0.387802 0.921743i \(-0.626766\pi\)
0.387802 0.921743i \(-0.373234\pi\)
\(48\) 256.000i 0.769800i
\(49\) −141.000 −0.411079
\(50\) 0 0
\(51\) −264.000 −0.724851
\(52\) 64.0000i 0.170677i
\(53\) 396.000i 1.02632i 0.858294 + 0.513158i \(0.171525\pi\)
−0.858294 + 0.513158i \(0.828475\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 76.0000i − 0.176604i
\(58\) 0 0
\(59\) 564.000 1.24452 0.622259 0.782812i \(-0.286215\pi\)
0.622259 + 0.782812i \(0.286215\pi\)
\(60\) 0 0
\(61\) −706.000 −1.48187 −0.740935 0.671577i \(-0.765617\pi\)
−0.740935 + 0.671577i \(0.765617\pi\)
\(62\) 0 0
\(63\) 242.000i 0.483955i
\(64\) 512.000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 628.000i 1.14511i 0.819866 + 0.572555i \(0.194048\pi\)
−0.819866 + 0.572555i \(0.805952\pi\)
\(68\) 528.000i 0.941609i
\(69\) 120.000 0.209367
\(70\) 0 0
\(71\) −984.000 −1.64478 −0.822390 0.568925i \(-0.807360\pi\)
−0.822390 + 0.568925i \(0.807360\pi\)
\(72\) 0 0
\(73\) 14.0000i 0.0224462i 0.999937 + 0.0112231i \(0.00357251\pi\)
−0.999937 + 0.0112231i \(0.996427\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −152.000 −0.229416
\(77\) − 264.000i − 0.390722i
\(78\) 0 0
\(79\) 328.000 0.467125 0.233563 0.972342i \(-0.424962\pi\)
0.233563 + 0.972342i \(0.424962\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) − 294.000i − 0.388804i −0.980922 0.194402i \(-0.937723\pi\)
0.980922 0.194402i \(-0.0622765\pi\)
\(84\) −704.000 −0.914437
\(85\) 0 0
\(86\) 0 0
\(87\) 24.0000i 0.0295755i
\(88\) 0 0
\(89\) −918.000 −1.09335 −0.546673 0.837346i \(-0.684106\pi\)
−0.546673 + 0.837346i \(0.684106\pi\)
\(90\) 0 0
\(91\) −176.000 −0.202745
\(92\) − 240.000i − 0.271975i
\(93\) − 256.000i − 0.285440i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1564.00i 1.63711i 0.574425 + 0.818557i \(0.305226\pi\)
−0.574425 + 0.818557i \(0.694774\pi\)
\(98\) 0 0
\(99\) −132.000 −0.134005
\(100\) 0 0
\(101\) −294.000 −0.289644 −0.144822 0.989458i \(-0.546261\pi\)
−0.144822 + 0.989458i \(0.546261\pi\)
\(102\) 0 0
\(103\) 752.000i 0.719386i 0.933071 + 0.359693i \(0.117119\pi\)
−0.933071 + 0.359693i \(0.882881\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 216.000i 0.195154i 0.995228 + 0.0975771i \(0.0311093\pi\)
−0.995228 + 0.0975771i \(0.968891\pi\)
\(108\) 1216.00i 1.08342i
\(109\) 754.000 0.662570 0.331285 0.943531i \(-0.392518\pi\)
0.331285 + 0.943531i \(0.392518\pi\)
\(110\) 0 0
\(111\) −64.0000 −0.0547262
\(112\) 1408.00i 1.18789i
\(113\) − 12.0000i − 0.00998996i −0.999988 0.00499498i \(-0.998410\pi\)
0.999988 0.00499498i \(-0.00158996\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 48.0000 0.0384197
\(117\) 88.0000i 0.0695351i
\(118\) 0 0
\(119\) −1452.00 −1.11853
\(120\) 0 0
\(121\) −1187.00 −0.891811
\(122\) 0 0
\(123\) 216.000i 0.158342i
\(124\) −512.000 −0.370798
\(125\) 0 0
\(126\) 0 0
\(127\) − 344.000i − 0.240355i −0.992752 0.120177i \(-0.961654\pi\)
0.992752 0.120177i \(-0.0383463\pi\)
\(128\) 0 0
\(129\) −728.000 −0.496875
\(130\) 0 0
\(131\) 2520.00 1.68071 0.840357 0.542034i \(-0.182346\pi\)
0.840357 + 0.542034i \(0.182346\pi\)
\(132\) − 384.000i − 0.253204i
\(133\) − 418.000i − 0.272520i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 654.000i − 0.407847i −0.978987 0.203923i \(-0.934631\pi\)
0.978987 0.203923i \(-0.0653693\pi\)
\(138\) 0 0
\(139\) 2392.00 1.45962 0.729809 0.683652i \(-0.239609\pi\)
0.729809 + 0.683652i \(0.239609\pi\)
\(140\) 0 0
\(141\) 2376.00 1.41912
\(142\) 0 0
\(143\) − 96.0000i − 0.0561393i
\(144\) 704.000 0.407407
\(145\) 0 0
\(146\) 0 0
\(147\) − 564.000i − 0.316449i
\(148\) 128.000i 0.0710915i
\(149\) 1266.00 0.696072 0.348036 0.937481i \(-0.386849\pi\)
0.348036 + 0.937481i \(0.386849\pi\)
\(150\) 0 0
\(151\) 3080.00 1.65991 0.829956 0.557828i \(-0.188365\pi\)
0.829956 + 0.557828i \(0.188365\pi\)
\(152\) 0 0
\(153\) 726.000i 0.383618i
\(154\) 0 0
\(155\) 0 0
\(156\) −256.000 −0.131387
\(157\) − 1838.00i − 0.934321i −0.884173 0.467160i \(-0.845277\pi\)
0.884173 0.467160i \(-0.154723\pi\)
\(158\) 0 0
\(159\) −1584.00 −0.790059
\(160\) 0 0
\(161\) 660.000 0.323076
\(162\) 0 0
\(163\) − 850.000i − 0.408449i −0.978924 0.204224i \(-0.934533\pi\)
0.978924 0.204224i \(-0.0654672\pi\)
\(164\) 432.000 0.205692
\(165\) 0 0
\(166\) 0 0
\(167\) − 3804.00i − 1.76265i −0.472512 0.881324i \(-0.656653\pi\)
0.472512 0.881324i \(-0.343347\pi\)
\(168\) 0 0
\(169\) 2133.00 0.970869
\(170\) 0 0
\(171\) −209.000 −0.0934657
\(172\) 1456.00i 0.645459i
\(173\) − 564.000i − 0.247862i −0.992291 0.123931i \(-0.960450\pi\)
0.992291 0.123931i \(-0.0395501\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −768.000 −0.328921
\(177\) 2256.00i 0.958030i
\(178\) 0 0
\(179\) 1812.00 0.756621 0.378311 0.925679i \(-0.376505\pi\)
0.378311 + 0.925679i \(0.376505\pi\)
\(180\) 0 0
\(181\) −4498.00 −1.84715 −0.923574 0.383421i \(-0.874746\pi\)
−0.923574 + 0.383421i \(0.874746\pi\)
\(182\) 0 0
\(183\) − 2824.00i − 1.14074i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 792.000i − 0.309715i
\(188\) − 4752.00i − 1.84349i
\(189\) −3344.00 −1.28699
\(190\) 0 0
\(191\) 3588.00 1.35926 0.679630 0.733555i \(-0.262140\pi\)
0.679630 + 0.733555i \(0.262140\pi\)
\(192\) 2048.00i 0.769800i
\(193\) − 4492.00i − 1.67534i −0.546174 0.837672i \(-0.683916\pi\)
0.546174 0.837672i \(-0.316084\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −1128.00 −0.411079
\(197\) − 2466.00i − 0.891854i −0.895069 0.445927i \(-0.852874\pi\)
0.895069 0.445927i \(-0.147126\pi\)
\(198\) 0 0
\(199\) −824.000 −0.293527 −0.146763 0.989172i \(-0.546886\pi\)
−0.146763 + 0.989172i \(0.546886\pi\)
\(200\) 0 0
\(201\) −2512.00 −0.881507
\(202\) 0 0
\(203\) 132.000i 0.0456383i
\(204\) −2112.00 −0.724851
\(205\) 0 0
\(206\) 0 0
\(207\) − 330.000i − 0.110805i
\(208\) 512.000i 0.170677i
\(209\) 228.000 0.0754598
\(210\) 0 0
\(211\) 4244.00 1.38469 0.692344 0.721568i \(-0.256578\pi\)
0.692344 + 0.721568i \(0.256578\pi\)
\(212\) 3168.00i 1.02632i
\(213\) − 3936.00i − 1.26615i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1408.00i − 0.440467i
\(218\) 0 0
\(219\) −56.0000 −0.0172791
\(220\) 0 0
\(221\) −528.000 −0.160711
\(222\) 0 0
\(223\) 5480.00i 1.64560i 0.568334 + 0.822798i \(0.307588\pi\)
−0.568334 + 0.822798i \(0.692412\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 5544.00i − 1.62101i −0.585735 0.810503i \(-0.699194\pi\)
0.585735 0.810503i \(-0.300806\pi\)
\(228\) − 608.000i − 0.176604i
\(229\) −2930.00 −0.845502 −0.422751 0.906246i \(-0.638935\pi\)
−0.422751 + 0.906246i \(0.638935\pi\)
\(230\) 0 0
\(231\) 1056.00 0.300778
\(232\) 0 0
\(233\) − 4398.00i − 1.23658i −0.785951 0.618289i \(-0.787826\pi\)
0.785951 0.618289i \(-0.212174\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4512.00 1.24452
\(237\) 1312.00i 0.359593i
\(238\) 0 0
\(239\) 6480.00 1.75379 0.876896 0.480680i \(-0.159610\pi\)
0.876896 + 0.480680i \(0.159610\pi\)
\(240\) 0 0
\(241\) −5770.00 −1.54223 −0.771117 0.636694i \(-0.780302\pi\)
−0.771117 + 0.636694i \(0.780302\pi\)
\(242\) 0 0
\(243\) 2860.00i 0.755017i
\(244\) −5648.00 −1.48187
\(245\) 0 0
\(246\) 0 0
\(247\) − 152.000i − 0.0391560i
\(248\) 0 0
\(249\) 1176.00 0.299301
\(250\) 0 0
\(251\) −624.000 −0.156918 −0.0784592 0.996917i \(-0.525000\pi\)
−0.0784592 + 0.996917i \(0.525000\pi\)
\(252\) 1936.00i 0.483955i
\(253\) 360.000i 0.0894585i
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) − 120.000i − 0.0291260i −0.999894 0.0145630i \(-0.995364\pi\)
0.999894 0.0145630i \(-0.00463572\pi\)
\(258\) 0 0
\(259\) −352.000 −0.0844487
\(260\) 0 0
\(261\) 66.0000 0.0156525
\(262\) 0 0
\(263\) 1842.00i 0.431873i 0.976407 + 0.215936i \(0.0692804\pi\)
−0.976407 + 0.215936i \(0.930720\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3672.00i − 0.841658i
\(268\) 5024.00i 1.14511i
\(269\) 3234.00 0.733013 0.366506 0.930416i \(-0.380554\pi\)
0.366506 + 0.930416i \(0.380554\pi\)
\(270\) 0 0
\(271\) 4664.00 1.04545 0.522727 0.852500i \(-0.324915\pi\)
0.522727 + 0.852500i \(0.324915\pi\)
\(272\) 4224.00i 0.941609i
\(273\) − 704.000i − 0.156073i
\(274\) 0 0
\(275\) 0 0
\(276\) 960.000 0.209367
\(277\) − 5222.00i − 1.13271i −0.824163 0.566353i \(-0.808354\pi\)
0.824163 0.566353i \(-0.191646\pi\)
\(278\) 0 0
\(279\) −704.000 −0.151066
\(280\) 0 0
\(281\) 7566.00 1.60623 0.803113 0.595826i \(-0.203175\pi\)
0.803113 + 0.595826i \(0.203175\pi\)
\(282\) 0 0
\(283\) − 5614.00i − 1.17921i −0.807690 0.589607i \(-0.799283\pi\)
0.807690 0.589607i \(-0.200717\pi\)
\(284\) −7872.00 −1.64478
\(285\) 0 0
\(286\) 0 0
\(287\) 1188.00i 0.244339i
\(288\) 0 0
\(289\) 557.000 0.113373
\(290\) 0 0
\(291\) −6256.00 −1.26025
\(292\) 112.000i 0.0224462i
\(293\) 924.000i 0.184234i 0.995748 + 0.0921172i \(0.0293634\pi\)
−0.995748 + 0.0921172i \(0.970637\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1824.00i − 0.356361i
\(298\) 0 0
\(299\) 240.000 0.0464199
\(300\) 0 0
\(301\) −4004.00 −0.766733
\(302\) 0 0
\(303\) − 1176.00i − 0.222968i
\(304\) −1216.00 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 4480.00i 0.832857i 0.909168 + 0.416429i \(0.136718\pi\)
−0.909168 + 0.416429i \(0.863282\pi\)
\(308\) − 2112.00i − 0.390722i
\(309\) −3008.00 −0.553784
\(310\) 0 0
\(311\) 1272.00 0.231924 0.115962 0.993254i \(-0.463005\pi\)
0.115962 + 0.993254i \(0.463005\pi\)
\(312\) 0 0
\(313\) 1370.00i 0.247402i 0.992320 + 0.123701i \(0.0394764\pi\)
−0.992320 + 0.123701i \(0.960524\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2624.00 0.467125
\(317\) − 3552.00i − 0.629338i −0.949201 0.314669i \(-0.898106\pi\)
0.949201 0.314669i \(-0.101894\pi\)
\(318\) 0 0
\(319\) −72.0000 −0.0126371
\(320\) 0 0
\(321\) −864.000 −0.150230
\(322\) 0 0
\(323\) − 1254.00i − 0.216020i
\(324\) −2488.00 −0.426612
\(325\) 0 0
\(326\) 0 0
\(327\) 3016.00i 0.510046i
\(328\) 0 0
\(329\) 13068.0 2.18985
\(330\) 0 0
\(331\) 4532.00 0.752572 0.376286 0.926504i \(-0.377201\pi\)
0.376286 + 0.926504i \(0.377201\pi\)
\(332\) − 2352.00i − 0.388804i
\(333\) 176.000i 0.0289632i
\(334\) 0 0
\(335\) 0 0
\(336\) −5632.00 −0.914437
\(337\) 10036.0i 1.62224i 0.584878 + 0.811121i \(0.301142\pi\)
−0.584878 + 0.811121i \(0.698858\pi\)
\(338\) 0 0
\(339\) 48.0000 0.00769027
\(340\) 0 0
\(341\) 768.000 0.121963
\(342\) 0 0
\(343\) 4444.00i 0.699573i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2178.00i 0.336949i 0.985706 + 0.168474i \(0.0538840\pi\)
−0.985706 + 0.168474i \(0.946116\pi\)
\(348\) 192.000i 0.0295755i
\(349\) 10042.0 1.54022 0.770109 0.637913i \(-0.220202\pi\)
0.770109 + 0.637913i \(0.220202\pi\)
\(350\) 0 0
\(351\) −1216.00 −0.184915
\(352\) 0 0
\(353\) 6102.00i 0.920047i 0.887907 + 0.460024i \(0.152159\pi\)
−0.887907 + 0.460024i \(0.847841\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7344.00 −1.09335
\(357\) − 5808.00i − 0.861042i
\(358\) 0 0
\(359\) 1140.00 0.167596 0.0837979 0.996483i \(-0.473295\pi\)
0.0837979 + 0.996483i \(0.473295\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) − 4748.00i − 0.686516i
\(364\) −1408.00 −0.202745
\(365\) 0 0
\(366\) 0 0
\(367\) 5614.00i 0.798497i 0.916843 + 0.399249i \(0.130729\pi\)
−0.916843 + 0.399249i \(0.869271\pi\)
\(368\) − 1920.00i − 0.271975i
\(369\) 594.000 0.0838006
\(370\) 0 0
\(371\) −8712.00 −1.21915
\(372\) − 2048.00i − 0.285440i
\(373\) − 3652.00i − 0.506953i −0.967342 0.253476i \(-0.918426\pi\)
0.967342 0.253476i \(-0.0815740\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 48.0000i 0.00655736i
\(378\) 0 0
\(379\) 316.000 0.0428280 0.0214140 0.999771i \(-0.493183\pi\)
0.0214140 + 0.999771i \(0.493183\pi\)
\(380\) 0 0
\(381\) 1376.00 0.185025
\(382\) 0 0
\(383\) − 8844.00i − 1.17991i −0.807434 0.589957i \(-0.799145\pi\)
0.807434 0.589957i \(-0.200855\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2002.00i 0.262965i
\(388\) 12512.0i 1.63711i
\(389\) 7230.00 0.942354 0.471177 0.882039i \(-0.343829\pi\)
0.471177 + 0.882039i \(0.343829\pi\)
\(390\) 0 0
\(391\) 1980.00 0.256094
\(392\) 0 0
\(393\) 10080.0i 1.29381i
\(394\) 0 0
\(395\) 0 0
\(396\) −1056.00 −0.134005
\(397\) − 3446.00i − 0.435642i −0.975989 0.217821i \(-0.930105\pi\)
0.975989 0.217821i \(-0.0698949\pi\)
\(398\) 0 0
\(399\) 1672.00 0.209786
\(400\) 0 0
\(401\) −14478.0 −1.80298 −0.901492 0.432795i \(-0.857527\pi\)
−0.901492 + 0.432795i \(0.857527\pi\)
\(402\) 0 0
\(403\) − 512.000i − 0.0632867i
\(404\) −2352.00 −0.289644
\(405\) 0 0
\(406\) 0 0
\(407\) − 192.000i − 0.0233835i
\(408\) 0 0
\(409\) −9074.00 −1.09702 −0.548509 0.836145i \(-0.684804\pi\)
−0.548509 + 0.836145i \(0.684804\pi\)
\(410\) 0 0
\(411\) 2616.00 0.313960
\(412\) 6016.00i 0.719386i
\(413\) 12408.0i 1.47835i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 9568.00i 1.12361i
\(418\) 0 0
\(419\) 7068.00 0.824092 0.412046 0.911163i \(-0.364814\pi\)
0.412046 + 0.911163i \(0.364814\pi\)
\(420\) 0 0
\(421\) −7342.00 −0.849946 −0.424973 0.905206i \(-0.639716\pi\)
−0.424973 + 0.905206i \(0.639716\pi\)
\(422\) 0 0
\(423\) − 6534.00i − 0.751050i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 15532.0i − 1.76030i
\(428\) 1728.00i 0.195154i
\(429\) 384.000 0.0432161
\(430\) 0 0
\(431\) 2976.00 0.332596 0.166298 0.986076i \(-0.446819\pi\)
0.166298 + 0.986076i \(0.446819\pi\)
\(432\) 9728.00i 1.08342i
\(433\) 3476.00i 0.385787i 0.981220 + 0.192894i \(0.0617872\pi\)
−0.981220 + 0.192894i \(0.938213\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6032.00 0.662570
\(437\) 570.000i 0.0623954i
\(438\) 0 0
\(439\) −6200.00 −0.674054 −0.337027 0.941495i \(-0.609421\pi\)
−0.337027 + 0.941495i \(0.609421\pi\)
\(440\) 0 0
\(441\) −1551.00 −0.167477
\(442\) 0 0
\(443\) 16026.0i 1.71878i 0.511323 + 0.859389i \(0.329156\pi\)
−0.511323 + 0.859389i \(0.670844\pi\)
\(444\) −512.000 −0.0547262
\(445\) 0 0
\(446\) 0 0
\(447\) 5064.00i 0.535837i
\(448\) 11264.0i 1.18789i
\(449\) 1830.00 0.192345 0.0961726 0.995365i \(-0.469340\pi\)
0.0961726 + 0.995365i \(0.469340\pi\)
\(450\) 0 0
\(451\) −648.000 −0.0676566
\(452\) − 96.0000i − 0.00998996i
\(453\) 12320.0i 1.27780i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 12986.0i − 1.32923i −0.747185 0.664616i \(-0.768595\pi\)
0.747185 0.664616i \(-0.231405\pi\)
\(458\) 0 0
\(459\) −10032.0 −1.02016
\(460\) 0 0
\(461\) −10506.0 −1.06142 −0.530708 0.847554i \(-0.678074\pi\)
−0.530708 + 0.847554i \(0.678074\pi\)
\(462\) 0 0
\(463\) 1562.00i 0.156787i 0.996923 + 0.0783934i \(0.0249790\pi\)
−0.996923 + 0.0783934i \(0.975021\pi\)
\(464\) 384.000 0.0384197
\(465\) 0 0
\(466\) 0 0
\(467\) − 6.00000i 0 0.000594533i −1.00000 0.000297266i \(-0.999905\pi\)
1.00000 0.000297266i \(-9.46229e-5\pi\)
\(468\) 704.000i 0.0695351i
\(469\) −13816.0 −1.36026
\(470\) 0 0
\(471\) 7352.00 0.719241
\(472\) 0 0
\(473\) − 2184.00i − 0.212305i
\(474\) 0 0
\(475\) 0 0
\(476\) −11616.0 −1.11853
\(477\) 4356.00i 0.418129i
\(478\) 0 0
\(479\) −3132.00 −0.298757 −0.149379 0.988780i \(-0.547727\pi\)
−0.149379 + 0.988780i \(0.547727\pi\)
\(480\) 0 0
\(481\) −128.000 −0.0121337
\(482\) 0 0
\(483\) 2640.00i 0.248704i
\(484\) −9496.00 −0.891811
\(485\) 0 0
\(486\) 0 0
\(487\) 12436.0i 1.15714i 0.815631 + 0.578572i \(0.196390\pi\)
−0.815631 + 0.578572i \(0.803610\pi\)
\(488\) 0 0
\(489\) 3400.00 0.314424
\(490\) 0 0
\(491\) −7848.00 −0.721335 −0.360667 0.932695i \(-0.617451\pi\)
−0.360667 + 0.932695i \(0.617451\pi\)
\(492\) 1728.00i 0.158342i
\(493\) 396.000i 0.0361764i
\(494\) 0 0
\(495\) 0 0
\(496\) −4096.00 −0.370798
\(497\) − 21648.0i − 1.95381i
\(498\) 0 0
\(499\) −17720.0 −1.58969 −0.794846 0.606811i \(-0.792448\pi\)
−0.794846 + 0.606811i \(0.792448\pi\)
\(500\) 0 0
\(501\) 15216.0 1.35689
\(502\) 0 0
\(503\) − 5094.00i − 0.451551i −0.974179 0.225776i \(-0.927508\pi\)
0.974179 0.225776i \(-0.0724916\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8532.00i 0.747376i
\(508\) − 2752.00i − 0.240355i
\(509\) 5670.00 0.493749 0.246875 0.969047i \(-0.420596\pi\)
0.246875 + 0.969047i \(0.420596\pi\)
\(510\) 0 0
\(511\) −308.000 −0.0266636
\(512\) 0 0
\(513\) − 2888.00i − 0.248554i
\(514\) 0 0
\(515\) 0 0
\(516\) −5824.00 −0.496875
\(517\) 7128.00i 0.606362i
\(518\) 0 0
\(519\) 2256.00 0.190804
\(520\) 0 0
\(521\) −20670.0 −1.73814 −0.869068 0.494692i \(-0.835281\pi\)
−0.869068 + 0.494692i \(0.835281\pi\)
\(522\) 0 0
\(523\) − 16816.0i − 1.40595i −0.711214 0.702975i \(-0.751854\pi\)
0.711214 0.702975i \(-0.248146\pi\)
\(524\) 20160.0 1.68071
\(525\) 0 0
\(526\) 0 0
\(527\) − 4224.00i − 0.349147i
\(528\) − 3072.00i − 0.253204i
\(529\) 11267.0 0.926029
\(530\) 0 0
\(531\) 6204.00 0.507026
\(532\) − 3344.00i − 0.272520i
\(533\) 432.000i 0.0351069i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7248.00i 0.582447i
\(538\) 0 0
\(539\) 1692.00 0.135213
\(540\) 0 0
\(541\) 9530.00 0.757351 0.378675 0.925530i \(-0.376380\pi\)
0.378675 + 0.925530i \(0.376380\pi\)
\(542\) 0 0
\(543\) − 17992.0i − 1.42193i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5264.00i − 0.411467i −0.978608 0.205733i \(-0.934042\pi\)
0.978608 0.205733i \(-0.0659580\pi\)
\(548\) − 5232.00i − 0.407847i
\(549\) −7766.00 −0.603725
\(550\) 0 0
\(551\) −114.000 −0.00881409
\(552\) 0 0
\(553\) 7216.00i 0.554892i
\(554\) 0 0
\(555\) 0 0
\(556\) 19136.0 1.45962
\(557\) − 16542.0i − 1.25836i −0.777259 0.629180i \(-0.783391\pi\)
0.777259 0.629180i \(-0.216609\pi\)
\(558\) 0 0
\(559\) −1456.00 −0.110165
\(560\) 0 0
\(561\) 3168.00 0.238419
\(562\) 0 0
\(563\) − 5232.00i − 0.391656i −0.980638 0.195828i \(-0.937261\pi\)
0.980638 0.195828i \(-0.0627395\pi\)
\(564\) 19008.0 1.41912
\(565\) 0 0
\(566\) 0 0
\(567\) − 6842.00i − 0.506767i
\(568\) 0 0
\(569\) −15114.0 −1.11355 −0.556777 0.830662i \(-0.687962\pi\)
−0.556777 + 0.830662i \(0.687962\pi\)
\(570\) 0 0
\(571\) −11764.0 −0.862186 −0.431093 0.902308i \(-0.641872\pi\)
−0.431093 + 0.902308i \(0.641872\pi\)
\(572\) − 768.000i − 0.0561393i
\(573\) 14352.0i 1.04636i
\(574\) 0 0
\(575\) 0 0
\(576\) 5632.00 0.407407
\(577\) 25198.0i 1.81804i 0.416757 + 0.909018i \(0.363166\pi\)
−0.416757 + 0.909018i \(0.636834\pi\)
\(578\) 0 0
\(579\) 17968.0 1.28968
\(580\) 0 0
\(581\) 6468.00 0.461855
\(582\) 0 0
\(583\) − 4752.00i − 0.337578i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 20190.0i − 1.41964i −0.704382 0.709822i \(-0.748776\pi\)
0.704382 0.709822i \(-0.251224\pi\)
\(588\) − 4512.00i − 0.316449i
\(589\) 1216.00 0.0850669
\(590\) 0 0
\(591\) 9864.00 0.686549
\(592\) 1024.00i 0.0710915i
\(593\) − 2886.00i − 0.199855i −0.994995 0.0999273i \(-0.968139\pi\)
0.994995 0.0999273i \(-0.0318610\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10128.0 0.696072
\(597\) − 3296.00i − 0.225957i
\(598\) 0 0
\(599\) 4464.00 0.304498 0.152249 0.988342i \(-0.451348\pi\)
0.152249 + 0.988342i \(0.451348\pi\)
\(600\) 0 0
\(601\) −15874.0 −1.07739 −0.538697 0.842499i \(-0.681083\pi\)
−0.538697 + 0.842499i \(0.681083\pi\)
\(602\) 0 0
\(603\) 6908.00i 0.466527i
\(604\) 24640.0 1.65991
\(605\) 0 0
\(606\) 0 0
\(607\) 18916.0i 1.26487i 0.774613 + 0.632436i \(0.217945\pi\)
−0.774613 + 0.632436i \(0.782055\pi\)
\(608\) 0 0
\(609\) −528.000 −0.0351324
\(610\) 0 0
\(611\) 4752.00 0.314640
\(612\) 5808.00i 0.383618i
\(613\) − 3058.00i − 0.201487i −0.994912 0.100743i \(-0.967878\pi\)
0.994912 0.100743i \(-0.0321221\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 4158.00i − 0.271304i −0.990757 0.135652i \(-0.956687\pi\)
0.990757 0.135652i \(-0.0433130\pi\)
\(618\) 0 0
\(619\) 22864.0 1.48462 0.742312 0.670055i \(-0.233729\pi\)
0.742312 + 0.670055i \(0.233729\pi\)
\(620\) 0 0
\(621\) 4560.00 0.294664
\(622\) 0 0
\(623\) − 20196.0i − 1.29877i
\(624\) −2048.00 −0.131387
\(625\) 0 0
\(626\) 0 0
\(627\) 912.000i 0.0580890i
\(628\) − 14704.0i − 0.934321i
\(629\) −1056.00 −0.0669403
\(630\) 0 0
\(631\) 18536.0 1.16942 0.584712 0.811241i \(-0.301208\pi\)
0.584712 + 0.811241i \(0.301208\pi\)
\(632\) 0 0
\(633\) 16976.0i 1.06593i
\(634\) 0 0
\(635\) 0 0
\(636\) −12672.0 −0.790059
\(637\) − 1128.00i − 0.0701617i
\(638\) 0 0
\(639\) −10824.0 −0.670095
\(640\) 0 0
\(641\) 15630.0 0.963101 0.481551 0.876418i \(-0.340074\pi\)
0.481551 + 0.876418i \(0.340074\pi\)
\(642\) 0 0
\(643\) − 27574.0i − 1.69115i −0.533853 0.845577i \(-0.679256\pi\)
0.533853 0.845577i \(-0.320744\pi\)
\(644\) 5280.00 0.323076
\(645\) 0 0
\(646\) 0 0
\(647\) 8826.00i 0.536300i 0.963377 + 0.268150i \(0.0864122\pi\)
−0.963377 + 0.268150i \(0.913588\pi\)
\(648\) 0 0
\(649\) −6768.00 −0.409349
\(650\) 0 0
\(651\) 5632.00 0.339071
\(652\) − 6800.00i − 0.408449i
\(653\) 18678.0i 1.11934i 0.828717 + 0.559668i \(0.189071\pi\)
−0.828717 + 0.559668i \(0.810929\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3456.00 0.205692
\(657\) 154.000i 0.00914477i
\(658\) 0 0
\(659\) −16980.0 −1.00371 −0.501857 0.864951i \(-0.667349\pi\)
−0.501857 + 0.864951i \(0.667349\pi\)
\(660\) 0 0
\(661\) −9358.00 −0.550657 −0.275328 0.961350i \(-0.588787\pi\)
−0.275328 + 0.961350i \(0.588787\pi\)
\(662\) 0 0
\(663\) − 2112.00i − 0.123715i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 180.000i − 0.0104492i
\(668\) − 30432.0i − 1.76265i
\(669\) −21920.0 −1.26678
\(670\) 0 0
\(671\) 8472.00 0.487419
\(672\) 0 0
\(673\) − 16120.0i − 0.923299i −0.887062 0.461650i \(-0.847258\pi\)
0.887062 0.461650i \(-0.152742\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 17064.0 0.970869
\(677\) − 27876.0i − 1.58251i −0.611484 0.791257i \(-0.709427\pi\)
0.611484 0.791257i \(-0.290573\pi\)
\(678\) 0 0
\(679\) −34408.0 −1.94471
\(680\) 0 0
\(681\) 22176.0 1.24785
\(682\) 0 0
\(683\) − 4872.00i − 0.272946i −0.990644 0.136473i \(-0.956423\pi\)
0.990644 0.136473i \(-0.0435766\pi\)
\(684\) −1672.00 −0.0934657
\(685\) 0 0
\(686\) 0 0
\(687\) − 11720.0i − 0.650867i
\(688\) 11648.0i 0.645459i
\(689\) −3168.00 −0.175169
\(690\) 0 0
\(691\) 13412.0 0.738374 0.369187 0.929355i \(-0.379636\pi\)
0.369187 + 0.929355i \(0.379636\pi\)
\(692\) − 4512.00i − 0.247862i
\(693\) − 2904.00i − 0.159183i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3564.00i 0.193682i
\(698\) 0 0
\(699\) 17592.0 0.951918
\(700\) 0 0
\(701\) 1926.00 0.103772 0.0518859 0.998653i \(-0.483477\pi\)
0.0518859 + 0.998653i \(0.483477\pi\)
\(702\) 0 0
\(703\) − 304.000i − 0.0163095i
\(704\) −6144.00 −0.328921
\(705\) 0 0
\(706\) 0 0
\(707\) − 6468.00i − 0.344065i
\(708\) 18048.0i 0.958030i
\(709\) −17534.0 −0.928777 −0.464389 0.885631i \(-0.653726\pi\)
−0.464389 + 0.885631i \(0.653726\pi\)
\(710\) 0 0
\(711\) 3608.00 0.190310
\(712\) 0 0
\(713\) 1920.00i 0.100848i
\(714\) 0 0
\(715\) 0 0
\(716\) 14496.0 0.756621
\(717\) 25920.0i 1.35007i
\(718\) 0 0
\(719\) 11220.0 0.581969 0.290984 0.956728i \(-0.406017\pi\)
0.290984 + 0.956728i \(0.406017\pi\)
\(720\) 0 0
\(721\) −16544.0 −0.854550
\(722\) 0 0
\(723\) − 23080.0i − 1.18721i
\(724\) −35984.0 −1.84715
\(725\) 0 0
\(726\) 0 0
\(727\) 25078.0i 1.27936i 0.768643 + 0.639678i \(0.220932\pi\)
−0.768643 + 0.639678i \(0.779068\pi\)
\(728\) 0 0
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) −12012.0 −0.607770
\(732\) − 22592.0i − 1.14074i
\(733\) 434.000i 0.0218692i 0.999940 + 0.0109346i \(0.00348067\pi\)
−0.999940 + 0.0109346i \(0.996519\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 7536.00i − 0.376651i
\(738\) 0 0
\(739\) −2564.00 −0.127630 −0.0638148 0.997962i \(-0.520327\pi\)
−0.0638148 + 0.997962i \(0.520327\pi\)
\(740\) 0 0
\(741\) 608.000 0.0301423
\(742\) 0 0
\(743\) 21948.0i 1.08371i 0.840473 + 0.541853i \(0.182277\pi\)
−0.840473 + 0.541853i \(0.817723\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 3234.00i − 0.158401i
\(748\) − 6336.00i − 0.309715i
\(749\) −4752.00 −0.231821
\(750\) 0 0
\(751\) −7648.00 −0.371610 −0.185805 0.982587i \(-0.559489\pi\)
−0.185805 + 0.982587i \(0.559489\pi\)
\(752\) − 38016.0i − 1.84349i
\(753\) − 2496.00i − 0.120796i
\(754\) 0 0
\(755\) 0 0
\(756\) −26752.0 −1.28699
\(757\) 30190.0i 1.44950i 0.689010 + 0.724752i \(0.258046\pi\)
−0.689010 + 0.724752i \(0.741954\pi\)
\(758\) 0 0
\(759\) −1440.00 −0.0688652
\(760\) 0 0
\(761\) −1242.00 −0.0591622 −0.0295811 0.999562i \(-0.509417\pi\)
−0.0295811 + 0.999562i \(0.509417\pi\)
\(762\) 0 0
\(763\) 16588.0i 0.787059i
\(764\) 28704.0 1.35926
\(765\) 0 0
\(766\) 0 0
\(767\) 4512.00i 0.212411i
\(768\) 16384.0i 0.769800i
\(769\) 28738.0 1.34762 0.673809 0.738905i \(-0.264657\pi\)
0.673809 + 0.738905i \(0.264657\pi\)
\(770\) 0 0
\(771\) 480.000 0.0224212
\(772\) − 35936.0i − 1.67534i
\(773\) − 40128.0i − 1.86715i −0.358387 0.933573i \(-0.616673\pi\)
0.358387 0.933573i \(-0.383327\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1408.00i − 0.0650086i
\(778\) 0 0
\(779\) −1026.00 −0.0471890
\(780\) 0 0
\(781\) 11808.0 0.541003
\(782\) 0 0
\(783\) 912.000i 0.0416248i
\(784\) −9024.00 −0.411079
\(785\) 0 0
\(786\) 0 0
\(787\) 15448.0i 0.699697i 0.936806 + 0.349849i \(0.113767\pi\)
−0.936806 + 0.349849i \(0.886233\pi\)
\(788\) − 19728.0i − 0.891854i
\(789\) −7368.00 −0.332456
\(790\) 0 0
\(791\) 264.000 0.0118670
\(792\) 0 0
\(793\) − 5648.00i − 0.252921i
\(794\) 0 0
\(795\) 0 0
\(796\) −6592.00 −0.293527
\(797\) 27324.0i 1.21439i 0.794554 + 0.607193i \(0.207705\pi\)
−0.794554 + 0.607193i \(0.792295\pi\)
\(798\) 0 0
\(799\) 39204.0 1.73584
\(800\) 0 0
\(801\) −10098.0 −0.445437
\(802\) 0 0
\(803\) − 168.000i − 0.00738305i
\(804\) −20096.0 −0.881507
\(805\) 0 0
\(806\) 0 0
\(807\) 12936.0i 0.564274i
\(808\) 0 0
\(809\) 17766.0 0.772088 0.386044 0.922480i \(-0.373841\pi\)
0.386044 + 0.922480i \(0.373841\pi\)
\(810\) 0 0
\(811\) −7396.00 −0.320233 −0.160116 0.987098i \(-0.551187\pi\)
−0.160116 + 0.987098i \(0.551187\pi\)
\(812\) 1056.00i 0.0456383i
\(813\) 18656.0i 0.804790i
\(814\) 0 0
\(815\) 0 0
\(816\) −16896.0 −0.724851
\(817\) − 3458.00i − 0.148078i
\(818\) 0 0
\(819\) −1936.00 −0.0825999
\(820\) 0 0
\(821\) 26898.0 1.14342 0.571709 0.820456i \(-0.306281\pi\)
0.571709 + 0.820456i \(0.306281\pi\)
\(822\) 0 0
\(823\) − 24442.0i − 1.03523i −0.855614 0.517615i \(-0.826820\pi\)
0.855614 0.517615i \(-0.173180\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 13524.0i − 0.568652i −0.958728 0.284326i \(-0.908230\pi\)
0.958728 0.284326i \(-0.0917699\pi\)
\(828\) − 2640.00i − 0.110805i
\(829\) 7714.00 0.323183 0.161591 0.986858i \(-0.448337\pi\)
0.161591 + 0.986858i \(0.448337\pi\)
\(830\) 0 0
\(831\) 20888.0 0.871958
\(832\) 4096.00i 0.170677i
\(833\) − 9306.00i − 0.387075i
\(834\) 0 0
\(835\) 0 0
\(836\) 1824.00 0.0754598
\(837\) − 9728.00i − 0.401731i
\(838\) 0 0
\(839\) 16248.0 0.668586 0.334293 0.942469i \(-0.391503\pi\)
0.334293 + 0.942469i \(0.391503\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) 30264.0i 1.23647i
\(844\) 33952.0 1.38469
\(845\) 0 0
\(846\) 0 0
\(847\) − 26114.0i − 1.05937i
\(848\) 25344.0i 1.02632i
\(849\) 22456.0 0.907760
\(850\) 0 0
\(851\) 480.000 0.0193351
\(852\) − 31488.0i − 1.26615i
\(853\) 35498.0i 1.42489i 0.701730 + 0.712443i \(0.252411\pi\)
−0.701730 + 0.712443i \(0.747589\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40344.0i 1.60808i 0.594575 + 0.804040i \(0.297320\pi\)
−0.594575 + 0.804040i \(0.702680\pi\)
\(858\) 0 0
\(859\) −31484.0 −1.25055 −0.625274 0.780406i \(-0.715013\pi\)
−0.625274 + 0.780406i \(0.715013\pi\)
\(860\) 0 0
\(861\) −4752.00 −0.188093
\(862\) 0 0
\(863\) − 28836.0i − 1.13741i −0.822540 0.568707i \(-0.807444\pi\)
0.822540 0.568707i \(-0.192556\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2228.00i 0.0872743i
\(868\) − 11264.0i − 0.440467i
\(869\) −3936.00 −0.153647
\(870\) 0 0
\(871\) −5024.00 −0.195444
\(872\) 0 0
\(873\) 17204.0i 0.666973i
\(874\) 0 0
\(875\) 0 0
\(876\) −448.000 −0.0172791
\(877\) − 22796.0i − 0.877727i −0.898554 0.438863i \(-0.855381\pi\)
0.898554 0.438863i \(-0.144619\pi\)
\(878\) 0 0
\(879\) −3696.00 −0.141824
\(880\) 0 0
\(881\) −18822.0 −0.719784 −0.359892 0.932994i \(-0.617186\pi\)
−0.359892 + 0.932994i \(0.617186\pi\)
\(882\) 0 0
\(883\) 7526.00i 0.286829i 0.989663 + 0.143415i \(0.0458082\pi\)
−0.989663 + 0.143415i \(0.954192\pi\)
\(884\) −4224.00 −0.160711
\(885\) 0 0
\(886\) 0 0
\(887\) − 33816.0i − 1.28008i −0.768342 0.640040i \(-0.778918\pi\)
0.768342 0.640040i \(-0.221082\pi\)
\(888\) 0 0
\(889\) 7568.00 0.285515
\(890\) 0 0
\(891\) 3732.00 0.140322
\(892\) 43840.0i 1.64560i
\(893\) 11286.0i 0.422925i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 960.000i 0.0357341i
\(898\) 0 0
\(899\) −384.000 −0.0142460
\(900\) 0 0
\(901\) −26136.0 −0.966389
\(902\) 0 0
\(903\) − 16016.0i − 0.590232i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33784.0i 1.23680i 0.785863 + 0.618401i \(0.212219\pi\)
−0.785863 + 0.618401i \(0.787781\pi\)
\(908\) − 44352.0i − 1.62101i
\(909\) −3234.00 −0.118003
\(910\) 0 0
\(911\) −15216.0 −0.553379 −0.276690 0.960959i \(-0.589237\pi\)
−0.276690 + 0.960959i \(0.589237\pi\)
\(912\) − 4864.00i − 0.176604i
\(913\) 3528.00i 0.127886i
\(914\) 0 0
\(915\) 0 0
\(916\) −23440.0 −0.845502
\(917\) 55440.0i 1.99650i
\(918\) 0 0
\(919\) −19760.0 −0.709273 −0.354637 0.935004i \(-0.615395\pi\)
−0.354637 + 0.935004i \(0.615395\pi\)
\(920\) 0 0
\(921\) −17920.0 −0.641134
\(922\) 0 0
\(923\) − 7872.00i − 0.280726i
\(924\) 8448.00 0.300778
\(925\) 0 0
\(926\) 0 0
\(927\) 8272.00i 0.293083i
\(928\) 0 0
\(929\) −16278.0 −0.574880 −0.287440 0.957799i \(-0.592804\pi\)
−0.287440 + 0.957799i \(0.592804\pi\)
\(930\) 0 0
\(931\) 2679.00 0.0943079
\(932\) − 35184.0i − 1.23658i
\(933\) 5088.00i 0.178536i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 6994.00i 0.243846i 0.992540 + 0.121923i \(0.0389062\pi\)
−0.992540 + 0.121923i \(0.961094\pi\)
\(938\) 0 0
\(939\) −5480.00 −0.190451
\(940\) 0 0
\(941\) 32502.0 1.12597 0.562983 0.826468i \(-0.309653\pi\)
0.562983 + 0.826468i \(0.309653\pi\)
\(942\) 0 0
\(943\) − 1620.00i − 0.0559432i
\(944\) 36096.0 1.24452
\(945\) 0 0
\(946\) 0 0
\(947\) − 50358.0i − 1.72800i −0.503493 0.864000i \(-0.667952\pi\)
0.503493 0.864000i \(-0.332048\pi\)
\(948\) 10496.0i 0.359593i
\(949\) −112.000 −0.00383106
\(950\) 0 0
\(951\) 14208.0 0.484465
\(952\) 0 0
\(953\) 39816.0i 1.35338i 0.736270 + 0.676688i \(0.236585\pi\)
−0.736270 + 0.676688i \(0.763415\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 51840.0 1.75379
\(957\) − 288.000i − 0.00972802i
\(958\) 0 0
\(959\) 14388.0 0.484476
\(960\) 0 0
\(961\) −25695.0 −0.862509
\(962\) 0 0
\(963\) 2376.00i 0.0795073i
\(964\) −46160.0 −1.54223
\(965\) 0 0
\(966\) 0 0
\(967\) − 590.000i − 0.0196206i −0.999952 0.00981030i \(-0.996877\pi\)
0.999952 0.00981030i \(-0.00312277\pi\)
\(968\) 0 0
\(969\) 5016.00 0.166292
\(970\) 0 0
\(971\) 26820.0 0.886400 0.443200 0.896423i \(-0.353843\pi\)
0.443200 + 0.896423i \(0.353843\pi\)
\(972\) 22880.0i 0.755017i
\(973\) 52624.0i 1.73386i
\(974\) 0 0
\(975\) 0 0
\(976\) −45184.0 −1.48187
\(977\) 33312.0i 1.09083i 0.838165 + 0.545417i \(0.183629\pi\)
−0.838165 + 0.545417i \(0.816371\pi\)
\(978\) 0 0
\(979\) 11016.0 0.359625
\(980\) 0 0
\(981\) 8294.00 0.269936
\(982\) 0 0
\(983\) 612.000i 0.0198573i 0.999951 + 0.00992867i \(0.00316045\pi\)
−0.999951 + 0.00992867i \(0.996840\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 52272.0i 1.68575i
\(988\) − 1216.00i − 0.0391560i
\(989\) 5460.00 0.175549
\(990\) 0 0
\(991\) 39416.0 1.26346 0.631731 0.775188i \(-0.282345\pi\)
0.631731 + 0.775188i \(0.282345\pi\)
\(992\) 0 0
\(993\) 18128.0i 0.579330i
\(994\) 0 0
\(995\) 0 0
\(996\) 9408.00 0.299301
\(997\) − 36614.0i − 1.16307i −0.813523 0.581533i \(-0.802453\pi\)
0.813523 0.581533i \(-0.197547\pi\)
\(998\) 0 0
\(999\) −2432.00 −0.0770221
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.4.b.e.324.2 2
5.2 odd 4 95.4.a.a.1.1 1
5.3 odd 4 475.4.a.d.1.1 1
5.4 even 2 inner 475.4.b.e.324.1 2
15.2 even 4 855.4.a.e.1.1 1
20.7 even 4 1520.4.a.b.1.1 1
95.37 even 4 1805.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.4.a.a.1.1 1 5.2 odd 4
475.4.a.d.1.1 1 5.3 odd 4
475.4.b.e.324.1 2 5.4 even 2 inner
475.4.b.e.324.2 2 1.1 even 1 trivial
855.4.a.e.1.1 1 15.2 even 4
1520.4.a.b.1.1 1 20.7 even 4
1805.4.a.f.1.1 1 95.37 even 4