⌂
→
Modular forms
→
Classical
→
Search results
Citation
·
Feedback
·
Hide Menu
Newform search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Classical modular form labels
Refine search
Level
prime
prime squared
prime power
square
squarefree
powerful
divides
multiple of
Weight
any parity
even only
odd only
Analytic conductor
Analytic rank
Dim.
absolute
relative
Bad \(p\)
include
exclude
exactly
subset
Char.
any parity
even only
odd only
Primitive character
Character order
Is maximal/largest
maximal
largest
not largest
Coefficient field
Self-twists
CM/RM discriminant
Inner twist count
Is self-dual
any CM
has CM
no CM
any RM
has RM
no RM
yes
no
Coefficient ring index
Coefficient ring gens.
Is twist minimal
Projective image
yes
no
Sort order
Select
Search again
Dimension table
Traces table
Random form
▲ analytic conductor
level
weight
character
primitive character
character order
Nk^2
dimension
relative dimension
analytic rank
inner twist count
coeff ring index
columns to display
✓ label
level
weight
character
primitive character
character order
✓ dimension
relative dimension
✓ analytic conductor
✓ field
projective image
✓ CM
✓ RM
self-dual
twist minimal
largest
maximal
minimal twist
inner twists
rank*
✓ traces
✓ fricke sign
coefficient ring index
Sato-Tate group
✓ q-expansion
show all
Results (1-50 of 70 matches)
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Level
Weight
Char
Prim
Char order
Dim
Rel. Dim
$A$
Field
Image
CM
RM
Self-dual
Twist minimal
Largest
Maximal
Minimal twist
Inner twists
Rank*
Traces
Fricke sign
Coefficient ring index
Sato-Tate
$q$-expansion
$a_{2}$
$a_{3}$
$a_{5}$
$a_{7}$
476.1.o.a
$476$
$1$
476.o
476.o
$6$
$2$
$1$
$0.238$
\(\Q(\sqrt{-3}) \)
$D_{3}$
\(\Q(\sqrt{-17}) \)
None
✓
476.1.o.a
$4$
$0$
\(-1\)
\(-1\)
\(0\)
\(-2\)
$1$
\(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{3}-\zeta_{6}q^{4}+q^{6}-q^{7}+\cdots\)
476.1.o.b
$476$
$1$
476.o
476.o
$6$
$2$
$1$
$0.238$
\(\Q(\sqrt{-3}) \)
$D_{3}$
\(\Q(\sqrt{-17}) \)
None
✓
476.1.o.a
$4$
$0$
\(-1\)
\(1\)
\(0\)
\(2\)
$1$
\(q+\zeta_{6}^{2}q^{2}+\zeta_{6}q^{3}-\zeta_{6}q^{4}-q^{6}+q^{7}+\cdots\)
476.1.o.c
$476$
$1$
476.o
476.o
$6$
$4$
$2$
$0.238$
\(\Q(\zeta_{12})\)
$D_{6}$
\(\Q(\sqrt{-17}) \)
None
✓
✓
476.1.o.c
$8$
$0$
\(2\)
\(0\)
\(0\)
\(0\)
$1$
\(q+\zeta_{12}^{2}q^{2}+(-\zeta_{12}^{3}-\zeta_{12}^{5})q^{3}+\cdots\)
476.2.a.a
$476$
$2$
476.a
1.a
$1$
$2$
$2$
$3.801$
\(\Q(\sqrt{13}) \)
$_{}$
None
None
✓
✓
✓
✓
476.2.a.a
$1$
$1$
\(0\)
\(-3\)
\(-3\)
\(2\)
$+$
$1$
$\mathrm{SU}(2)$
\(q+(-1-\beta )q^{3}+(-2+\beta )q^{5}+q^{7}+\cdots\)
476.2.a.b
$476$
$2$
476.a
1.a
$1$
$2$
$2$
$3.801$
\(\Q(\sqrt{5}) \)
$_{}$
None
None
✓
✓
✓
✓
476.2.a.b
$1$
$1$
\(0\)
\(-1\)
\(-1\)
\(-2\)
$+$
$1$
$\mathrm{SU}(2)$
\(q-\beta q^{3}+(-1+\beta )q^{5}-q^{7}+(-2+\beta )q^{9}+\cdots\)
476.2.a.c
$476$
$2$
476.a
1.a
$1$
$2$
$2$
$3.801$
\(\Q(\sqrt{13}) \)
$_{}$
None
None
✓
✓
✓
✓
476.2.a.c
$1$
$0$
\(0\)
\(-1\)
\(1\)
\(-2\)
$-$
$1$
$\mathrm{SU}(2)$
\(q-\beta q^{3}+(1-\beta )q^{5}-q^{7}+\beta q^{9}+4q^{11}+\cdots\)
476.2.a.d
$476$
$2$
476.a
1.a
$1$
$2$
$2$
$3.801$
\(\Q(\sqrt{13}) \)
$_{}$
None
None
✓
✓
✓
✓
476.2.a.d
$1$
$0$
\(0\)
\(1\)
\(-1\)
\(2\)
$-$
$1$
$\mathrm{SU}(2)$
\(q+\beta q^{3}+(-1+\beta )q^{5}+q^{7}+\beta q^{9}+\cdots\)
476.2.b.a
$476$
$2$
476.b
17.b
$2$
$8$
$8$
$3.801$
8.0.980441344.2
$_{}$
None
None
✓
✓
✓
476.2.b.a
$2$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$2^{4}$
$\mathrm{SU}(2)[C_{2}]$
\(q+(\beta _{4}+\beta _{7})q^{3}+\beta _{3}q^{5}+\beta _{4}q^{7}+(-1+\cdots)q^{9}+\cdots\)
476.2.e.a
$476$
$2$
476.e
476.e
$2$
$8$
$8$
$3.801$
8.0.\(\cdots\).12
$_{}$
\(\Q(\sqrt{-17}) \)
None
✓
476.2.e.a
$8$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$1$
$\mathrm{U}(1)[D_{2}]$
\(q+\beta _{3}q^{2}+(-\beta _{1}-\beta _{4})q^{3}+2q^{4}+(\beta _{5}+\cdots)q^{6}+\cdots\)
476.2.e.b
$476$
$2$
476.e
476.e
$2$
$20$
$20$
$3.801$
20.0.\(\cdots\).1
$_{}$
\(\Q(\sqrt{-119}) \)
None
✓
476.2.e.b
$8$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$2^{14}$
$\mathrm{U}(1)[D_{2}]$
\(q+\beta _{5}q^{2}+\beta _{12}q^{3}+\beta _{8}q^{4}+\beta _{17}q^{5}+\cdots\)
476.2.e.c
$476$
$2$
476.e
476.e
$2$
$40$
$40$
$3.801$
$_{}$
None
None
✓
✓
476.2.e.c
$8$
$0$
\(-4\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{2}]$
476.2.f.a
$476$
$2$
476.f
28.d
$2$
$64$
$64$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.f.a
$4$
$0$
\(-2\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{2}]$
476.2.i.a
$476$
$2$
476.i
7.c
$3$
$2$
$1$
$3.801$
\(\Q(\sqrt{-3}) \)
$_{}$
None
None
✓
476.2.i.a
$2$
$0$
\(0\)
\(-1\)
\(4\)
\(-4\)
$1$
$\mathrm{SU}(2)[C_{3}]$
\(q+(-1+\zeta_{6})q^{3}+4\zeta_{6}q^{5}+(-3+2\zeta_{6})q^{7}+\cdots\)
476.2.i.b
$476$
$2$
476.i
7.c
$3$
$2$
$1$
$3.801$
\(\Q(\sqrt{-3}) \)
$_{}$
None
None
✓
476.2.i.b
$2$
$0$
\(0\)
\(1\)
\(0\)
\(4\)
$1$
$\mathrm{SU}(2)[C_{3}]$
\(q+(1-\zeta_{6})q^{3}+(3-2\zeta_{6})q^{7}+2\zeta_{6}q^{9}+\cdots\)
476.2.i.c
$476$
$2$
476.i
7.c
$3$
$2$
$1$
$3.801$
\(\Q(\sqrt{-3}) \)
$_{}$
None
None
✓
476.2.i.c
$2$
$0$
\(0\)
\(3\)
\(-4\)
\(4\)
$1$
$\mathrm{SU}(2)[C_{3}]$
\(q+(3-3\zeta_{6})q^{3}-4\zeta_{6}q^{5}+(1+2\zeta_{6})q^{7}+\cdots\)
476.2.i.d
$476$
$2$
476.i
7.c
$3$
$6$
$3$
$3.801$
6.0.1783323.2
$_{}$
None
None
✓
476.2.i.d
$2$
$0$
\(0\)
\(1\)
\(2\)
\(4\)
$1$
$\mathrm{SU}(2)[C_{3}]$
\(q+\beta _{1}q^{3}+(\beta _{1}+\beta _{2}+\beta _{4})q^{5}+(1+\beta _{2}+\cdots)q^{7}+\cdots\)
476.2.i.e
$476$
$2$
476.i
7.c
$3$
$8$
$4$
$3.801$
\(\mathbb{Q}[x]/(x^{8} - \cdots)\)
$_{}$
None
None
✓
✓
476.2.i.e
$2$
$0$
\(0\)
\(-2\)
\(2\)
\(2\)
$1$
$\mathrm{SU}(2)[C_{3}]$
\(q+(\beta _{1}-\beta _{2})q^{3}+(-\beta _{1}+\beta _{4})q^{5}+(\beta _{2}+\cdots)q^{7}+\cdots\)
476.2.k.a
$476$
$2$
476.k
476.k
$4$
$136$
$68$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.k.a
$8$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{4}]$
476.2.l.a
$476$
$2$
476.l
17.c
$4$
$16$
$8$
$3.801$
\(\mathbb{Q}[x]/(x^{16} + \cdots)\)
$_{}$
None
None
✓
✓
✓
476.2.l.a
$2$
$0$
\(0\)
\(4\)
\(4\)
\(0\)
$2^{4}$
$\mathrm{SU}(2)[C_{4}]$
\(q-\beta _{14}q^{3}+(-\beta _{1}+\beta _{5}-\beta _{10})q^{5}+\cdots\)
476.2.p.a
$476$
$2$
476.p
28.f
$6$
$128$
$64$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.p.a
$4$
$0$
\(2\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{6}]$
476.2.q.a
$476$
$2$
476.q
476.q
$6$
$16$
$8$
$3.801$
\(\mathbb{Q}[x]/(x^{16} - \cdots)\)
$_{}$
\(\Q(\sqrt{-17}) \)
None
✓
476.2.q.a
$8$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$7$
$\mathrm{U}(1)[D_{6}]$
\(q+(-\beta _{4}-\beta _{8})q^{2}+(\beta _{12}-\beta _{14})q^{3}+\cdots\)
476.2.q.b
$476$
$2$
476.q
476.q
$6$
$120$
$60$
$3.801$
$_{}$
None
None
✓
✓
476.2.q.b
$8$
$0$
\(-2\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{6}]$
476.2.t.a
$476$
$2$
476.t
119.j
$6$
$24$
$12$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.t.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{6}]$
476.2.u.a
$476$
$2$
476.u
17.d
$8$
$40$
$10$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.u.a
$2$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{8}]$
476.2.w.a
$476$
$2$
476.w
476.w
$8$
$272$
$68$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.w.a
$8$
$0$
\(-8\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{8}]$
476.2.z.a
$476$
$2$
476.z
476.z
$12$
$272$
$68$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.z.a
$8$
$0$
\(0\)
\(0\)
\(-12\)
\(0\)
$\mathrm{SU}(2)[C_{12}]$
476.2.ba.a
$476$
$2$
476.ba
119.n
$12$
$48$
$12$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.ba.a
$4$
$0$
\(0\)
\(0\)
\(-2\)
\(-2\)
$\mathrm{SU}(2)[C_{12}]$
476.2.bd.a
$476$
$2$
476.bd
68.i
$16$
$432$
$54$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.bd.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{16}]$
476.2.be.a
$476$
$2$
476.be
119.p
$16$
$96$
$12$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.be.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{16}]$
476.2.bh.a
$476$
$2$
476.bh
119.q
$24$
$96$
$12$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.bh.a
$4$
$0$
\(0\)
\(0\)
\(4\)
\(0\)
$\mathrm{SU}(2)[C_{24}]$
476.2.bj.a
$476$
$2$
476.bj
476.aj
$24$
$544$
$68$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.bj.a
$8$
$0$
\(-4\)
\(0\)
\(-24\)
\(0\)
$\mathrm{SU}(2)[C_{24}]$
476.2.bl.a
$476$
$2$
476.bl
119.s
$48$
$192$
$12$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.bl.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{48}]$
476.2.bm.a
$476$
$2$
476.bm
476.am
$48$
$1088$
$68$
$3.801$
$_{}$
None
None
✓
✓
✓
476.2.bm.a
$8$
$0$
\(-8\)
\(0\)
\(-16\)
\(0\)
$\mathrm{SU}(2)[C_{48}]$
476.3.c.a
$476$
$3$
476.c
7.b
$2$
$20$
$20$
$12.970$
\(\mathbb{Q}[x]/(x^{20} + \cdots)\)
$_{}$
None
None
✓
✓
✓
476.3.c.a
$2$
$0$
\(0\)
\(0\)
\(0\)
\(-14\)
$2^{9}$
$\mathrm{SU}(2)[C_{2}]$
\(q+\beta _{1}q^{3}+\beta _{12}q^{5}+(-1+\beta _{9})q^{7}+\cdots\)
476.3.d.a
$476$
$3$
476.d
4.b
$2$
$96$
$96$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.d.a
$2$
$0$
\(2\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{2}]$
476.3.h.a
$476$
$3$
476.h
119.d
$2$
$24$
$24$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.h.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{2}]$
476.3.j.a
$476$
$3$
476.j
119.f
$4$
$48$
$24$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.j.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(-6\)
$\mathrm{SU}(2)[C_{4}]$
476.3.n.a
$476$
$3$
476.n
119.h
$6$
$48$
$24$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.n.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{6}]$
476.3.s.a
$476$
$3$
476.s
7.d
$6$
$44$
$22$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.s.a
$2$
$0$
\(0\)
\(-6\)
\(0\)
\(22\)
$\mathrm{SU}(2)[C_{6}]$
476.3.x.a
$476$
$3$
476.x
119.l
$8$
$96$
$24$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.x.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{8}]$
476.3.y.a
$476$
$3$
476.y
119.m
$12$
$96$
$24$
$12.970$
$_{}$
None
None
✓
✓
✓
476.3.y.a
$4$
$0$
\(0\)
\(0\)
\(6\)
\(6\)
$\mathrm{SU}(2)[C_{12}]$
476.4.a.a
$476$
$4$
476.a
1.a
$1$
$6$
$6$
$28.085$
\(\mathbb{Q}[x]/(x^{6} - \cdots)\)
$_{}$
None
None
✓
✓
✓
✓
476.4.a.a
$1$
$1$
\(0\)
\(-4\)
\(-28\)
\(42\)
$-$
$2^{3}$
$\mathrm{SU}(2)$
\(q+(-1-\beta _{2})q^{3}+(-5+\beta _{3})q^{5}+7q^{7}+\cdots\)
476.4.a.b
$476$
$4$
476.a
1.a
$1$
$6$
$6$
$28.085$
\(\mathbb{Q}[x]/(x^{6} - \cdots)\)
$_{}$
None
None
✓
✓
✓
✓
476.4.a.b
$1$
$0$
\(0\)
\(2\)
\(-14\)
\(-42\)
$+$
$2^{4}$
$\mathrm{SU}(2)$
\(q+\beta _{1}q^{3}+(-2-\beta _{4})q^{5}-7q^{7}+(-4+\cdots)q^{9}+\cdots\)
476.4.a.c
$476$
$4$
476.a
1.a
$1$
$6$
$6$
$28.085$
\(\mathbb{Q}[x]/(x^{6} - \cdots)\)
$_{}$
None
None
✓
✓
✓
✓
476.4.a.c
$1$
$1$
\(0\)
\(2\)
\(10\)
\(-42\)
$-$
$2^{3}$
$\mathrm{SU}(2)$
\(q+\beta _{1}q^{3}+(2-\beta _{1}+\beta _{2})q^{5}-7q^{7}+\cdots\)
476.4.a.d
$476$
$4$
476.a
1.a
$1$
$6$
$6$
$28.085$
\(\mathbb{Q}[x]/(x^{6} - \cdots)\)
$_{}$
None
None
✓
✓
✓
✓
476.4.a.d
$1$
$0$
\(0\)
\(8\)
\(16\)
\(42\)
$+$
$2^{3}$
$\mathrm{SU}(2)$
\(q+(1+\beta _{1})q^{3}+(3+\beta _{3})q^{5}+7q^{7}+(15+\cdots)q^{9}+\cdots\)
476.4.b.a
$476$
$4$
476.b
17.b
$2$
$28$
$28$
$28.085$
$_{}$
None
None
✓
✓
✓
476.4.b.a
$2$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{2}]$
476.4.i.a
$476$
$4$
476.i
7.c
$3$
$28$
$14$
$28.085$
$_{}$
None
None
✓
476.4.i.a
$2$
$0$
\(0\)
\(0\)
\(-10\)
\(-12\)
$\mathrm{SU}(2)[C_{3}]$
476.4.i.b
$476$
$4$
476.i
7.c
$3$
$36$
$18$
$28.085$
$_{}$
None
None
✓
✓
476.4.i.b
$2$
$0$
\(0\)
\(0\)
\(-10\)
\(-32\)
$\mathrm{SU}(2)[C_{3}]$
476.4.l.a
$476$
$4$
476.l
17.c
$4$
$56$
$28$
$28.085$
$_{}$
None
None
✓
✓
✓
476.4.l.a
$2$
$0$
\(0\)
\(4\)
\(20\)
\(0\)
$\mathrm{SU}(2)[C_{4}]$
476.4.t.a
$476$
$4$
476.t
119.j
$6$
$72$
$36$
$28.085$
$_{}$
None
None
✓
✓
✓
476.4.t.a
$4$
$0$
\(0\)
\(0\)
\(0\)
\(0\)
$\mathrm{SU}(2)[C_{6}]$
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV