Properties

Label 476.1.o.c.67.1
Level 476476
Weight 11
Character 476.67
Analytic conductor 0.2380.238
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -68
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,1,Mod(67,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.67");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 476=22717 476 = 2^{2} \cdot 7 \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 476.o (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2375549460130.237554946013
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.188737808.1

Embedding invariants

Embedding label 67.1
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 476.67
Dual form 476.1.o.c.135.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.500000+0.866025i)q2+(0.866025+1.50000i)q3+(0.500000+0.866025i)q41.73205q6+1.00000iq71.00000q8+(1.000001.73205i)q9+(0.8660251.50000i)q11+(0.8660251.50000i)q12+1.00000q13+(0.866025+0.500000i)q14+(0.5000000.866025i)q16+(0.500000+0.866025i)q17+(1.000001.73205i)q18+(1.500000.866025i)q21+1.73205q22+(0.8660251.50000i)q24+(0.500000+0.866025i)q25+(0.500000+0.866025i)q26+1.73205q27+(0.8660250.500000i)q28+(0.5000000.866025i)q32+(1.50000+2.59808i)q331.00000q34+2.00000q36+(0.866025+1.50000i)q391.73205iq42+(0.866025+1.50000i)q44+1.73205q481.00000q491.00000q50+(0.8660251.50000i)q51+(0.500000+0.866025i)q52+(0.5000000.866025i)q53+(0.866025+1.50000i)q541.00000iq56+(1.732051.00000i)q63+1.00000q64+(1.50000+2.59808i)q66+(0.5000000.866025i)q68+1.73205q71+(1.00000+1.73205i)q72+(0.8660251.50000i)q75+(1.50000+0.866025i)q771.73205q78+(0.866025+1.50000i)q79+(0.500000+0.866025i)q81+(1.500000.866025i)q84+(0.866025+1.50000i)q88+(0.5000000.866025i)q89+1.00000iq91+(0.866025+1.50000i)q96+(0.5000000.866025i)q983.46410q99+O(q100)q+(0.500000 + 0.866025i) q^{2} +(-0.866025 + 1.50000i) q^{3} +(-0.500000 + 0.866025i) q^{4} -1.73205 q^{6} +1.00000i q^{7} -1.00000 q^{8} +(-1.00000 - 1.73205i) q^{9} +(0.866025 - 1.50000i) q^{11} +(-0.866025 - 1.50000i) q^{12} +1.00000 q^{13} +(-0.866025 + 0.500000i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{17} +(1.00000 - 1.73205i) q^{18} +(-1.50000 - 0.866025i) q^{21} +1.73205 q^{22} +(0.866025 - 1.50000i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(0.500000 + 0.866025i) q^{26} +1.73205 q^{27} +(-0.866025 - 0.500000i) q^{28} +(0.500000 - 0.866025i) q^{32} +(1.50000 + 2.59808i) q^{33} -1.00000 q^{34} +2.00000 q^{36} +(-0.866025 + 1.50000i) q^{39} -1.73205i q^{42} +(0.866025 + 1.50000i) q^{44} +1.73205 q^{48} -1.00000 q^{49} -1.00000 q^{50} +(-0.866025 - 1.50000i) q^{51} +(-0.500000 + 0.866025i) q^{52} +(0.500000 - 0.866025i) q^{53} +(0.866025 + 1.50000i) q^{54} -1.00000i q^{56} +(1.73205 - 1.00000i) q^{63} +1.00000 q^{64} +(-1.50000 + 2.59808i) q^{66} +(-0.500000 - 0.866025i) q^{68} +1.73205 q^{71} +(1.00000 + 1.73205i) q^{72} +(-0.866025 - 1.50000i) q^{75} +(1.50000 + 0.866025i) q^{77} -1.73205 q^{78} +(0.866025 + 1.50000i) q^{79} +(-0.500000 + 0.866025i) q^{81} +(1.50000 - 0.866025i) q^{84} +(-0.866025 + 1.50000i) q^{88} +(-0.500000 - 0.866025i) q^{89} +1.00000i q^{91} +(0.866025 + 1.50000i) q^{96} +(-0.500000 - 0.866025i) q^{98} -3.46410 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q44q84q9+4q132q162q17+4q186q212q25+2q26+2q32+6q334q34+8q364q494q502q52+2q53+2q98+O(q100) 4 q + 2 q^{2} - 2 q^{4} - 4 q^{8} - 4 q^{9} + 4 q^{13} - 2 q^{16} - 2 q^{17} + 4 q^{18} - 6 q^{21} - 2 q^{25} + 2 q^{26} + 2 q^{32} + 6 q^{33} - 4 q^{34} + 8 q^{36} - 4 q^{49} - 4 q^{50} - 2 q^{52} + 2 q^{53}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/476Z)×\left(\mathbb{Z}/476\mathbb{Z}\right)^\times.

nn 239239 309309 409409
χ(n)\chi(n) 1-1 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 + 0.866025i 0.500000 + 0.866025i
33 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
66 −1.73205 −1.73205
77 1.00000i 1.00000i
88 −1.00000 −1.00000
99 −1.00000 1.73205i −1.00000 1.73205i
1010 0 0
1111 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
1212 −0.866025 1.50000i −0.866025 1.50000i
1313 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1414 −0.866025 + 0.500000i −0.866025 + 0.500000i
1515 0 0
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 −0.500000 + 0.866025i −0.500000 + 0.866025i
1818 1.00000 1.73205i 1.00000 1.73205i
1919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 0 0
2121 −1.50000 0.866025i −1.50000 0.866025i
2222 1.73205 1.73205
2323 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2424 0.866025 1.50000i 0.866025 1.50000i
2525 −0.500000 + 0.866025i −0.500000 + 0.866025i
2626 0.500000 + 0.866025i 0.500000 + 0.866025i
2727 1.73205 1.73205
2828 −0.866025 0.500000i −0.866025 0.500000i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3232 0.500000 0.866025i 0.500000 0.866025i
3333 1.50000 + 2.59808i 1.50000 + 2.59808i
3434 −1.00000 −1.00000
3535 0 0
3636 2.00000 2.00000
3737 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3838 0 0
3939 −0.866025 + 1.50000i −0.866025 + 1.50000i
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 1.73205i 1.73205i
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0.866025 + 1.50000i 0.866025 + 1.50000i
4545 0 0
4646 0 0
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 1.73205 1.73205
4949 −1.00000 −1.00000
5050 −1.00000 −1.00000
5151 −0.866025 1.50000i −0.866025 1.50000i
5252 −0.500000 + 0.866025i −0.500000 + 0.866025i
5353 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
5454 0.866025 + 1.50000i 0.866025 + 1.50000i
5555 0 0
5656 1.00000i 1.00000i
5757 0 0
5858 0 0
5959 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 0 0
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 0 0
6363 1.73205 1.00000i 1.73205 1.00000i
6464 1.00000 1.00000
6565 0 0
6666 −1.50000 + 2.59808i −1.50000 + 2.59808i
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 −0.500000 0.866025i −0.500000 0.866025i
6969 0 0
7070 0 0
7171 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
7272 1.00000 + 1.73205i 1.00000 + 1.73205i
7373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0 0
7575 −0.866025 1.50000i −0.866025 1.50000i
7676 0 0
7777 1.50000 + 0.866025i 1.50000 + 0.866025i
7878 −1.73205 −1.73205
7979 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 −0.500000 + 0.866025i −0.500000 + 0.866025i
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 1.50000 0.866025i 1.50000 0.866025i
8585 0 0
8686 0 0
8787 0 0
8888 −0.866025 + 1.50000i −0.866025 + 1.50000i
8989 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
9090 0 0
9191 1.00000i 1.00000i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0.866025 + 1.50000i 0.866025 + 1.50000i
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −0.500000 0.866025i −0.500000 0.866025i
9999 −3.46410 −3.46410
100100 −0.500000 0.866025i −0.500000 0.866025i
101101 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
102102 0.866025 1.50000i 0.866025 1.50000i
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 −1.00000 −1.00000
105105 0 0
106106 1.00000 1.00000
107107 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
108108 −0.866025 + 1.50000i −0.866025 + 1.50000i
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0 0
112112 0.866025 0.500000i 0.866025 0.500000i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 −1.00000 1.73205i −1.00000 1.73205i
118118 0 0
119119 −0.866025 0.500000i −0.866025 0.500000i
120120 0 0
121121 −1.00000 1.73205i −1.00000 1.73205i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 1.73205 + 1.00000i 1.73205 + 1.00000i
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.500000 + 0.866025i 0.500000 + 0.866025i
129129 0 0
130130 0 0
131131 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 −3.00000 −3.00000
133133 0 0
134134 0 0
135135 0 0
136136 0.500000 0.866025i 0.500000 0.866025i
137137 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
138138 0 0
139139 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
140140 0 0
141141 0 0
142142 0.866025 + 1.50000i 0.866025 + 1.50000i
143143 0.866025 1.50000i 0.866025 1.50000i
144144 −1.00000 + 1.73205i −1.00000 + 1.73205i
145145 0 0
146146 0 0
147147 0.866025 1.50000i 0.866025 1.50000i
148148 0 0
149149 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0.866025 1.50000i 0.866025 1.50000i
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 2.00000 2.00000
154154 1.73205i 1.73205i
155155 0 0
156156 −0.866025 1.50000i −0.866025 1.50000i
157157 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
158158 −0.866025 + 1.50000i −0.866025 + 1.50000i
159159 0.866025 + 1.50000i 0.866025 + 1.50000i
160160 0 0
161161 0 0
162162 −1.00000 −1.00000
163163 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
164164 0 0
165165 0 0
166166 0 0
167167 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
168168 1.50000 + 0.866025i 1.50000 + 0.866025i
169169 0 0
170170 0 0
171171 0 0
172172 0 0
173173 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
174174 0 0
175175 −0.866025 0.500000i −0.866025 0.500000i
176176 −1.73205 −1.73205
177177 0 0
178178 0.500000 0.866025i 0.500000 0.866025i
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 −0.866025 + 0.500000i −0.866025 + 0.500000i
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0.866025 + 1.50000i 0.866025 + 1.50000i
188188 0 0
189189 1.73205i 1.73205i
190190 0 0
191191 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
192192 −0.866025 + 1.50000i −0.866025 + 1.50000i
193193 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0 0
195195 0 0
196196 0.500000 0.866025i 0.500000 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 −1.73205 3.00000i −1.73205 3.00000i
199199 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
200200 0.500000 0.866025i 0.500000 0.866025i
201201 0 0
202202 2.00000 2.00000
203203 0 0
204204 1.73205 1.73205
205205 0 0
206206 0 0
207207 0 0
208208 −0.500000 0.866025i −0.500000 0.866025i
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0.500000 + 0.866025i 0.500000 + 0.866025i
213213 −1.50000 + 2.59808i −1.50000 + 2.59808i
214214 0.866025 1.50000i 0.866025 1.50000i
215215 0 0
216216 −1.73205 −1.73205
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 −0.500000 + 0.866025i −0.500000 + 0.866025i
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0.866025 + 0.500000i 0.866025 + 0.500000i
225225 2.00000 2.00000
226226 0 0
227227 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
228228 0 0
229229 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 −2.59808 + 1.50000i −2.59808 + 1.50000i
232232 0 0
233233 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 1.00000 1.73205i 1.00000 1.73205i
235235 0 0
236236 0 0
237237 −3.00000 −3.00000
238238 1.00000i 1.00000i
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 1.00000 1.73205i 1.00000 1.73205i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 2.00000i 2.00000i
253253 0 0
254254 0 0
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 −1.50000 2.59808i −1.50000 2.59808i
265265 0 0
266266 0 0
267267 1.73205 1.73205
268268 0 0
269269 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 1.00000 1.00000
273273 −1.50000 0.866025i −1.50000 0.866025i
274274 −1.00000 −1.00000
275275 0.866025 + 1.50000i 0.866025 + 1.50000i
276276 0 0
277277 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 −0.866025 1.50000i −0.866025 1.50000i
279279 0 0
280280 0 0
281281 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
284284 −0.866025 + 1.50000i −0.866025 + 1.50000i
285285 0 0
286286 1.73205 1.73205
287287 0 0
288288 −2.00000 −2.00000
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 0 0
291291 0 0
292292 0 0
293293 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 1.73205 1.73205
295295 0 0
296296 0 0
297297 1.50000 2.59808i 1.50000 2.59808i
298298 −0.500000 + 0.866025i −0.500000 + 0.866025i
299299 0 0
300300 1.73205 1.73205
301301 0 0
302302 0 0
303303 1.73205 + 3.00000i 1.73205 + 3.00000i
304304 0 0
305305 0 0
306306 1.00000 + 1.73205i 1.00000 + 1.73205i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 −1.50000 + 0.866025i −1.50000 + 0.866025i
309309 0 0
310310 0 0
311311 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
312312 0.866025 1.50000i 0.866025 1.50000i
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 1.00000 1.00000
315315 0 0
316316 −1.73205 −1.73205
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 −0.866025 + 1.50000i −0.866025 + 1.50000i
319319 0 0
320320 0 0
321321 3.00000 3.00000
322322 0 0
323323 0 0
324324 −0.500000 0.866025i −0.500000 0.866025i
325325 −0.500000 + 0.866025i −0.500000 + 0.866025i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 0 0
333333 0 0
334334 −0.866025 1.50000i −0.866025 1.50000i
335335 0 0
336336 1.73205i 1.73205i
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000i 1.00000i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
348348 0 0
349349 2.00000 2.00000 1.00000 00
1.00000 00
350350 1.00000i 1.00000i
351351 1.73205 1.73205
352352 −0.866025 1.50000i −0.866025 1.50000i
353353 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
354354 0 0
355355 0 0
356356 1.00000 1.00000
357357 1.50000 0.866025i 1.50000 0.866025i
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 0 0
363363 3.46410 3.46410
364364 −0.866025 0.500000i −0.866025 0.500000i
365365 0 0
366366 0 0
367367 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
368368 0 0
369369 0 0
370370 0 0
371371 0.866025 + 0.500000i 0.866025 + 0.500000i
372372 0 0
373373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
374374 −0.866025 + 1.50000i −0.866025 + 1.50000i
375375 0 0
376376 0 0
377377 0 0
378378 −1.50000 + 0.866025i −1.50000 + 0.866025i
379379 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
384384 −1.73205 −1.73205
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
390390 0 0
391391 0 0
392392 1.00000 1.00000
393393 0 0
394394 0 0
395395 0 0
396396 1.73205 3.00000i 1.73205 3.00000i
397397 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
398398 1.73205 1.73205
399399 0 0
400400 1.00000 1.00000
401401 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 0 0
403403 0 0
404404 1.00000 + 1.73205i 1.00000 + 1.73205i
405405 0 0
406406 0 0
407407 0 0
408408 0.866025 + 1.50000i 0.866025 + 1.50000i
409409 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
410410 0 0
411411 −0.866025 1.50000i −0.866025 1.50000i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0.500000 0.866025i 0.500000 0.866025i
417417 1.50000 2.59808i 1.50000 2.59808i
418418 0 0
419419 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
420420 0 0
421421 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
422422 0 0
423423 0 0
424424 −0.500000 + 0.866025i −0.500000 + 0.866025i
425425 −0.500000 0.866025i −0.500000 0.866025i
426426 −3.00000 −3.00000
427427 0 0
428428 1.73205 1.73205
429429 1.50000 + 2.59808i 1.50000 + 2.59808i
430430 0 0
431431 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
432432 −0.866025 1.50000i −0.866025 1.50000i
433433 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
440440 0 0
441441 1.00000 + 1.73205i 1.00000 + 1.73205i
442442 −1.00000 −1.00000
443443 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 0 0
445445 0 0
446446 0 0
447447 −1.73205 −1.73205
448448 1.00000i 1.00000i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 1.00000 + 1.73205i 1.00000 + 1.73205i
451451 0 0
452452 0 0
453453 0 0
454454 1.73205 1.73205
455455 0 0
456456 0 0
457457 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 −1.00000 + 1.73205i −1.00000 + 1.73205i
459459 −0.866025 + 1.50000i −0.866025 + 1.50000i
460460 0 0
461461 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 −2.59808 1.50000i −2.59808 1.50000i
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 2.00000 2.00000
469469 0 0
470470 0 0
471471 0.866025 + 1.50000i 0.866025 + 1.50000i
472472 0 0
473473 0 0
474474 −1.50000 2.59808i −1.50000 2.59808i
475475 0 0
476476 0.866025 0.500000i 0.866025 0.500000i
477477 −2.00000 −2.00000
478478 0 0
479479 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 2.00000 2.00000
485485 0 0
486486 0 0
487487 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 1.73205i 1.73205i
498498 0 0
499499 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
500500 0 0
501501 1.50000 2.59808i 1.50000 2.59808i
502502 0 0
503503 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
504504 −1.73205 + 1.00000i −1.73205 + 1.00000i
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0.500000 0.866025i 0.500000 0.866025i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
524524 0 0
525525 1.50000 0.866025i 1.50000 0.866025i
526526 0 0
527527 0 0
528528 1.50000 2.59808i 1.50000 2.59808i
529529 0.500000 0.866025i 0.500000 0.866025i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0.866025 + 1.50000i 0.866025 + 1.50000i
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −0.866025 + 1.50000i −0.866025 + 1.50000i
540540 0 0
541541 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
542542 0 0
543543 0 0
544544 0.500000 + 0.866025i 0.500000 + 0.866025i
545545 0 0
546546 1.73205i 1.73205i
547547 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
548548 −0.500000 0.866025i −0.500000 0.866025i
549549 0 0
550550 −0.866025 + 1.50000i −0.866025 + 1.50000i
551551 0 0
552552 0 0
553553 −1.50000 + 0.866025i −1.50000 + 0.866025i
554554 0 0
555555 0 0
556556 0.866025 1.50000i 0.866025 1.50000i
557557 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 −3.00000 −3.00000
562562 −0.500000 0.866025i −0.500000 0.866025i
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0 0
566566 −1.73205 −1.73205
567567 −0.866025 0.500000i −0.866025 0.500000i
568568 −1.73205 −1.73205
569569 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
572572 0.866025 + 1.50000i 0.866025 + 1.50000i
573573 0 0
574574 0 0
575575 0 0
576576 −1.00000 1.73205i −1.00000 1.73205i
577577 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
578578 0.500000 0.866025i 0.500000 0.866025i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −0.866025 1.50000i −0.866025 1.50000i
584584 0 0
585585 0 0
586586 −0.500000 0.866025i −0.500000 0.866025i
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0.866025 + 1.50000i 0.866025 + 1.50000i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 3.00000 3.00000
595595 0 0
596596 −1.00000 −1.00000
597597 1.50000 + 2.59808i 1.50000 + 2.59808i
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0.866025 + 1.50000i 0.866025 + 1.50000i
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 −1.73205 + 3.00000i −1.73205 + 3.00000i
607607 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −1.00000 + 1.73205i −1.00000 + 1.73205i
613613 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
614614 0 0
615615 0 0
616616 −1.50000 0.866025i −1.50000 0.866025i
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
620620 0 0
621621 0 0
622622 −1.73205 −1.73205
623623 0.866025 0.500000i 0.866025 0.500000i
624624 1.73205 1.73205
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 0.500000 + 0.866025i 0.500000 + 0.866025i
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 −0.866025 1.50000i −0.866025 1.50000i
633633 0 0
634634 0 0
635635 0 0
636636 −1.73205 −1.73205
637637 −1.00000 −1.00000
638638 0 0
639639 −1.73205 3.00000i −1.73205 3.00000i
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 1.50000 + 2.59808i 1.50000 + 2.59808i
643643 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0.500000 0.866025i 0.500000 0.866025i
649649 0 0
650650 −1.00000 −1.00000
651651 0 0
652652 0 0
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 −0.866025 1.50000i −0.866025 1.50000i
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0.866025 1.50000i 0.866025 1.50000i
669669 0 0
670670 0 0
671671 0 0
672672 −1.50000 + 0.866025i −1.50000 + 0.866025i
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 −0.866025 + 1.50000i −0.866025 + 1.50000i
676676 0 0
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 0 0
680680 0 0
681681 1.50000 + 2.59808i 1.50000 + 2.59808i
682682 0 0
683683 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
684684 0 0
685685 0 0
686686 0.866025 0.500000i 0.866025 0.500000i
687687 −3.46410 −3.46410
688688 0 0
689689 0.500000 0.866025i 0.500000 0.866025i
690690 0 0
691691 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
692692 0 0
693693 3.46410i 3.46410i
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 1.00000 + 1.73205i 1.00000 + 1.73205i
699699 0 0
700700 0.866025 0.500000i 0.866025 0.500000i
701701 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
702702 0.866025 + 1.50000i 0.866025 + 1.50000i
703703 0 0
704704 0.866025 1.50000i 0.866025 1.50000i
705705 0 0
706706 1.00000 1.00000
707707 1.73205 + 1.00000i 1.73205 + 1.00000i
708708 0 0
709709 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
710710 0 0
711711 1.73205 3.00000i 1.73205 3.00000i
712712 0.500000 + 0.866025i 0.500000 + 0.866025i
713713 0 0
714714 1.50000 + 0.866025i 1.50000 + 0.866025i
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 −1.00000 −1.00000
723723 0 0
724724 0 0
725725 0 0
726726 1.73205 + 3.00000i 1.73205 + 3.00000i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 1.00000i 1.00000i
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 1.73205 1.73205
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 1.00000i 1.00000i
743743 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0 0
745745 0 0
746746 0.500000 0.866025i 0.500000 0.866025i
747747 0 0
748748 −1.73205 −1.73205
749749 1.50000 0.866025i 1.50000 0.866025i
750750 0 0
751751 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 −1.50000 0.866025i −1.50000 0.866025i
757757 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0.866025 + 1.50000i 0.866025 + 1.50000i
759759 0 0
760760 0 0
761761 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 −0.866025 1.50000i −0.866025 1.50000i
769769 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 1.73205 1.73205
772772 0 0
773773 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 −1.00000 −1.00000
779779 0 0
780780 0 0
781781 1.50000 2.59808i 1.50000 2.59808i
782782 0 0
783783 0 0
784784 0.500000 + 0.866025i 0.500000 + 0.866025i
785785 0 0
786786 0 0
787787 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 3.46410 3.46410
793793 0 0
794794 0 0
795795 0 0
796796 0.866025 + 1.50000i 0.866025 + 1.50000i
797797 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
798798 0 0
799799 0 0
800800 0.500000 + 0.866025i 0.500000 + 0.866025i
801801 −1.00000 + 1.73205i −1.00000 + 1.73205i
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −1.00000 + 1.73205i −1.00000 + 1.73205i
809809 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 −0.866025 + 1.50000i −0.866025 + 1.50000i
817817 0 0
818818 1.00000 1.00000
819819 1.73205 1.00000i 1.73205 1.00000i
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0.866025 1.50000i 0.866025 1.50000i
823823 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
824824 0 0
825825 −3.00000 −3.00000
826826 0 0
827827 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
828828 0 0
829829 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
830830 0 0
831831 0 0
832832 1.00000 1.00000
833833 0.500000 0.866025i 0.500000 0.866025i
834834 3.00000 3.00000
835835 0 0
836836 0 0
837837 0 0
838838 −0.866025 1.50000i −0.866025 1.50000i
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 1.00000 1.00000
842842 −1.00000 1.73205i −1.00000 1.73205i
843843 0.866025 1.50000i 0.866025 1.50000i
844844 0 0
845845 0 0
846846 0 0
847847 1.73205 1.00000i 1.73205 1.00000i
848848 −1.00000 −1.00000
849849 −1.50000 2.59808i −1.50000 2.59808i
850850 0.500000 0.866025i 0.500000 0.866025i
851851 0 0
852852 −1.50000 2.59808i −1.50000 2.59808i
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0.866025 + 1.50000i 0.866025 + 1.50000i
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 −1.50000 + 2.59808i −1.50000 + 2.59808i
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 0 0
861861 0 0
862862 −1.73205 −1.73205
863863 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0.866025 1.50000i 0.866025 1.50000i
865865 0 0
866866 −1.00000 1.73205i −1.00000 1.73205i
867867 1.73205 1.73205
868868 0 0
869869 3.00000 3.00000
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 0.866025 1.50000i 0.866025 1.50000i
879879 0.866025 1.50000i 0.866025 1.50000i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −1.00000 + 1.73205i −1.00000 + 1.73205i
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −0.500000 0.866025i −0.500000 0.866025i
885885 0 0
886886 0 0
887887 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.866025 + 1.50000i 0.866025 + 1.50000i
892892 0 0
893893 0 0
894894 −0.866025 1.50000i −0.866025 1.50000i
895895 0 0
896896 −0.866025 + 0.500000i −0.866025 + 0.500000i
897897 0 0
898898 0 0
899899 0 0
900900 −1.00000 + 1.73205i −1.00000 + 1.73205i
901901 0.500000 + 0.866025i 0.500000 + 0.866025i
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
908908 0.866025 + 1.50000i 0.866025 + 1.50000i
909909 −4.00000 −4.00000
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 −1.00000 + 1.73205i −1.00000 + 1.73205i
915915 0 0
916916 −2.00000 −2.00000
917917 0 0
918918 −1.73205 −1.73205
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0 0
921921 0 0
922922 −0.500000 0.866025i −0.500000 0.866025i
923923 1.73205 1.73205
924924 3.00000i 3.00000i
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 0 0
931931 0 0
932932 0 0
933933 −1.50000 2.59808i −1.50000 2.59808i
934934 0 0
935935 0 0
936936 1.00000 + 1.73205i 1.00000 + 1.73205i
937937 2.00000 2.00000 1.00000 00
1.00000 00
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 −0.866025 + 1.50000i −0.866025 + 1.50000i
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
948948 1.50000 2.59808i 1.50000 2.59808i
949949 0 0
950950 0 0
951951 0 0
952952 0.866025 + 0.500000i 0.866025 + 0.500000i
953953 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
954954 −1.00000 1.73205i −1.00000 1.73205i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 −0.866025 0.500000i −0.866025 0.500000i
960960 0 0
961961 0.500000 + 0.866025i 0.500000 + 0.866025i
962962 0 0
963963 −1.73205 + 3.00000i −1.73205 + 3.00000i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 1.00000 + 1.73205i 1.00000 + 1.73205i
969969 0 0
970970 0 0
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 0 0
973973 1.73205i 1.73205i
974974 1.73205 1.73205
975975 −0.866025 1.50000i −0.866025 1.50000i
976976 0 0
977977 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 −1.73205 −1.73205
980980 0 0
981981 0 0
982982 0 0
983983 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
992992 0 0
993993 0 0
994994 −1.50000 + 0.866025i −1.50000 + 0.866025i
995995 0 0
996996 0 0
997997 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0.866025 1.50000i 0.866025 1.50000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 476.1.o.c.67.1 4
4.3 odd 2 inner 476.1.o.c.67.2 yes 4
7.2 even 3 inner 476.1.o.c.135.1 yes 4
7.3 odd 6 3332.1.g.f.883.1 2
7.4 even 3 3332.1.g.g.883.2 2
7.5 odd 6 3332.1.o.f.2039.2 4
7.6 odd 2 3332.1.o.f.67.2 4
17.16 even 2 inner 476.1.o.c.67.2 yes 4
28.3 even 6 3332.1.g.f.883.2 2
28.11 odd 6 3332.1.g.g.883.1 2
28.19 even 6 3332.1.o.f.2039.1 4
28.23 odd 6 inner 476.1.o.c.135.2 yes 4
28.27 even 2 3332.1.o.f.67.1 4
68.67 odd 2 CM 476.1.o.c.67.1 4
119.16 even 6 inner 476.1.o.c.135.2 yes 4
119.33 odd 6 3332.1.o.f.2039.1 4
119.67 even 6 3332.1.g.g.883.1 2
119.101 odd 6 3332.1.g.f.883.2 2
119.118 odd 2 3332.1.o.f.67.1 4
476.67 odd 6 3332.1.g.g.883.2 2
476.135 odd 6 inner 476.1.o.c.135.1 yes 4
476.271 even 6 3332.1.o.f.2039.2 4
476.339 even 6 3332.1.g.f.883.1 2
476.475 even 2 3332.1.o.f.67.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.1.o.c.67.1 4 1.1 even 1 trivial
476.1.o.c.67.1 4 68.67 odd 2 CM
476.1.o.c.67.2 yes 4 4.3 odd 2 inner
476.1.o.c.67.2 yes 4 17.16 even 2 inner
476.1.o.c.135.1 yes 4 7.2 even 3 inner
476.1.o.c.135.1 yes 4 476.135 odd 6 inner
476.1.o.c.135.2 yes 4 28.23 odd 6 inner
476.1.o.c.135.2 yes 4 119.16 even 6 inner
3332.1.g.f.883.1 2 7.3 odd 6
3332.1.g.f.883.1 2 476.339 even 6
3332.1.g.f.883.2 2 28.3 even 6
3332.1.g.f.883.2 2 119.101 odd 6
3332.1.g.g.883.1 2 28.11 odd 6
3332.1.g.g.883.1 2 119.67 even 6
3332.1.g.g.883.2 2 7.4 even 3
3332.1.g.g.883.2 2 476.67 odd 6
3332.1.o.f.67.1 4 28.27 even 2
3332.1.o.f.67.1 4 119.118 odd 2
3332.1.o.f.67.2 4 7.6 odd 2
3332.1.o.f.67.2 4 476.475 even 2
3332.1.o.f.2039.1 4 28.19 even 6
3332.1.o.f.2039.1 4 119.33 odd 6
3332.1.o.f.2039.2 4 7.5 odd 6
3332.1.o.f.2039.2 4 476.271 even 6