Properties

Label 476.2.bl.a.465.6
Level $476$
Weight $2$
Character 476.465
Analytic conductor $3.801$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,2,Mod(5,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(48))
 
chi = DirichletCharacter(H, H._module([0, 40, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 476.bl (of order \(48\), degree \(16\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.80087913621\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(12\) over \(\Q(\zeta_{48})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{48}]$

Embedding invariants

Embedding label 465.6
Character \(\chi\) \(=\) 476.465
Dual form 476.2.bl.a.173.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0684794 + 0.0232456i) q^{3} +(-0.0410628 + 0.626497i) q^{5} +(2.51365 - 0.825556i) q^{7} +(-2.37591 - 1.82310i) q^{9} +(1.81936 + 1.59554i) q^{11} +(3.67133 + 3.67133i) q^{13} +(-0.0173753 + 0.0419476i) q^{15} +(0.282728 - 4.11340i) q^{17} +(2.90088 - 0.381908i) q^{19} +(0.191324 + 0.00189788i) q^{21} +(-0.901573 - 2.65595i) q^{23} +(4.56641 + 0.601180i) q^{25} +(-0.240854 - 0.360463i) q^{27} +(2.78844 + 1.86318i) q^{29} +(-2.44853 + 7.21314i) q^{31} +(0.0874997 + 0.151554i) q^{33} +(0.413991 + 1.60870i) q^{35} +(1.78609 + 2.03665i) q^{37} +(0.166068 + 0.336753i) q^{39} +(5.57345 - 3.72406i) q^{41} +(-7.87683 + 3.26269i) q^{43} +(1.23973 - 1.41364i) q^{45} +(1.97680 - 7.37750i) q^{47} +(5.63691 - 4.15032i) q^{49} +(0.114980 - 0.275111i) q^{51} +(-3.60948 + 2.76965i) q^{53} +(-1.07431 + 1.07431i) q^{55} +(0.207528 + 0.0412799i) q^{57} +(0.0570842 - 0.433597i) q^{59} +(4.53760 - 9.20135i) q^{61} +(-7.47729 - 2.62120i) q^{63} +(-2.45083 + 2.14932i) q^{65} +(-1.33687 - 0.771844i) q^{67} -0.202835i q^{69} +(-9.56540 + 1.90268i) q^{71} +(-5.17314 + 2.55111i) q^{73} +(0.298730 + 0.147318i) q^{75} +(5.89046 + 2.50865i) q^{77} +(-15.7351 + 5.34133i) q^{79} +(2.31720 + 8.64789i) q^{81} +(-9.91914 - 4.10864i) q^{83} +(2.56542 + 0.346036i) q^{85} +(0.147640 + 0.192408i) q^{87} +(-11.9769 - 3.20920i) q^{89} +(12.2593 + 6.19756i) q^{91} +(-0.335348 + 0.437034i) q^{93} +(0.120146 + 1.83308i) q^{95} +(-5.03836 + 7.54044i) q^{97} +(-1.41382 - 7.10774i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 8 q^{11} + 48 q^{15} - 24 q^{21} + 8 q^{25} - 32 q^{35} - 32 q^{37} - 16 q^{39} + 64 q^{49} + 32 q^{51} - 32 q^{53} - 48 q^{61} + 96 q^{63} + 16 q^{65} - 32 q^{71} + 120 q^{73} - 144 q^{75} + 16 q^{77}+ \cdots - 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0684794 + 0.0232456i 0.0395366 + 0.0134209i 0.341138 0.940013i \(-0.389188\pi\)
−0.301601 + 0.953434i \(0.597521\pi\)
\(4\) 0 0
\(5\) −0.0410628 + 0.626497i −0.0183638 + 0.280178i 0.978795 + 0.204844i \(0.0656688\pi\)
−0.997158 + 0.0753336i \(0.975998\pi\)
\(6\) 0 0
\(7\) 2.51365 0.825556i 0.950072 0.312031i
\(8\) 0 0
\(9\) −2.37591 1.82310i −0.791970 0.607700i
\(10\) 0 0
\(11\) 1.81936 + 1.59554i 0.548559 + 0.481073i 0.888184 0.459488i \(-0.151967\pi\)
−0.339625 + 0.940561i \(0.610300\pi\)
\(12\) 0 0
\(13\) 3.67133 + 3.67133i 1.01824 + 1.01824i 0.999830 + 0.0184124i \(0.00586119\pi\)
0.0184124 + 0.999830i \(0.494139\pi\)
\(14\) 0 0
\(15\) −0.0173753 + 0.0419476i −0.00448628 + 0.0108308i
\(16\) 0 0
\(17\) 0.282728 4.11340i 0.0685717 0.997646i
\(18\) 0 0
\(19\) 2.90088 0.381908i 0.665508 0.0876157i 0.209799 0.977745i \(-0.432719\pi\)
0.455709 + 0.890129i \(0.349386\pi\)
\(20\) 0 0
\(21\) 0.191324 + 0.00189788i 0.0417503 + 0.000414151i
\(22\) 0 0
\(23\) −0.901573 2.65595i −0.187991 0.553803i 0.811544 0.584291i \(-0.198627\pi\)
−0.999535 + 0.0304876i \(0.990294\pi\)
\(24\) 0 0
\(25\) 4.56641 + 0.601180i 0.913282 + 0.120236i
\(26\) 0 0
\(27\) −0.240854 0.360463i −0.0463523 0.0693712i
\(28\) 0 0
\(29\) 2.78844 + 1.86318i 0.517800 + 0.345983i 0.786851 0.617143i \(-0.211710\pi\)
−0.269051 + 0.963126i \(0.586710\pi\)
\(30\) 0 0
\(31\) −2.44853 + 7.21314i −0.439769 + 1.29552i 0.470828 + 0.882225i \(0.343955\pi\)
−0.910598 + 0.413294i \(0.864378\pi\)
\(32\) 0 0
\(33\) 0.0874997 + 0.151554i 0.0152317 + 0.0263821i
\(34\) 0 0
\(35\) 0.413991 + 1.60870i 0.0699772 + 0.271919i
\(36\) 0 0
\(37\) 1.78609 + 2.03665i 0.293632 + 0.334823i 0.879780 0.475381i \(-0.157690\pi\)
−0.586148 + 0.810204i \(0.699356\pi\)
\(38\) 0 0
\(39\) 0.166068 + 0.336753i 0.0265922 + 0.0539236i
\(40\) 0 0
\(41\) 5.57345 3.72406i 0.870427 0.581601i −0.0381716 0.999271i \(-0.512153\pi\)
0.908599 + 0.417670i \(0.137153\pi\)
\(42\) 0 0
\(43\) −7.87683 + 3.26269i −1.20120 + 0.497555i −0.891388 0.453241i \(-0.850268\pi\)
−0.309817 + 0.950796i \(0.600268\pi\)
\(44\) 0 0
\(45\) 1.23973 1.41364i 0.184808 0.210733i
\(46\) 0 0
\(47\) 1.97680 7.37750i 0.288345 1.07612i −0.658015 0.753005i \(-0.728604\pi\)
0.946360 0.323114i \(-0.104730\pi\)
\(48\) 0 0
\(49\) 5.63691 4.15032i 0.805273 0.592904i
\(50\) 0 0
\(51\) 0.114980 0.275111i 0.0161004 0.0385233i
\(52\) 0 0
\(53\) −3.60948 + 2.76965i −0.495800 + 0.380441i −0.826179 0.563407i \(-0.809490\pi\)
0.330379 + 0.943848i \(0.392823\pi\)
\(54\) 0 0
\(55\) −1.07431 + 1.07431i −0.144860 + 0.144860i
\(56\) 0 0
\(57\) 0.207528 + 0.0412799i 0.0274878 + 0.00546766i
\(58\) 0 0
\(59\) 0.0570842 0.433597i 0.00743173 0.0564496i −0.987327 0.158698i \(-0.949270\pi\)
0.994759 + 0.102249i \(0.0326037\pi\)
\(60\) 0 0
\(61\) 4.53760 9.20135i 0.580981 1.17811i −0.385818 0.922575i \(-0.626081\pi\)
0.966799 0.255538i \(-0.0822524\pi\)
\(62\) 0 0
\(63\) −7.47729 2.62120i −0.942050 0.330240i
\(64\) 0 0
\(65\) −2.45083 + 2.14932i −0.303988 + 0.266590i
\(66\) 0 0
\(67\) −1.33687 0.771844i −0.163325 0.0942957i 0.416110 0.909314i \(-0.363393\pi\)
−0.579435 + 0.815019i \(0.696727\pi\)
\(68\) 0 0
\(69\) 0.202835i 0.0244185i
\(70\) 0 0
\(71\) −9.56540 + 1.90268i −1.13520 + 0.225806i −0.726703 0.686952i \(-0.758948\pi\)
−0.408501 + 0.912758i \(0.633948\pi\)
\(72\) 0 0
\(73\) −5.17314 + 2.55111i −0.605470 + 0.298585i −0.719065 0.694942i \(-0.755430\pi\)
0.113596 + 0.993527i \(0.463763\pi\)
\(74\) 0 0
\(75\) 0.298730 + 0.147318i 0.0344944 + 0.0170108i
\(76\) 0 0
\(77\) 5.89046 + 2.50865i 0.671280 + 0.285887i
\(78\) 0 0
\(79\) −15.7351 + 5.34133i −1.77033 + 0.600947i −0.999355 0.0359155i \(-0.988565\pi\)
−0.770977 + 0.636862i \(0.780232\pi\)
\(80\) 0 0
\(81\) 2.31720 + 8.64789i 0.257466 + 0.960877i
\(82\) 0 0
\(83\) −9.91914 4.10864i −1.08877 0.450982i −0.235190 0.971949i \(-0.575571\pi\)
−0.853577 + 0.520967i \(0.825571\pi\)
\(84\) 0 0
\(85\) 2.56542 + 0.346036i 0.278259 + 0.0375329i
\(86\) 0 0
\(87\) 0.147640 + 0.192408i 0.0158287 + 0.0206283i
\(88\) 0 0
\(89\) −11.9769 3.20920i −1.26955 0.340175i −0.439691 0.898149i \(-0.644912\pi\)
−0.829858 + 0.557974i \(0.811579\pi\)
\(90\) 0 0
\(91\) 12.2593 + 6.19756i 1.28513 + 0.649681i
\(92\) 0 0
\(93\) −0.335348 + 0.437034i −0.0347740 + 0.0453183i
\(94\) 0 0
\(95\) 0.120146 + 1.83308i 0.0123267 + 0.188070i
\(96\) 0 0
\(97\) −5.03836 + 7.54044i −0.511568 + 0.765616i −0.993890 0.110379i \(-0.964794\pi\)
0.482322 + 0.875994i \(0.339794\pi\)
\(98\) 0 0
\(99\) −1.41382 7.10774i −0.142094 0.714355i
\(100\) 0 0
\(101\) 2.85907 4.95205i 0.284488 0.492748i −0.687997 0.725714i \(-0.741510\pi\)
0.972485 + 0.232966i \(0.0748431\pi\)
\(102\) 0 0
\(103\) 0.144141 0.0832197i 0.0142026 0.00819988i −0.492882 0.870096i \(-0.664057\pi\)
0.507084 + 0.861896i \(0.330723\pi\)
\(104\) 0 0
\(105\) −0.00904532 + 0.119786i −0.000882733 + 0.0116899i
\(106\) 0 0
\(107\) −3.31804 0.217476i −0.320767 0.0210242i −0.0958308 0.995398i \(-0.530551\pi\)
−0.224936 + 0.974373i \(0.572217\pi\)
\(108\) 0 0
\(109\) 4.34420 0.284734i 0.416099 0.0272726i 0.144084 0.989566i \(-0.453977\pi\)
0.272015 + 0.962293i \(0.412310\pi\)
\(110\) 0 0
\(111\) 0.0749675 + 0.180988i 0.00711560 + 0.0171786i
\(112\) 0 0
\(113\) 0.319206 1.60476i 0.0300284 0.150963i −0.962862 0.269993i \(-0.912979\pi\)
0.992891 + 0.119030i \(0.0379786\pi\)
\(114\) 0 0
\(115\) 1.70096 0.455772i 0.158616 0.0425010i
\(116\) 0 0
\(117\) −2.02955 15.4159i −0.187632 1.42520i
\(118\) 0 0
\(119\) −2.68516 10.5731i −0.246148 0.969232i
\(120\) 0 0
\(121\) −0.671449 5.10016i −0.0610408 0.463651i
\(122\) 0 0
\(123\) 0.468235 0.125463i 0.0422193 0.0113126i
\(124\) 0 0
\(125\) −1.17658 + 5.91505i −0.105236 + 0.529058i
\(126\) 0 0
\(127\) 4.48797 + 10.8349i 0.398243 + 0.961444i 0.988083 + 0.153923i \(0.0491909\pi\)
−0.589840 + 0.807520i \(0.700809\pi\)
\(128\) 0 0
\(129\) −0.615244 + 0.0403252i −0.0541692 + 0.00355044i
\(130\) 0 0
\(131\) −9.56160 0.626700i −0.835401 0.0547551i −0.358303 0.933605i \(-0.616645\pi\)
−0.477098 + 0.878850i \(0.658311\pi\)
\(132\) 0 0
\(133\) 6.97652 3.35482i 0.604941 0.290900i
\(134\) 0 0
\(135\) 0.235719 0.136093i 0.0202875 0.0117130i
\(136\) 0 0
\(137\) −9.47341 + 16.4084i −0.809368 + 1.40187i 0.103934 + 0.994584i \(0.466857\pi\)
−0.913302 + 0.407283i \(0.866476\pi\)
\(138\) 0 0
\(139\) −1.25504 6.30953i −0.106451 0.535167i −0.996803 0.0798944i \(-0.974542\pi\)
0.890352 0.455273i \(-0.150458\pi\)
\(140\) 0 0
\(141\) 0.306864 0.459255i 0.0258426 0.0386763i
\(142\) 0 0
\(143\) 0.821733 + 12.5372i 0.0687168 + 1.04842i
\(144\) 0 0
\(145\) −1.28178 + 1.67044i −0.106446 + 0.138723i
\(146\) 0 0
\(147\) 0.482490 0.153178i 0.0397951 0.0126339i
\(148\) 0 0
\(149\) −20.6836 5.54217i −1.69447 0.454032i −0.722933 0.690918i \(-0.757206\pi\)
−0.971537 + 0.236886i \(0.923873\pi\)
\(150\) 0 0
\(151\) −5.27237 6.87108i −0.429059 0.559161i 0.527929 0.849289i \(-0.322969\pi\)
−0.956988 + 0.290128i \(0.906302\pi\)
\(152\) 0 0
\(153\) −8.17088 + 9.25763i −0.660577 + 0.748435i
\(154\) 0 0
\(155\) −4.41847 1.83019i −0.354900 0.147004i
\(156\) 0 0
\(157\) −0.604756 2.25698i −0.0482648 0.180127i 0.937586 0.347755i \(-0.113056\pi\)
−0.985850 + 0.167628i \(0.946389\pi\)
\(158\) 0 0
\(159\) −0.311557 + 0.105759i −0.0247081 + 0.00838727i
\(160\) 0 0
\(161\) −4.45888 5.93184i −0.351409 0.467494i
\(162\) 0 0
\(163\) −12.5537 6.19082i −0.983284 0.484902i −0.121728 0.992564i \(-0.538843\pi\)
−0.861557 + 0.507661i \(0.830510\pi\)
\(164\) 0 0
\(165\) −0.0985410 + 0.0485951i −0.00767141 + 0.00378312i
\(166\) 0 0
\(167\) 22.8768 4.55048i 1.77026 0.352127i 0.801095 0.598537i \(-0.204251\pi\)
0.969166 + 0.246410i \(0.0792510\pi\)
\(168\) 0 0
\(169\) 13.9573i 1.07364i
\(170\) 0 0
\(171\) −7.58849 4.38122i −0.580306 0.335040i
\(172\) 0 0
\(173\) 16.3565 14.3443i 1.24356 1.09057i 0.251106 0.967960i \(-0.419206\pi\)
0.992454 0.122614i \(-0.0391276\pi\)
\(174\) 0 0
\(175\) 11.9747 2.25867i 0.905201 0.170740i
\(176\) 0 0
\(177\) 0.0139883 0.0283655i 0.00105143 0.00213208i
\(178\) 0 0
\(179\) −3.35750 + 25.5027i −0.250951 + 1.90616i 0.147653 + 0.989039i \(0.452828\pi\)
−0.398604 + 0.917123i \(0.630505\pi\)
\(180\) 0 0
\(181\) 19.1010 + 3.79942i 1.41976 + 0.282408i 0.844498 0.535559i \(-0.179899\pi\)
0.575265 + 0.817967i \(0.304899\pi\)
\(182\) 0 0
\(183\) 0.524624 0.524624i 0.0387813 0.0387813i
\(184\) 0 0
\(185\) −1.34930 + 1.03535i −0.0992023 + 0.0761206i
\(186\) 0 0
\(187\) 7.07748 7.03267i 0.517557 0.514280i
\(188\) 0 0
\(189\) −0.903006 0.707242i −0.0656840 0.0514443i
\(190\) 0 0
\(191\) −1.43880 + 5.36969i −0.104108 + 0.388537i −0.998242 0.0592617i \(-0.981125\pi\)
0.894134 + 0.447799i \(0.147792\pi\)
\(192\) 0 0
\(193\) 11.0491 12.5991i 0.795335 0.906906i −0.202035 0.979378i \(-0.564756\pi\)
0.997370 + 0.0724725i \(0.0230890\pi\)
\(194\) 0 0
\(195\) −0.217794 + 0.0902131i −0.0155965 + 0.00646030i
\(196\) 0 0
\(197\) 18.1369 12.1187i 1.29220 0.863421i 0.296409 0.955061i \(-0.404211\pi\)
0.995792 + 0.0916398i \(0.0292108\pi\)
\(198\) 0 0
\(199\) −2.25736 4.57748i −0.160020 0.324489i 0.802066 0.597236i \(-0.203734\pi\)
−0.962086 + 0.272747i \(0.912068\pi\)
\(200\) 0 0
\(201\) −0.0736063 0.0839319i −0.00519179 0.00592010i
\(202\) 0 0
\(203\) 8.54733 + 2.38137i 0.599905 + 0.167139i
\(204\) 0 0
\(205\) 2.10425 + 3.64467i 0.146967 + 0.254555i
\(206\) 0 0
\(207\) −2.70000 + 7.95395i −0.187663 + 0.552838i
\(208\) 0 0
\(209\) 5.88711 + 3.93364i 0.407220 + 0.272096i
\(210\) 0 0
\(211\) 14.1614 + 21.1940i 0.974908 + 1.45905i 0.886369 + 0.462980i \(0.153220\pi\)
0.0885393 + 0.996073i \(0.471780\pi\)
\(212\) 0 0
\(213\) −0.699262 0.0920596i −0.0479126 0.00630782i
\(214\) 0 0
\(215\) −1.72062 5.06878i −0.117345 0.345688i
\(216\) 0 0
\(217\) −0.199909 + 20.1527i −0.0135707 + 1.36806i
\(218\) 0 0
\(219\) −0.413556 + 0.0544456i −0.0279455 + 0.00367909i
\(220\) 0 0
\(221\) 16.1396 14.0637i 1.08567 0.946023i
\(222\) 0 0
\(223\) −0.291047 + 0.702650i −0.0194900 + 0.0470529i −0.933325 0.359033i \(-0.883107\pi\)
0.913835 + 0.406086i \(0.133107\pi\)
\(224\) 0 0
\(225\) −9.75338 9.75338i −0.650225 0.650225i
\(226\) 0 0
\(227\) −4.43349 3.88807i −0.294261 0.258060i 0.499467 0.866333i \(-0.333529\pi\)
−0.793728 + 0.608273i \(0.791863\pi\)
\(228\) 0 0
\(229\) 15.9411 + 12.2320i 1.05341 + 0.808313i 0.981952 0.189130i \(-0.0605667\pi\)
0.0714625 + 0.997443i \(0.477233\pi\)
\(230\) 0 0
\(231\) 0.345060 + 0.308718i 0.0227033 + 0.0203122i
\(232\) 0 0
\(233\) 0.984708 15.0237i 0.0645103 0.984238i −0.835813 0.549015i \(-0.815003\pi\)
0.900323 0.435223i \(-0.143330\pi\)
\(234\) 0 0
\(235\) 4.54081 + 1.54140i 0.296210 + 0.100550i
\(236\) 0 0
\(237\) −1.20169 −0.0780582
\(238\) 0 0
\(239\) −20.1344 −1.30239 −0.651193 0.758912i \(-0.725731\pi\)
−0.651193 + 0.758912i \(0.725731\pi\)
\(240\) 0 0
\(241\) −4.35126 1.47705i −0.280289 0.0951454i 0.177755 0.984075i \(-0.443117\pi\)
−0.458044 + 0.888929i \(0.651450\pi\)
\(242\) 0 0
\(243\) −0.127407 + 1.94386i −0.00817318 + 0.124699i
\(244\) 0 0
\(245\) 2.36870 + 3.70193i 0.151331 + 0.236508i
\(246\) 0 0
\(247\) 12.0522 + 9.24797i 0.766863 + 0.588434i
\(248\) 0 0
\(249\) −0.583749 0.511934i −0.0369936 0.0324425i
\(250\) 0 0
\(251\) −8.66466 8.66466i −0.546908 0.546908i 0.378637 0.925545i \(-0.376393\pi\)
−0.925545 + 0.378637i \(0.876393\pi\)
\(252\) 0 0
\(253\) 2.59738 6.27063i 0.163296 0.394231i
\(254\) 0 0
\(255\) 0.167635 + 0.0833313i 0.0104977 + 0.00521841i
\(256\) 0 0
\(257\) −0.971000 + 0.127835i −0.0605693 + 0.00797410i −0.160750 0.986995i \(-0.551391\pi\)
0.100181 + 0.994969i \(0.468058\pi\)
\(258\) 0 0
\(259\) 6.17099 + 3.64491i 0.383447 + 0.226484i
\(260\) 0 0
\(261\) −3.22833 9.51035i −0.199829 0.588676i
\(262\) 0 0
\(263\) 24.7165 + 3.25399i 1.52409 + 0.200650i 0.845542 0.533909i \(-0.179277\pi\)
0.678545 + 0.734559i \(0.262611\pi\)
\(264\) 0 0
\(265\) −1.58696 2.37506i −0.0974864 0.145899i
\(266\) 0 0
\(267\) −0.745572 0.498175i −0.0456282 0.0304878i
\(268\) 0 0
\(269\) −3.68173 + 10.8460i −0.224479 + 0.661293i 0.775088 + 0.631854i \(0.217706\pi\)
−0.999567 + 0.0294396i \(0.990628\pi\)
\(270\) 0 0
\(271\) −6.36756 11.0289i −0.386802 0.669961i 0.605215 0.796062i \(-0.293087\pi\)
−0.992017 + 0.126101i \(0.959754\pi\)
\(272\) 0 0
\(273\) 0.695446 + 0.709381i 0.0420903 + 0.0429337i
\(274\) 0 0
\(275\) 7.34876 + 8.37965i 0.443147 + 0.505312i
\(276\) 0 0
\(277\) 5.07519 + 10.2915i 0.304939 + 0.618354i 0.994366 0.106000i \(-0.0338045\pi\)
−0.689427 + 0.724355i \(0.742138\pi\)
\(278\) 0 0
\(279\) 18.9678 12.6739i 1.13557 0.758764i
\(280\) 0 0
\(281\) −20.9857 + 8.69258i −1.25190 + 0.518556i −0.907416 0.420234i \(-0.861948\pi\)
−0.344489 + 0.938790i \(0.611948\pi\)
\(282\) 0 0
\(283\) 9.06187 10.3331i 0.538672 0.614238i −0.416915 0.908945i \(-0.636889\pi\)
0.955587 + 0.294708i \(0.0952222\pi\)
\(284\) 0 0
\(285\) −0.0343835 + 0.128321i −0.00203670 + 0.00760107i
\(286\) 0 0
\(287\) 10.9353 13.9622i 0.645491 0.824163i
\(288\) 0 0
\(289\) −16.8401 2.32595i −0.990596 0.136821i
\(290\) 0 0
\(291\) −0.520306 + 0.399245i −0.0305009 + 0.0234042i
\(292\) 0 0
\(293\) −10.9937 + 10.9937i −0.642258 + 0.642258i −0.951110 0.308852i \(-0.900055\pi\)
0.308852 + 0.951110i \(0.400055\pi\)
\(294\) 0 0
\(295\) 0.269303 + 0.0535678i 0.0156795 + 0.00311884i
\(296\) 0 0
\(297\) 0.136933 1.04011i 0.00794563 0.0603531i
\(298\) 0 0
\(299\) 6.44088 13.0608i 0.372486 0.755327i
\(300\) 0 0
\(301\) −17.1061 + 14.7040i −0.985978 + 0.847526i
\(302\) 0 0
\(303\) 0.310901 0.272653i 0.0178608 0.0156635i
\(304\) 0 0
\(305\) 5.57829 + 3.22063i 0.319412 + 0.184413i
\(306\) 0 0
\(307\) 1.21378i 0.0692742i 0.999400 + 0.0346371i \(0.0110275\pi\)
−0.999400 + 0.0346371i \(0.988972\pi\)
\(308\) 0 0
\(309\) 0.0118052 0.00234819i 0.000671572 0.000133584i
\(310\) 0 0
\(311\) −1.10712 + 0.545971i −0.0627791 + 0.0309592i −0.473407 0.880844i \(-0.656976\pi\)
0.410628 + 0.911803i \(0.365309\pi\)
\(312\) 0 0
\(313\) 21.5525 + 10.6285i 1.21822 + 0.600760i 0.933750 0.357925i \(-0.116516\pi\)
0.284470 + 0.958685i \(0.408182\pi\)
\(314\) 0 0
\(315\) 1.94921 4.57687i 0.109826 0.257877i
\(316\) 0 0
\(317\) 11.9882 4.06946i 0.673326 0.228564i 0.0362252 0.999344i \(-0.488467\pi\)
0.637101 + 0.770780i \(0.280133\pi\)
\(318\) 0 0
\(319\) 2.10042 + 7.83886i 0.117601 + 0.438892i
\(320\) 0 0
\(321\) −0.222162 0.0920226i −0.0123999 0.00513620i
\(322\) 0 0
\(323\) −0.750780 12.0405i −0.0417745 0.669949i
\(324\) 0 0
\(325\) 14.5577 + 18.9719i 0.807514 + 1.05237i
\(326\) 0 0
\(327\) 0.304107 + 0.0814852i 0.0168172 + 0.00450614i
\(328\) 0 0
\(329\) −1.12156 20.1764i −0.0618336 1.11236i
\(330\) 0 0
\(331\) 1.20168 1.56605i 0.0660501 0.0860781i −0.759160 0.650904i \(-0.774390\pi\)
0.825210 + 0.564826i \(0.191057\pi\)
\(332\) 0 0
\(333\) −0.530583 8.09513i −0.0290758 0.443610i
\(334\) 0 0
\(335\) 0.538454 0.805853i 0.0294189 0.0440284i
\(336\) 0 0
\(337\) 3.79396 + 19.0735i 0.206670 + 1.03900i 0.935236 + 0.354025i \(0.115187\pi\)
−0.728566 + 0.684975i \(0.759813\pi\)
\(338\) 0 0
\(339\) 0.0591626 0.102473i 0.00321327 0.00556555i
\(340\) 0 0
\(341\) −15.9636 + 9.21660i −0.864479 + 0.499107i
\(342\) 0 0
\(343\) 10.7429 15.0861i 0.580064 0.814571i
\(344\) 0 0
\(345\) 0.127076 + 0.00832899i 0.00684153 + 0.000448418i
\(346\) 0 0
\(347\) −1.11513 + 0.0730894i −0.0598633 + 0.00392365i −0.0953053 0.995448i \(-0.530383\pi\)
0.0354421 + 0.999372i \(0.488716\pi\)
\(348\) 0 0
\(349\) −5.88275 14.2022i −0.314897 0.760228i −0.999509 0.0313207i \(-0.990029\pi\)
0.684613 0.728907i \(-0.259971\pi\)
\(350\) 0 0
\(351\) 0.439125 2.20763i 0.0234388 0.117835i
\(352\) 0 0
\(353\) −3.70446 + 0.992606i −0.197168 + 0.0528311i −0.356052 0.934466i \(-0.615877\pi\)
0.158883 + 0.987297i \(0.449211\pi\)
\(354\) 0 0
\(355\) −0.799239 6.07083i −0.0424192 0.322206i
\(356\) 0 0
\(357\) 0.0618995 0.786456i 0.00327607 0.0416237i
\(358\) 0 0
\(359\) 0.384008 + 2.91683i 0.0202672 + 0.153944i 0.998586 0.0531601i \(-0.0169294\pi\)
−0.978319 + 0.207104i \(0.933596\pi\)
\(360\) 0 0
\(361\) −10.0833 + 2.70182i −0.530702 + 0.142201i
\(362\) 0 0
\(363\) 0.0725760 0.364864i 0.00380925 0.0191504i
\(364\) 0 0
\(365\) −1.38584 3.34571i −0.0725381 0.175123i
\(366\) 0 0
\(367\) 30.7075 2.01267i 1.60292 0.105061i 0.762495 0.646994i \(-0.223974\pi\)
0.840422 + 0.541933i \(0.182307\pi\)
\(368\) 0 0
\(369\) −20.0314 1.31293i −1.04279 0.0683481i
\(370\) 0 0
\(371\) −6.78648 + 9.94178i −0.352337 + 0.516151i
\(372\) 0 0
\(373\) −16.5517 + 9.55615i −0.857017 + 0.494799i −0.863012 0.505183i \(-0.831425\pi\)
0.00599552 + 0.999982i \(0.498092\pi\)
\(374\) 0 0
\(375\) −0.218070 + 0.377709i −0.0112611 + 0.0195048i
\(376\) 0 0
\(377\) 3.39695 + 17.0776i 0.174952 + 0.879542i
\(378\) 0 0
\(379\) −7.71102 + 11.5404i −0.396089 + 0.592789i −0.974892 0.222679i \(-0.928520\pi\)
0.578803 + 0.815467i \(0.303520\pi\)
\(380\) 0 0
\(381\) 0.0554691 + 0.846295i 0.00284177 + 0.0433570i
\(382\) 0 0
\(383\) −16.6083 + 21.6443i −0.848643 + 1.10597i 0.144551 + 0.989497i \(0.453826\pi\)
−0.993194 + 0.116476i \(0.962840\pi\)
\(384\) 0 0
\(385\) −1.81354 + 3.58734i −0.0924265 + 0.182828i
\(386\) 0 0
\(387\) 24.6628 + 6.60839i 1.25368 + 0.335923i
\(388\) 0 0
\(389\) −22.0998 28.8011i −1.12051 1.46027i −0.870593 0.492005i \(-0.836264\pi\)
−0.249914 0.968268i \(-0.580402\pi\)
\(390\) 0 0
\(391\) −11.1799 + 2.95762i −0.565391 + 0.149573i
\(392\) 0 0
\(393\) −0.640205 0.265181i −0.0322941 0.0133766i
\(394\) 0 0
\(395\) −2.70020 10.0773i −0.135862 0.507044i
\(396\) 0 0
\(397\) −6.93312 + 2.35348i −0.347963 + 0.118118i −0.489949 0.871751i \(-0.662985\pi\)
0.141986 + 0.989869i \(0.454651\pi\)
\(398\) 0 0
\(399\) 0.555733 0.0675627i 0.0278215 0.00338237i
\(400\) 0 0
\(401\) −16.3379 8.05697i −0.815876 0.402346i −0.0140488 0.999901i \(-0.504472\pi\)
−0.801827 + 0.597556i \(0.796139\pi\)
\(402\) 0 0
\(403\) −35.4712 + 17.4924i −1.76694 + 0.871361i
\(404\) 0 0
\(405\) −5.51303 + 1.09661i −0.273945 + 0.0544910i
\(406\) 0 0
\(407\) 6.55519i 0.324929i
\(408\) 0 0
\(409\) −17.3134 9.99592i −0.856094 0.494266i 0.00660812 0.999978i \(-0.497897\pi\)
−0.862702 + 0.505712i \(0.831230\pi\)
\(410\) 0 0
\(411\) −1.03016 + 0.903424i −0.0508140 + 0.0445626i
\(412\) 0 0
\(413\) −0.214469 1.13704i −0.0105533 0.0559501i
\(414\) 0 0
\(415\) 2.98136 6.04560i 0.146349 0.296767i
\(416\) 0 0
\(417\) 0.0607243 0.461247i 0.00297368 0.0225874i
\(418\) 0 0
\(419\) −7.98251 1.58782i −0.389971 0.0775701i −0.00378943 0.999993i \(-0.501206\pi\)
−0.386182 + 0.922423i \(0.626206\pi\)
\(420\) 0 0
\(421\) 16.5980 16.5980i 0.808938 0.808938i −0.175535 0.984473i \(-0.556166\pi\)
0.984473 + 0.175535i \(0.0561657\pi\)
\(422\) 0 0
\(423\) −18.1466 + 13.9244i −0.882319 + 0.677027i
\(424\) 0 0
\(425\) 3.76395 18.6135i 0.182578 0.902888i
\(426\) 0 0
\(427\) 3.80974 26.8751i 0.184366 1.30058i
\(428\) 0 0
\(429\) −0.235164 + 0.877644i −0.0113538 + 0.0423730i
\(430\) 0 0
\(431\) 1.42154 1.62096i 0.0684733 0.0780789i −0.716589 0.697496i \(-0.754298\pi\)
0.785062 + 0.619417i \(0.212631\pi\)
\(432\) 0 0
\(433\) −10.1434 + 4.20152i −0.487459 + 0.201912i −0.612856 0.790194i \(-0.709980\pi\)
0.125397 + 0.992107i \(0.459980\pi\)
\(434\) 0 0
\(435\) −0.126606 + 0.0845953i −0.00607028 + 0.00405603i
\(436\) 0 0
\(437\) −3.62968 7.36027i −0.173631 0.352089i
\(438\) 0 0
\(439\) −1.20995 1.37969i −0.0577479 0.0658489i 0.722245 0.691638i \(-0.243110\pi\)
−0.779993 + 0.625789i \(0.784777\pi\)
\(440\) 0 0
\(441\) −20.9593 0.415860i −0.998060 0.0198028i
\(442\) 0 0
\(443\) 6.02389 + 10.4337i 0.286204 + 0.495719i 0.972900 0.231225i \(-0.0742733\pi\)
−0.686697 + 0.726944i \(0.740940\pi\)
\(444\) 0 0
\(445\) 2.50236 7.37172i 0.118623 0.349453i
\(446\) 0 0
\(447\) −1.28757 0.860329i −0.0609001 0.0406921i
\(448\) 0 0
\(449\) 6.14231 + 9.19262i 0.289874 + 0.433827i 0.947614 0.319418i \(-0.103487\pi\)
−0.657740 + 0.753245i \(0.728487\pi\)
\(450\) 0 0
\(451\) 16.0820 + 2.11724i 0.757273 + 0.0996969i
\(452\) 0 0
\(453\) −0.201326 0.593087i −0.00945912 0.0278657i
\(454\) 0 0
\(455\) −4.38616 + 7.42595i −0.205626 + 0.348134i
\(456\) 0 0
\(457\) 1.45796 0.191944i 0.0682005 0.00897877i −0.0963487 0.995348i \(-0.530716\pi\)
0.164549 + 0.986369i \(0.447383\pi\)
\(458\) 0 0
\(459\) −1.55083 + 0.888815i −0.0723864 + 0.0414863i
\(460\) 0 0
\(461\) −8.98903 + 21.7014i −0.418661 + 1.01074i 0.564075 + 0.825723i \(0.309233\pi\)
−0.982736 + 0.185013i \(0.940767\pi\)
\(462\) 0 0
\(463\) −25.2281 25.2281i −1.17245 1.17245i −0.981624 0.190823i \(-0.938884\pi\)
−0.190823 0.981624i \(-0.561116\pi\)
\(464\) 0 0
\(465\) −0.260030 0.228040i −0.0120586 0.0105751i
\(466\) 0 0
\(467\) 19.5644 + 15.0123i 0.905331 + 0.694685i 0.952609 0.304197i \(-0.0983880\pi\)
−0.0472781 + 0.998882i \(0.515055\pi\)
\(468\) 0 0
\(469\) −3.99764 0.836485i −0.184594 0.0386253i
\(470\) 0 0
\(471\) 0.0110516 0.168615i 0.000509230 0.00776935i
\(472\) 0 0
\(473\) −19.5366 6.63177i −0.898292 0.304929i
\(474\) 0 0
\(475\) 13.4762 0.618331
\(476\) 0 0
\(477\) 13.6252 0.623853
\(478\) 0 0
\(479\) 12.8646 + 4.36694i 0.587798 + 0.199530i 0.599464 0.800402i \(-0.295380\pi\)
−0.0116666 + 0.999932i \(0.503714\pi\)
\(480\) 0 0
\(481\) −0.919873 + 14.0345i −0.0419426 + 0.639920i
\(482\) 0 0
\(483\) −0.167452 0.509858i −0.00761933 0.0231993i
\(484\) 0 0
\(485\) −4.51717 3.46615i −0.205114 0.157390i
\(486\) 0 0
\(487\) −17.9002 15.6980i −0.811135 0.711346i 0.149620 0.988744i \(-0.452195\pi\)
−0.960755 + 0.277397i \(0.910528\pi\)
\(488\) 0 0
\(489\) −0.715763 0.715763i −0.0323679 0.0323679i
\(490\) 0 0
\(491\) 13.5360 32.6788i 0.610871 1.47477i −0.251174 0.967942i \(-0.580817\pi\)
0.862045 0.506831i \(-0.169183\pi\)
\(492\) 0 0
\(493\) 8.45236 10.9432i 0.380675 0.492857i
\(494\) 0 0
\(495\) 4.51104 0.593889i 0.202756 0.0266933i
\(496\) 0 0
\(497\) −22.4733 + 12.6794i −1.00807 + 0.568751i
\(498\) 0 0
\(499\) 7.26291 + 21.3959i 0.325133 + 0.957810i 0.979467 + 0.201604i \(0.0646156\pi\)
−0.654334 + 0.756205i \(0.727051\pi\)
\(500\) 0 0
\(501\) 1.67237 + 0.220172i 0.0747160 + 0.00983654i
\(502\) 0 0
\(503\) −12.0109 17.9755i −0.535538 0.801489i 0.460754 0.887528i \(-0.347579\pi\)
−0.996292 + 0.0860387i \(0.972579\pi\)
\(504\) 0 0
\(505\) 2.98504 + 1.99454i 0.132833 + 0.0887560i
\(506\) 0 0
\(507\) −0.324446 + 0.955787i −0.0144091 + 0.0424480i
\(508\) 0 0
\(509\) −11.9230 20.6513i −0.528479 0.915353i −0.999449 0.0332034i \(-0.989429\pi\)
0.470969 0.882150i \(-0.343904\pi\)
\(510\) 0 0
\(511\) −10.8974 + 10.6833i −0.482072 + 0.472602i
\(512\) 0 0
\(513\) −0.836352 0.953677i −0.0369259 0.0421059i
\(514\) 0 0
\(515\) 0.0462181 + 0.0937210i 0.00203661 + 0.00412984i
\(516\) 0 0
\(517\) 15.3676 10.2683i 0.675866 0.451600i
\(518\) 0 0
\(519\) 1.45352 0.602069i 0.0638026 0.0264279i
\(520\) 0 0
\(521\) −20.5094 + 23.3865i −0.898535 + 1.02458i 0.101024 + 0.994884i \(0.467788\pi\)
−0.999559 + 0.0296989i \(0.990545\pi\)
\(522\) 0 0
\(523\) −5.09815 + 19.0266i −0.222927 + 0.831973i 0.760298 + 0.649574i \(0.225053\pi\)
−0.983225 + 0.182399i \(0.941614\pi\)
\(524\) 0 0
\(525\) 0.872524 + 0.123687i 0.0380801 + 0.00539813i
\(526\) 0 0
\(527\) 28.9783 + 12.1112i 1.26231 + 0.527570i
\(528\) 0 0
\(529\) 12.0059 9.21245i 0.521996 0.400541i
\(530\) 0 0
\(531\) −0.926118 + 0.926118i −0.0401901 + 0.0401901i
\(532\) 0 0
\(533\) 34.1342 + 6.78972i 1.47852 + 0.294095i
\(534\) 0 0
\(535\) 0.272496 2.06981i 0.0117810 0.0894859i
\(536\) 0 0
\(537\) −0.822746 + 1.66836i −0.0355041 + 0.0719952i
\(538\) 0 0
\(539\) 16.8776 + 1.44297i 0.726970 + 0.0621530i
\(540\) 0 0
\(541\) 5.79237 5.07977i 0.249033 0.218396i −0.525724 0.850655i \(-0.676205\pi\)
0.774757 + 0.632259i \(0.217872\pi\)
\(542\) 0 0
\(543\) 1.21970 + 0.704195i 0.0523424 + 0.0302199i
\(544\) 0 0
\(545\) 2.73332i 0.117083i
\(546\) 0 0
\(547\) −14.0401 + 2.79276i −0.600313 + 0.119410i −0.485886 0.874022i \(-0.661503\pi\)
−0.114427 + 0.993432i \(0.536503\pi\)
\(548\) 0 0
\(549\) −27.5559 + 13.5891i −1.17606 + 0.579968i
\(550\) 0 0
\(551\) 8.80050 + 4.33992i 0.374914 + 0.184887i
\(552\) 0 0
\(553\) −35.1429 + 26.4164i −1.49443 + 1.12334i
\(554\) 0 0
\(555\) −0.116467 + 0.0395351i −0.00494373 + 0.00167817i
\(556\) 0 0
\(557\) 0.974877 + 3.63829i 0.0413069 + 0.154159i 0.983499 0.180914i \(-0.0579056\pi\)
−0.942192 + 0.335073i \(0.891239\pi\)
\(558\) 0 0
\(559\) −40.8968 16.9400i −1.72975 0.716486i
\(560\) 0 0
\(561\) 0.648140 0.317073i 0.0273645 0.0133868i
\(562\) 0 0
\(563\) −16.4027 21.3764i −0.691291 0.900908i 0.307425 0.951572i \(-0.400533\pi\)
−0.998716 + 0.0506645i \(0.983866\pi\)
\(564\) 0 0
\(565\) 0.992267 + 0.265877i 0.0417450 + 0.0111855i
\(566\) 0 0
\(567\) 12.9640 + 19.8248i 0.544435 + 0.832565i
\(568\) 0 0
\(569\) −5.09830 + 6.64423i −0.213732 + 0.278541i −0.887899 0.460038i \(-0.847836\pi\)
0.674168 + 0.738578i \(0.264503\pi\)
\(570\) 0 0
\(571\) −2.13827 32.6236i −0.0894837 1.36526i −0.772575 0.634924i \(-0.781032\pi\)
0.683091 0.730333i \(-0.260635\pi\)
\(572\) 0 0
\(573\) −0.223350 + 0.334267i −0.00933060 + 0.0139642i
\(574\) 0 0
\(575\) −2.52025 12.6702i −0.105102 0.528382i
\(576\) 0 0
\(577\) 11.9261 20.6566i 0.496489 0.859945i −0.503502 0.863994i \(-0.667955\pi\)
0.999992 + 0.00404886i \(0.00128879\pi\)
\(578\) 0 0
\(579\) 1.04951 0.605937i 0.0436163 0.0251819i
\(580\) 0 0
\(581\) −28.3252 2.13890i −1.17513 0.0887365i
\(582\) 0 0
\(583\) −10.9860 0.720064i −0.454996 0.0298220i
\(584\) 0 0
\(585\) 9.74138 0.638484i 0.402757 0.0263981i
\(586\) 0 0
\(587\) 11.4047 + 27.5334i 0.470722 + 1.13642i 0.963845 + 0.266464i \(0.0858554\pi\)
−0.493122 + 0.869960i \(0.664145\pi\)
\(588\) 0 0
\(589\) −4.34814 + 21.8596i −0.179162 + 0.900708i
\(590\) 0 0
\(591\) 1.52371 0.408277i 0.0626771 0.0167943i
\(592\) 0 0
\(593\) 5.44943 + 41.3926i 0.223781 + 1.69979i 0.622422 + 0.782682i \(0.286149\pi\)
−0.398641 + 0.917107i \(0.630518\pi\)
\(594\) 0 0
\(595\) 6.73426 1.24809i 0.276078 0.0511665i
\(596\) 0 0
\(597\) −0.0481765 0.365937i −0.00197173 0.0149768i
\(598\) 0 0
\(599\) 24.1246 6.46418i 0.985706 0.264119i 0.270260 0.962787i \(-0.412890\pi\)
0.715446 + 0.698668i \(0.246224\pi\)
\(600\) 0 0
\(601\) 2.04475 10.2797i 0.0834072 0.419316i −0.916411 0.400239i \(-0.868927\pi\)
0.999818 0.0190773i \(-0.00607286\pi\)
\(602\) 0 0
\(603\) 1.76914 + 4.27109i 0.0720450 + 0.173932i
\(604\) 0 0
\(605\) 3.22281 0.211234i 0.131026 0.00858788i
\(606\) 0 0
\(607\) −18.2938 1.19904i −0.742521 0.0486674i −0.310553 0.950556i \(-0.600514\pi\)
−0.431968 + 0.901889i \(0.642181\pi\)
\(608\) 0 0
\(609\) 0.529960 + 0.361763i 0.0214751 + 0.0146594i
\(610\) 0 0
\(611\) 34.3427 19.8278i 1.38936 0.802145i
\(612\) 0 0
\(613\) 1.20904 2.09411i 0.0488326 0.0845805i −0.840576 0.541694i \(-0.817783\pi\)
0.889409 + 0.457113i \(0.151117\pi\)
\(614\) 0 0
\(615\) 0.0593753 + 0.298500i 0.00239424 + 0.0120367i
\(616\) 0 0
\(617\) 26.7629 40.0535i 1.07743 1.61249i 0.335469 0.942051i \(-0.391105\pi\)
0.741963 0.670441i \(-0.233895\pi\)
\(618\) 0 0
\(619\) −0.683337 10.4257i −0.0274656 0.419045i −0.989347 0.145577i \(-0.953496\pi\)
0.961881 0.273467i \(-0.0881706\pi\)
\(620\) 0 0
\(621\) −0.740224 + 0.964679i −0.0297042 + 0.0387112i
\(622\) 0 0
\(623\) −32.7552 + 1.82078i −1.31231 + 0.0729481i
\(624\) 0 0
\(625\) 18.5869 + 4.98035i 0.743477 + 0.199214i
\(626\) 0 0
\(627\) 0.311706 + 0.406223i 0.0124483 + 0.0162230i
\(628\) 0 0
\(629\) 8.88254 6.77110i 0.354170 0.269982i
\(630\) 0 0
\(631\) −12.5893 5.21467i −0.501173 0.207593i 0.117752 0.993043i \(-0.462431\pi\)
−0.618925 + 0.785450i \(0.712431\pi\)
\(632\) 0 0
\(633\) 0.477094 + 1.78054i 0.0189628 + 0.0707701i
\(634\) 0 0
\(635\) −6.97233 + 2.36679i −0.276689 + 0.0939231i
\(636\) 0 0
\(637\) 35.9322 + 5.45776i 1.42368 + 0.216244i
\(638\) 0 0
\(639\) 26.1953 + 12.9181i 1.03627 + 0.511032i
\(640\) 0 0
\(641\) −2.90764 + 1.43389i −0.114845 + 0.0566353i −0.498804 0.866715i \(-0.666227\pi\)
0.383959 + 0.923350i \(0.374560\pi\)
\(642\) 0 0
\(643\) 2.18821 0.435261i 0.0862944 0.0171650i −0.151754 0.988418i \(-0.548492\pi\)
0.238049 + 0.971253i \(0.423492\pi\)
\(644\) 0 0
\(645\) 0.387104i 0.0152422i
\(646\) 0 0
\(647\) 24.6477 + 14.2304i 0.969001 + 0.559453i 0.898932 0.438089i \(-0.144345\pi\)
0.0700694 + 0.997542i \(0.477678\pi\)
\(648\) 0 0
\(649\) 0.795679 0.697791i 0.0312331 0.0273907i
\(650\) 0 0
\(651\) −0.482153 + 1.37540i −0.0188971 + 0.0539062i
\(652\) 0 0
\(653\) 7.89121 16.0018i 0.308807 0.626198i −0.686043 0.727561i \(-0.740654\pi\)
0.994850 + 0.101363i \(0.0323204\pi\)
\(654\) 0 0
\(655\) 0.785252 5.96458i 0.0306823 0.233055i
\(656\) 0 0
\(657\) 16.9418 + 3.36994i 0.660964 + 0.131474i
\(658\) 0 0
\(659\) −16.0901 + 16.0901i −0.626780 + 0.626780i −0.947256 0.320477i \(-0.896157\pi\)
0.320477 + 0.947256i \(0.396157\pi\)
\(660\) 0 0
\(661\) 30.6867 23.5467i 1.19357 0.915862i 0.195677 0.980668i \(-0.437310\pi\)
0.997898 + 0.0648063i \(0.0206429\pi\)
\(662\) 0 0
\(663\) 1.43215 0.587895i 0.0556201 0.0228319i
\(664\) 0 0
\(665\) 1.81531 + 4.50853i 0.0703948 + 0.174833i
\(666\) 0 0
\(667\) 2.43452 9.08574i 0.0942649 0.351801i
\(668\) 0 0
\(669\) −0.0362643 + 0.0413515i −0.00140206 + 0.00159874i
\(670\) 0 0
\(671\) 22.9367 9.50068i 0.885460 0.366770i
\(672\) 0 0
\(673\) −11.1558 + 7.45405i −0.430024 + 0.287333i −0.751685 0.659522i \(-0.770759\pi\)
0.321662 + 0.946855i \(0.395759\pi\)
\(674\) 0 0
\(675\) −0.883135 1.79082i −0.0339919 0.0689287i
\(676\) 0 0
\(677\) 19.0158 + 21.6833i 0.730836 + 0.833359i 0.991231 0.132143i \(-0.0421860\pi\)
−0.260395 + 0.965502i \(0.583853\pi\)
\(678\) 0 0
\(679\) −6.43964 + 23.1135i −0.247131 + 0.887015i
\(680\) 0 0
\(681\) −0.213222 0.369312i −0.00817070 0.0141521i
\(682\) 0 0
\(683\) 6.40809 18.8776i 0.245199 0.722332i −0.752750 0.658307i \(-0.771273\pi\)
0.997948 0.0640250i \(-0.0203937\pi\)
\(684\) 0 0
\(685\) −9.89083 6.60884i −0.377909 0.252511i
\(686\) 0 0
\(687\) 0.807294 + 1.20820i 0.0308002 + 0.0460957i
\(688\) 0 0
\(689\) −23.4199 3.08329i −0.892226 0.117464i
\(690\) 0 0
\(691\) 2.22038 + 6.54102i 0.0844671 + 0.248832i 0.980955 0.194237i \(-0.0622230\pi\)
−0.896488 + 0.443069i \(0.853890\pi\)
\(692\) 0 0
\(693\) −9.42169 16.6992i −0.357900 0.634351i
\(694\) 0 0
\(695\) 4.00444 0.527194i 0.151897 0.0199976i
\(696\) 0 0
\(697\) −13.7428 23.9787i −0.520545 0.908260i
\(698\) 0 0
\(699\) 0.416668 1.00593i 0.0157598 0.0380476i
\(700\) 0 0
\(701\) 25.2196 + 25.2196i 0.952532 + 0.952532i 0.998923 0.0463917i \(-0.0147722\pi\)
−0.0463917 + 0.998923i \(0.514772\pi\)
\(702\) 0 0
\(703\) 5.95906 + 5.22596i 0.224750 + 0.197101i
\(704\) 0 0
\(705\) 0.275121 + 0.211108i 0.0103617 + 0.00795079i
\(706\) 0 0
\(707\) 3.09851 14.8081i 0.116532 0.556915i
\(708\) 0 0
\(709\) −0.150312 + 2.29331i −0.00564507 + 0.0861271i −0.999752 0.0222786i \(-0.992908\pi\)
0.994107 + 0.108406i \(0.0345746\pi\)
\(710\) 0 0
\(711\) 47.1229 + 15.9961i 1.76725 + 0.599899i
\(712\) 0 0
\(713\) 21.3653 0.800135
\(714\) 0 0
\(715\) −7.88828 −0.295005
\(716\) 0 0
\(717\) −1.37879 0.468037i −0.0514919 0.0174792i
\(718\) 0 0
\(719\) −2.88044 + 43.9470i −0.107422 + 1.63895i 0.515662 + 0.856792i \(0.327546\pi\)
−0.623084 + 0.782155i \(0.714121\pi\)
\(720\) 0 0
\(721\) 0.293617 0.328182i 0.0109349 0.0122221i
\(722\) 0 0
\(723\) −0.263637 0.202296i −0.00980475 0.00752345i
\(724\) 0 0
\(725\) 11.6131 + 10.1844i 0.431298 + 0.378239i
\(726\) 0 0
\(727\) −19.0151 19.0151i −0.705231 0.705231i 0.260297 0.965529i \(-0.416179\pi\)
−0.965529 + 0.260297i \(0.916179\pi\)
\(728\) 0 0
\(729\) 10.2245 24.6842i 0.378687 0.914230i
\(730\) 0 0
\(731\) 11.1937 + 33.3230i 0.414016 + 1.23250i
\(732\) 0 0
\(733\) −0.500212 + 0.0658541i −0.0184757 + 0.00243238i −0.139758 0.990186i \(-0.544633\pi\)
0.121283 + 0.992618i \(0.461299\pi\)
\(734\) 0 0
\(735\) 0.0761533 + 0.308568i 0.00280896 + 0.0113817i
\(736\) 0 0
\(737\) −1.20075 3.53730i −0.0442302 0.130298i
\(738\) 0 0
\(739\) −47.4275 6.24395i −1.74465 0.229688i −0.810293 0.586025i \(-0.800692\pi\)
−0.934357 + 0.356338i \(0.884025\pi\)
\(740\) 0 0
\(741\) 0.610352 + 0.913456i 0.0224218 + 0.0335567i
\(742\) 0 0
\(743\) 18.7633 + 12.5372i 0.688358 + 0.459946i 0.849917 0.526917i \(-0.176652\pi\)
−0.161559 + 0.986863i \(0.551652\pi\)
\(744\) 0 0
\(745\) 4.32148 12.7307i 0.158327 0.466416i
\(746\) 0 0
\(747\) 16.0765 + 27.8454i 0.588209 + 1.01881i
\(748\) 0 0
\(749\) −8.51995 + 2.19257i −0.311312 + 0.0801148i
\(750\) 0 0
\(751\) −7.73727 8.82266i −0.282337 0.321944i 0.593237 0.805028i \(-0.297850\pi\)
−0.875574 + 0.483084i \(0.839516\pi\)
\(752\) 0 0
\(753\) −0.391935 0.794766i −0.0142829 0.0289629i
\(754\) 0 0
\(755\) 4.52121 3.02098i 0.164544 0.109945i
\(756\) 0 0
\(757\) 25.2871 10.4743i 0.919076 0.380694i 0.127552 0.991832i \(-0.459288\pi\)
0.791524 + 0.611138i \(0.209288\pi\)
\(758\) 0 0
\(759\) 0.323632 0.369031i 0.0117471 0.0133950i
\(760\) 0 0
\(761\) −3.11390 + 11.6212i −0.112879 + 0.421269i −0.999119 0.0419558i \(-0.986641\pi\)
0.886241 + 0.463225i \(0.153308\pi\)
\(762\) 0 0
\(763\) 10.6848 4.30210i 0.386814 0.155747i
\(764\) 0 0
\(765\) −5.46436 5.49918i −0.197564 0.198823i
\(766\) 0 0
\(767\) 1.80145 1.38230i 0.0650467 0.0499121i
\(768\) 0 0
\(769\) 1.07491 1.07491i 0.0387624 0.0387624i −0.687460 0.726222i \(-0.741274\pi\)
0.726222 + 0.687460i \(0.241274\pi\)
\(770\) 0 0
\(771\) −0.0694651 0.0138175i −0.00250173 0.000497624i
\(772\) 0 0
\(773\) −1.97936 + 15.0347i −0.0711925 + 0.540760i 0.918268 + 0.395959i \(0.129588\pi\)
−0.989461 + 0.144802i \(0.953746\pi\)
\(774\) 0 0
\(775\) −15.5174 + 31.4662i −0.557401 + 1.13030i
\(776\) 0 0
\(777\) 0.337858 + 0.393050i 0.0121206 + 0.0141006i
\(778\) 0 0
\(779\) 14.7457 12.9316i 0.528318 0.463323i
\(780\) 0 0
\(781\) −20.4387 11.8003i −0.731356 0.422248i
\(782\) 0 0
\(783\) 1.45388i 0.0519576i
\(784\) 0 0
\(785\) 1.43882 0.286200i 0.0513538 0.0102149i
\(786\) 0 0
\(787\) 5.75464 2.83788i 0.205131 0.101159i −0.336822 0.941568i \(-0.609352\pi\)
0.541952 + 0.840409i \(0.317685\pi\)
\(788\) 0 0
\(789\) 1.61693 + 0.797383i 0.0575644 + 0.0283876i
\(790\) 0 0
\(791\) −0.522443 4.29732i −0.0185759 0.152795i
\(792\) 0 0
\(793\) 50.4402 17.1221i 1.79118 0.608025i
\(794\) 0 0
\(795\) −0.0534646 0.199533i −0.00189619 0.00707669i
\(796\) 0 0
\(797\) −10.1182 4.19111i −0.358406 0.148457i 0.196212 0.980561i \(-0.437136\pi\)
−0.554619 + 0.832105i \(0.687136\pi\)
\(798\) 0 0
\(799\) −29.7877 10.2172i −1.05381 0.361458i
\(800\) 0 0
\(801\) 22.6054 + 29.4599i 0.798721 + 1.04091i
\(802\) 0 0
\(803\) −13.4822 3.61255i −0.475777 0.127484i
\(804\) 0 0
\(805\) 3.89937 2.54990i 0.137435 0.0898720i
\(806\) 0 0
\(807\) −0.504245 + 0.657145i −0.0177503 + 0.0231326i
\(808\) 0 0
\(809\) 0.590832 + 9.01436i 0.0207726 + 0.316928i 0.995583 + 0.0938908i \(0.0299305\pi\)
−0.974810 + 0.223037i \(0.928403\pi\)
\(810\) 0 0
\(811\) 24.7423 37.0295i 0.868819 1.30028i −0.0839144 0.996473i \(-0.526742\pi\)
0.952734 0.303807i \(-0.0982578\pi\)
\(812\) 0 0
\(813\) −0.179672 0.903274i −0.00630138 0.0316792i
\(814\) 0 0
\(815\) 4.39402 7.61067i 0.153916 0.266590i
\(816\) 0 0
\(817\) −21.6037 + 12.4729i −0.755817 + 0.436371i
\(818\) 0 0
\(819\) −17.8283 37.0748i −0.622971 1.29550i
\(820\) 0 0
\(821\) 41.2477 + 2.70352i 1.43956 + 0.0943535i 0.765076 0.643940i \(-0.222701\pi\)
0.674480 + 0.738293i \(0.264368\pi\)
\(822\) 0 0
\(823\) −5.56054 + 0.364457i −0.193828 + 0.0127042i −0.162008 0.986789i \(-0.551797\pi\)
−0.0318202 + 0.999494i \(0.510130\pi\)
\(824\) 0 0
\(825\) 0.308448 + 0.744660i 0.0107388 + 0.0259257i
\(826\) 0 0
\(827\) −3.00896 + 15.1271i −0.104632 + 0.526019i 0.892547 + 0.450954i \(0.148916\pi\)
−0.997179 + 0.0750647i \(0.976084\pi\)
\(828\) 0 0
\(829\) 8.56943 2.29617i 0.297628 0.0797493i −0.106915 0.994268i \(-0.534097\pi\)
0.404543 + 0.914519i \(0.367431\pi\)
\(830\) 0 0
\(831\) 0.108314 + 0.822730i 0.00375739 + 0.0285402i
\(832\) 0 0
\(833\) −15.4782 24.3603i −0.536289 0.844034i
\(834\) 0 0
\(835\) 1.91148 + 14.5191i 0.0661494 + 0.502455i
\(836\) 0 0
\(837\) 3.18981 0.854707i 0.110256 0.0295430i
\(838\) 0 0
\(839\) 5.35595 26.9262i 0.184908 0.929594i −0.771203 0.636589i \(-0.780345\pi\)
0.956111 0.293005i \(-0.0946553\pi\)
\(840\) 0 0
\(841\) −6.79384 16.4018i −0.234271 0.565579i
\(842\) 0 0
\(843\) −1.63916 + 0.107436i −0.0564555 + 0.00370029i
\(844\) 0 0
\(845\) −8.74420 0.573125i −0.300810 0.0197161i
\(846\) 0 0
\(847\) −5.89826 12.2657i −0.202667 0.421455i
\(848\) 0 0
\(849\) 0.860750 0.496954i 0.0295409 0.0170554i
\(850\) 0 0
\(851\) 3.79894 6.57996i 0.130226 0.225558i
\(852\) 0 0
\(853\) 9.91896 + 49.8660i 0.339619 + 1.70738i 0.652671 + 0.757642i \(0.273649\pi\)
−0.313052 + 0.949736i \(0.601351\pi\)
\(854\) 0 0
\(855\) 3.05642 4.57426i 0.104528 0.156436i
\(856\) 0 0
\(857\) −0.257568 3.92973i −0.00879835 0.134237i −0.999998 0.00186345i \(-0.999407\pi\)
0.991200 0.132373i \(-0.0422598\pi\)
\(858\) 0 0
\(859\) −3.71729 + 4.84447i −0.126832 + 0.165291i −0.852453 0.522804i \(-0.824886\pi\)
0.725621 + 0.688095i \(0.241553\pi\)
\(860\) 0 0
\(861\) 1.07340 0.701925i 0.0365815 0.0239215i
\(862\) 0 0
\(863\) −21.7747 5.83450i −0.741218 0.198609i −0.131599 0.991303i \(-0.542011\pi\)
−0.609619 + 0.792694i \(0.708678\pi\)
\(864\) 0 0
\(865\) 8.31499 + 10.8363i 0.282718 + 0.368445i
\(866\) 0 0
\(867\) −1.09913 0.550739i −0.0373285 0.0187041i
\(868\) 0 0
\(869\) −37.1501 15.3881i −1.26023 0.522005i
\(870\) 0 0
\(871\) −2.07441 7.74179i −0.0702886 0.262320i
\(872\) 0 0
\(873\) 25.7177 8.72997i 0.870411 0.295465i
\(874\) 0 0
\(875\) 1.92570 + 15.8397i 0.0651005 + 0.535480i
\(876\) 0 0
\(877\) 27.5267 + 13.5747i 0.929512 + 0.458384i 0.843028 0.537869i \(-0.180770\pi\)
0.0864831 + 0.996253i \(0.472437\pi\)
\(878\) 0 0
\(879\) −1.00840 + 0.497286i −0.0340124 + 0.0167730i
\(880\) 0 0
\(881\) −41.3305 + 8.22114i −1.39246 + 0.276977i −0.833638 0.552311i \(-0.813746\pi\)
−0.558821 + 0.829288i \(0.688746\pi\)
\(882\) 0 0
\(883\) 25.4892i 0.857780i 0.903357 + 0.428890i \(0.141095\pi\)
−0.903357 + 0.428890i \(0.858905\pi\)
\(884\) 0 0
\(885\) 0.0171965 + 0.00992842i 0.000578055 + 0.000333740i
\(886\) 0 0
\(887\) 8.73722 7.66234i 0.293367 0.257276i −0.499992 0.866030i \(-0.666664\pi\)
0.793359 + 0.608754i \(0.208330\pi\)
\(888\) 0 0
\(889\) 20.2260 + 23.5302i 0.678360 + 0.789176i
\(890\) 0 0
\(891\) −9.58223 + 19.4308i −0.321017 + 0.650958i
\(892\) 0 0
\(893\) 2.91692 22.1562i 0.0976110 0.741429i
\(894\) 0 0
\(895\) −15.8395 3.15067i −0.529456 0.105315i
\(896\) 0 0
\(897\) 0.744675 0.744675i 0.0248640 0.0248640i
\(898\) 0 0
\(899\) −20.2669 + 15.5514i −0.675940 + 0.518667i
\(900\) 0 0
\(901\) 10.3722 + 15.6303i 0.345548 + 0.520721i
\(902\) 0 0
\(903\) −1.51322 + 0.609282i −0.0503568 + 0.0202756i
\(904\) 0 0
\(905\) −3.16466 + 11.8107i −0.105197 + 0.392600i
\(906\) 0 0
\(907\) −18.0957 + 20.6342i −0.600858 + 0.685148i −0.969687 0.244350i \(-0.921426\pi\)
0.368829 + 0.929497i \(0.379759\pi\)
\(908\) 0 0
\(909\) −15.8210 + 6.55326i −0.524749 + 0.217358i
\(910\) 0 0
\(911\) −7.92486 + 5.29522i −0.262562 + 0.175439i −0.679883 0.733321i \(-0.737969\pi\)
0.417320 + 0.908759i \(0.362969\pi\)
\(912\) 0 0
\(913\) −11.4910 23.3015i −0.380297 0.771167i
\(914\) 0 0
\(915\) 0.307133 + 0.350218i 0.0101535 + 0.0115778i
\(916\) 0 0
\(917\) −24.5519 + 6.31833i −0.810776 + 0.208650i
\(918\) 0 0
\(919\) −0.171885 0.297714i −0.00566997 0.00982068i 0.863176 0.504902i \(-0.168471\pi\)
−0.868846 + 0.495082i \(0.835138\pi\)
\(920\) 0 0
\(921\) −0.0282151 + 0.0831190i −0.000929720 + 0.00273887i
\(922\) 0 0
\(923\) −42.1031 28.1324i −1.38584 0.925988i
\(924\) 0 0
\(925\) 6.93165 + 10.3739i 0.227911 + 0.341093i
\(926\) 0 0
\(927\) −0.494183 0.0650605i −0.0162311 0.00213687i
\(928\) 0 0
\(929\) −8.54839 25.1828i −0.280464 0.826219i −0.992298 0.123872i \(-0.960469\pi\)
0.711835 0.702347i \(-0.247865\pi\)
\(930\) 0 0
\(931\) 14.7670 14.1924i 0.483968 0.465136i
\(932\) 0 0
\(933\) −0.0885064 + 0.0116521i −0.00289757 + 0.000381472i
\(934\) 0 0
\(935\) 4.11533 + 4.72280i 0.134586 + 0.154452i
\(936\) 0 0
\(937\) −18.1089 + 43.7187i −0.591592 + 1.42823i 0.290373 + 0.956914i \(0.406221\pi\)
−0.881965 + 0.471316i \(0.843779\pi\)
\(938\) 0 0
\(939\) 1.22884 + 1.22884i 0.0401016 + 0.0401016i
\(940\) 0 0
\(941\) −34.6208 30.3617i −1.12861 0.989762i −0.128609 0.991695i \(-0.541051\pi\)
−0.999998 + 0.00193359i \(0.999385\pi\)
\(942\) 0 0
\(943\) −14.9158 11.4453i −0.485725 0.372710i
\(944\) 0 0
\(945\) 0.480165 0.536689i 0.0156198 0.0174585i
\(946\) 0 0
\(947\) −3.73521 + 56.9883i −0.121378 + 1.85187i 0.311286 + 0.950316i \(0.399240\pi\)
−0.432664 + 0.901555i \(0.642426\pi\)
\(948\) 0 0
\(949\) −28.3582 9.62632i −0.920547 0.312484i
\(950\) 0 0
\(951\) 0.915545 0.0296886
\(952\) 0 0
\(953\) 61.5184 1.99278 0.996388 0.0849160i \(-0.0270622\pi\)
0.996388 + 0.0849160i \(0.0270622\pi\)
\(954\) 0 0
\(955\) −3.30502 1.12190i −0.106948 0.0363039i
\(956\) 0 0
\(957\) −0.0383840 + 0.585626i −0.00124078 + 0.0189306i
\(958\) 0 0
\(959\) −10.2668 + 49.0660i −0.331532 + 1.58442i
\(960\) 0 0
\(961\) −21.4402 16.4516i −0.691618 0.530697i
\(962\) 0 0
\(963\) 7.48689 + 6.56583i 0.241262 + 0.211581i
\(964\) 0 0
\(965\) 7.43961 + 7.43961i 0.239490 + 0.239490i
\(966\) 0 0
\(967\) 13.5374 32.6821i 0.435333 1.05099i −0.542208 0.840244i \(-0.682412\pi\)
0.977542 0.210743i \(-0.0675883\pi\)
\(968\) 0 0
\(969\) 0.228475 0.841976i 0.00733968 0.0270482i
\(970\) 0 0
\(971\) 49.5136 6.51859i 1.58897 0.209192i 0.716402 0.697688i \(-0.245788\pi\)
0.872566 + 0.488496i \(0.162454\pi\)
\(972\) 0 0
\(973\) −8.36362 14.8239i −0.268125 0.475231i
\(974\) 0 0
\(975\) 0.555886 + 1.63759i 0.0178026 + 0.0524448i
\(976\) 0 0
\(977\) 19.6358 + 2.58511i 0.628206 + 0.0827049i 0.437906 0.899021i \(-0.355720\pi\)
0.190300 + 0.981726i \(0.439054\pi\)
\(978\) 0 0
\(979\) −16.6699 24.9483i −0.532774 0.797352i
\(980\) 0 0
\(981\) −10.8405 7.24341i −0.346111 0.231264i
\(982\) 0 0
\(983\) 3.39785 10.0098i 0.108375 0.319262i −0.879191 0.476470i \(-0.841916\pi\)
0.987565 + 0.157208i \(0.0502494\pi\)
\(984\) 0 0
\(985\) 6.84758 + 11.8603i 0.218182 + 0.377902i
\(986\) 0 0
\(987\) 0.392210 1.40774i 0.0124842 0.0448089i
\(988\) 0 0
\(989\) 15.7671 + 17.9789i 0.501363 + 0.571695i
\(990\) 0 0
\(991\) −16.9288 34.3281i −0.537760 1.09047i −0.980989 0.194061i \(-0.937834\pi\)
0.443229 0.896408i \(-0.353833\pi\)
\(992\) 0 0
\(993\) 0.118694 0.0793088i 0.00376664 0.00251679i
\(994\) 0 0
\(995\) 2.96047 1.22627i 0.0938532 0.0388753i
\(996\) 0 0
\(997\) 39.8629 45.4550i 1.26247 1.43957i 0.414049 0.910255i \(-0.364114\pi\)
0.848423 0.529318i \(-0.177552\pi\)
\(998\) 0 0
\(999\) 0.303950 1.13436i 0.00961655 0.0358895i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 476.2.bl.a.465.6 yes 192
7.5 odd 6 inner 476.2.bl.a.397.6 yes 192
17.3 odd 16 inner 476.2.bl.a.241.6 yes 192
119.54 even 48 inner 476.2.bl.a.173.6 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
476.2.bl.a.173.6 192 119.54 even 48 inner
476.2.bl.a.241.6 yes 192 17.3 odd 16 inner
476.2.bl.a.397.6 yes 192 7.5 odd 6 inner
476.2.bl.a.465.6 yes 192 1.1 even 1 trivial