Properties

Label 476.2.q.a
Level $476$
Weight $2$
Character orbit 476.q
Analytic conductor $3.801$
Analytic rank $0$
Dimension $16$
CM discriminant -68
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,2,Mod(271,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.271");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 476.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.80087913621\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 16x^{12} + 175x^{8} - 1296x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{8} - \beta_{4}) q^{2} + ( - \beta_{14} + \beta_{12}) q^{3} + (2 \beta_{3} - 2) q^{4} + ( - \beta_{13} + \beta_{10} - \beta_{6}) q^{6} + (\beta_{7} + \beta_{6}) q^{7} + 2 \beta_{8} q^{8}+ \cdots + (2 \beta_{15} + 9 \beta_{14} + \cdots - \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 24 q^{9} - 32 q^{16} - 8 q^{18} - 16 q^{21} + 40 q^{25} + 72 q^{26} - 96 q^{33} - 96 q^{36} + 40 q^{42} + 48 q^{53} + 128 q^{64} - 16 q^{72} - 48 q^{77} - 136 q^{81} + 64 q^{84} + 40 q^{93}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 16x^{12} + 175x^{8} - 1296x^{4} + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -4\nu^{15} + 1225\nu^{11} - 5425\nu^{7} + 80784\nu^{3} + 127575\nu ) / 127575 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -16\nu^{12} + 175\nu^{8} - 2800\nu^{4} + 20736 ) / 14175 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 31\nu^{14} - 1225\nu^{10} + 5425\nu^{6} - 40176\nu^{2} ) / 127575 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -47\nu^{12} + 1400\nu^{8} - 8225\nu^{4} + 60912 ) / 14175 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -16\nu^{15} + 175\nu^{11} + 2870\nu^{7} + 6561\nu^{3} ) / 76545 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -82\nu^{15} - 875\nu^{11} - 14350\nu^{7} + 106272\nu^{3} ) / 382725 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -16\nu^{14} + 175\nu^{10} - 775\nu^{6} + 6561\nu^{2} ) / 18225 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{12} - 104 ) / 175 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{15} - 9\nu^{13} + 1504\nu^{3} + 639\nu ) / 4725 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{14} - 16\nu^{10} + 175\nu^{6} - 1296\nu^{2} ) / 729 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( \nu^{15} - 16\nu^{11} + 175\nu^{7} - 1296\nu^{3} + 2187\nu ) / 2187 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 175 \nu^{15} + 279 \nu^{13} + 2800 \nu^{11} - 11025 \nu^{9} - 30625 \nu^{7} + 48825 \nu^{5} + \cdots - 361584 \nu ) / 382725 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 256 \nu^{15} - 432 \nu^{13} - 2800 \nu^{11} + 4725 \nu^{9} + 30625 \nu^{7} - 75600 \nu^{5} + \cdots + 559872 \nu ) / 382725 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 431 \nu^{15} - 432 \nu^{13} + 5600 \nu^{11} + 4725 \nu^{9} - 61250 \nu^{7} - 75600 \nu^{5} + \cdots + 559872 \nu ) / 382725 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{15} - \beta_{14} + 5\beta_{12} + 2\beta_{7} + 2\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -4\beta_{15} + 4\beta_{14} - 6\beta_{12} + 13\beta_{7} + 7\beta_{6} + 6\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{9} + \beta_{5} - 8\beta_{3} + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{15} - 44\beta_{14} - 21\beta_{13} + 31\beta_{12} + 21\beta_{10} + 18\beta_{7} + 18\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 7\beta_{11} + 9\beta_{8} - 7\beta_{4} + 7\beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -15\beta_{15} + 15\beta_{14} - 5\beta_{12} + 5\beta_{7} + 112\beta_{6} + 5\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 16\beta_{5} - 47\beta_{3} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -45\beta_{15} - 172\beta_{14} - 336\beta_{13} - 127\beta_{12} + 127\beta_{7} + 127\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 31\beta_{11} - 175\beta_{4} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 82\beta_{15} - 82\beta_{14} - 164\beta_{12} - 1061\beta_{7} + 164\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -175\beta_{9} - 104 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( -979\beta_{15} + 979\beta_{14} - 1220\beta_{12} - 3675\beta_{10} + 1717\beta_{7} + 1717\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( -1575\beta_{8} - 1575\beta_{4} + 71\beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( -3434\beta_{15} + 3434\beta_{14} - 5151\beta_{12} - 5377\beta_{7} - 10528\beta_{6} + 5151\beta_{2} ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/476\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(309\) \(409\)
\(\chi(n)\) \(-1\) \(-1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
−0.643691 + 1.60800i
1.71441 + 0.246547i
−1.71441 0.246547i
0.643691 1.60800i
−0.246547 + 1.71441i
1.60800 + 0.643691i
−1.60800 0.643691i
0.246547 1.71441i
−0.643691 1.60800i
1.71441 0.246547i
−1.71441 + 0.246547i
0.643691 + 1.60800i
−0.246547 1.71441i
1.60800 0.643691i
−1.60800 + 0.643691i
0.246547 + 1.71441i
−0.707107 + 1.22474i −2.78514 + 1.60800i −1.00000 1.73205i 0 4.54811i 2.58495 + 0.563932i 2.82843 3.67132 6.35892i 0
271.2 −0.707107 + 1.22474i −0.427031 + 0.246547i −1.00000 1.73205i 0 0.697339i 2.58495 0.563932i 2.82843 −1.37843 + 2.38751i 0
271.3 −0.707107 + 1.22474i 0.427031 0.246547i −1.00000 1.73205i 0 0.697339i −2.58495 + 0.563932i 2.82843 −1.37843 + 2.38751i 0
271.4 −0.707107 + 1.22474i 2.78514 1.60800i −1.00000 1.73205i 0 4.54811i −2.58495 0.563932i 2.82843 3.67132 6.35892i 0
271.5 0.707107 1.22474i −2.96945 + 1.71441i −1.00000 1.73205i 0 4.84909i −0.563932 2.58495i −2.82843 4.37843 7.58366i 0
271.6 0.707107 1.22474i −1.11491 + 0.643691i −1.00000 1.73205i 0 1.82063i −0.563932 + 2.58495i −2.82843 −0.671323 + 1.16277i 0
271.7 0.707107 1.22474i 1.11491 0.643691i −1.00000 1.73205i 0 1.82063i 0.563932 2.58495i −2.82843 −0.671323 + 1.16277i 0
271.8 0.707107 1.22474i 2.96945 1.71441i −1.00000 1.73205i 0 4.84909i 0.563932 + 2.58495i −2.82843 4.37843 7.58366i 0
339.1 −0.707107 1.22474i −2.78514 1.60800i −1.00000 + 1.73205i 0 4.54811i 2.58495 0.563932i 2.82843 3.67132 + 6.35892i 0
339.2 −0.707107 1.22474i −0.427031 0.246547i −1.00000 + 1.73205i 0 0.697339i 2.58495 + 0.563932i 2.82843 −1.37843 2.38751i 0
339.3 −0.707107 1.22474i 0.427031 + 0.246547i −1.00000 + 1.73205i 0 0.697339i −2.58495 0.563932i 2.82843 −1.37843 2.38751i 0
339.4 −0.707107 1.22474i 2.78514 + 1.60800i −1.00000 + 1.73205i 0 4.54811i −2.58495 + 0.563932i 2.82843 3.67132 + 6.35892i 0
339.5 0.707107 + 1.22474i −2.96945 1.71441i −1.00000 + 1.73205i 0 4.84909i −0.563932 + 2.58495i −2.82843 4.37843 + 7.58366i 0
339.6 0.707107 + 1.22474i −1.11491 0.643691i −1.00000 + 1.73205i 0 1.82063i −0.563932 2.58495i −2.82843 −0.671323 1.16277i 0
339.7 0.707107 + 1.22474i 1.11491 + 0.643691i −1.00000 + 1.73205i 0 1.82063i 0.563932 + 2.58495i −2.82843 −0.671323 1.16277i 0
339.8 0.707107 + 1.22474i 2.96945 + 1.71441i −1.00000 + 1.73205i 0 4.84909i 0.563932 2.58495i −2.82843 4.37843 + 7.58366i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 271.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
68.d odd 2 1 CM by \(\Q(\sqrt{-17}) \)
4.b odd 2 1 inner
7.d odd 6 1 inner
17.b even 2 1 inner
28.f even 6 1 inner
119.h odd 6 1 inner
476.q even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 476.2.q.a 16
4.b odd 2 1 inner 476.2.q.a 16
7.d odd 6 1 inner 476.2.q.a 16
17.b even 2 1 inner 476.2.q.a 16
28.f even 6 1 inner 476.2.q.a 16
68.d odd 2 1 CM 476.2.q.a 16
119.h odd 6 1 inner 476.2.q.a 16
476.q even 6 1 inner 476.2.q.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
476.2.q.a 16 1.a even 1 1 trivial
476.2.q.a 16 4.b odd 2 1 inner
476.2.q.a 16 7.d odd 6 1 inner
476.2.q.a 16 17.b even 2 1 inner
476.2.q.a 16 28.f even 6 1 inner
476.2.q.a 16 68.d odd 2 1 CM
476.2.q.a 16 119.h odd 6 1 inner
476.2.q.a 16 476.q even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} - 24T_{3}^{14} + 412T_{3}^{12} - 3456T_{3}^{10} + 21087T_{3}^{8} - 37008T_{3}^{6} + 49564T_{3}^{4} - 11760T_{3}^{2} + 2401 \) acting on \(S_{2}^{\mathrm{new}}(476, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 2 T^{2} + 4)^{4} \) Copy content Toggle raw display
$3$ \( T^{16} - 24 T^{14} + \cdots + 2401 \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( (T^{8} - 64 T^{4} + 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 11716114081 \) Copy content Toggle raw display
$13$ \( (T^{4} + 44 T^{2} + 25)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 17 T^{2} + 289)^{4} \) Copy content Toggle raw display
$19$ \( T^{16} \) Copy content Toggle raw display
$23$ \( (T^{8} + 92 T^{6} + \cdots + 2775556)^{2} \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( (T^{8} - 124 T^{6} + \cdots + 2775556)^{2} \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( T^{16} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( T^{16} \) Copy content Toggle raw display
$53$ \( (T^{4} - 12 T^{3} + \cdots + 225)^{4} \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( T^{16} \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( (T^{8} - 568 T^{6} + \cdots + 8196769)^{2} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 62\!\cdots\!81 \) Copy content Toggle raw display
$83$ \( T^{16} \) Copy content Toggle raw display
$89$ \( (T^{8} - 228 T^{6} + \cdots + 2313441)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less