Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [476,3,Mod(321,476)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(476, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 4, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("476.321");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 476 = 2^{2} \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 476.x (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.9700605836\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
321.1 | 0 | −4.93903 | + | 2.04581i | 0 | 2.11756 | + | 5.11225i | 0 | 5.49744 | + | 4.33338i | 0 | 13.8447 | − | 13.8447i | 0 | ||||||||||
321.2 | 0 | −4.78162 | + | 1.98061i | 0 | 0.0890392 | + | 0.214960i | 0 | −6.37258 | − | 2.89658i | 0 | 12.5771 | − | 12.5771i | 0 | ||||||||||
321.3 | 0 | −4.68527 | + | 1.94070i | 0 | −0.107047 | − | 0.258435i | 0 | 6.27527 | − | 3.10178i | 0 | 11.8214 | − | 11.8214i | 0 | ||||||||||
321.4 | 0 | −3.76134 | + | 1.55800i | 0 | −1.16212 | − | 2.80560i | 0 | −3.19109 | + | 6.23033i | 0 | 5.35633 | − | 5.35633i | 0 | ||||||||||
321.5 | 0 | −3.43140 | + | 1.42133i | 0 | −3.65081 | − | 8.81383i | 0 | 5.54157 | + | 4.27680i | 0 | 3.39035 | − | 3.39035i | 0 | ||||||||||
321.6 | 0 | −2.58574 | + | 1.07105i | 0 | −2.55560 | − | 6.16976i | 0 | 0.327431 | − | 6.99234i | 0 | −0.825039 | + | 0.825039i | 0 | ||||||||||
321.7 | 0 | −2.58178 | + | 1.06941i | 0 | 2.86795 | + | 6.92385i | 0 | 2.88122 | − | 6.37954i | 0 | −0.842001 | + | 0.842001i | 0 | ||||||||||
321.8 | 0 | −2.40762 | + | 0.997268i | 0 | 2.93247 | + | 7.07962i | 0 | −3.61992 | + | 5.99134i | 0 | −1.56188 | + | 1.56188i | 0 | ||||||||||
321.9 | 0 | −2.20277 | + | 0.912419i | 0 | −1.83455 | − | 4.42900i | 0 | −6.99574 | + | 0.244103i | 0 | −2.34425 | + | 2.34425i | 0 | ||||||||||
321.10 | 0 | −1.57323 | + | 0.651655i | 0 | 1.10724 | + | 2.67312i | 0 | 3.07101 | − | 6.29038i | 0 | −4.31355 | + | 4.31355i | 0 | ||||||||||
321.11 | 0 | −1.14101 | + | 0.472620i | 0 | 1.67386 | + | 4.04105i | 0 | −5.26535 | − | 4.61260i | 0 | −5.28544 | + | 5.28544i | 0 | ||||||||||
321.12 | 0 | −0.0501663 | + | 0.0207796i | 0 | 0.962011 | + | 2.32250i | 0 | 4.78783 | + | 5.10654i | 0 | −6.36188 | + | 6.36188i | 0 | ||||||||||
321.13 | 0 | 0.0501663 | − | 0.0207796i | 0 | −0.962011 | − | 2.32250i | 0 | 6.99637 | − | 0.225364i | 0 | −6.36188 | + | 6.36188i | 0 | ||||||||||
321.14 | 0 | 1.14101 | − | 0.472620i | 0 | −1.67386 | − | 4.04105i | 0 | −6.98477 | − | 0.461559i | 0 | −5.28544 | + | 5.28544i | 0 | ||||||||||
321.15 | 0 | 1.57323 | − | 0.651655i | 0 | −1.10724 | − | 2.67312i | 0 | −2.27644 | + | 6.61950i | 0 | −4.31355 | + | 4.31355i | 0 | ||||||||||
321.16 | 0 | 2.20277 | − | 0.912419i | 0 | 1.83455 | + | 4.42900i | 0 | −4.77413 | − | 5.11934i | 0 | −2.34425 | + | 2.34425i | 0 | ||||||||||
321.17 | 0 | 2.40762 | − | 0.997268i | 0 | −2.93247 | − | 7.07962i | 0 | 1.67684 | − | 6.79619i | 0 | −1.56188 | + | 1.56188i | 0 | ||||||||||
321.18 | 0 | 2.58178 | − | 1.06941i | 0 | −2.86795 | − | 6.92385i | 0 | −2.47369 | + | 6.54835i | 0 | −0.842001 | + | 0.842001i | 0 | ||||||||||
321.19 | 0 | 2.58574 | − | 1.07105i | 0 | 2.55560 | + | 6.16976i | 0 | −4.71280 | + | 5.17586i | 0 | −0.825039 | + | 0.825039i | 0 | ||||||||||
321.20 | 0 | 3.43140 | − | 1.42133i | 0 | 3.65081 | + | 8.81383i | 0 | 6.94264 | + | 0.894325i | 0 | 3.39035 | − | 3.39035i | 0 | ||||||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
17.d | even | 8 | 1 | inner |
119.l | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 476.3.x.a | ✓ | 96 |
7.b | odd | 2 | 1 | inner | 476.3.x.a | ✓ | 96 |
17.d | even | 8 | 1 | inner | 476.3.x.a | ✓ | 96 |
119.l | odd | 8 | 1 | inner | 476.3.x.a | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
476.3.x.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
476.3.x.a | ✓ | 96 | 7.b | odd | 2 | 1 | inner |
476.3.x.a | ✓ | 96 | 17.d | even | 8 | 1 | inner |
476.3.x.a | ✓ | 96 | 119.l | odd | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(476, [\chi])\).