Properties

Label 476.4.a.b
Level $476$
Weight $4$
Character orbit 476.a
Self dual yes
Analytic conductor $28.085$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [476,4,Mod(1,476)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(476, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("476.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 476 = 2^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 476.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.0849091627\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 71x^{4} - 32x^{3} + 547x^{2} + 268x - 720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{4} - 2) q^{5} - 7 q^{7} + (\beta_{3} + \beta_{2} + 3 \beta_1 - 4) q^{9} + ( - \beta_{4} - \beta_{3} + 2 \beta_{2} + \cdots - 1) q^{11} + ( - \beta_{5} - \beta_{4} + \cdots + 6 \beta_1) q^{13}+ \cdots + (3 \beta_{5} + 26 \beta_{4} + \cdots + 111) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 14 q^{5} - 42 q^{7} - 16 q^{9} - 2 q^{11} + 8 q^{13} - 16 q^{15} + 102 q^{17} + 170 q^{19} - 14 q^{21} + 102 q^{23} + 140 q^{25} + 422 q^{27} + 278 q^{29} + 380 q^{31} + 98 q^{33} + 98 q^{35}+ \cdots + 450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 71x^{4} - 32x^{3} + 547x^{2} + 268x - 720 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{5} + 5\nu^{4} + 99\nu^{3} + 217\nu^{2} + 782\nu - 2466 ) / 243 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{5} - 5\nu^{4} - 99\nu^{3} + 26\nu^{2} - 1511\nu - 3123 ) / 243 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -14\nu^{5} + 35\nu^{4} + 936\nu^{3} + 61\nu^{2} - 4975\nu - 252 ) / 243 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 7\nu^{4} + 54\nu^{3} - 274\nu^{2} - 329\nu + 900 ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 3\beta _1 + 23 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + 6\beta_{3} - \beta_{2} + 61\beta _1 + 68 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{5} - \beta_{4} + 79\beta_{3} + 59\beta_{2} + 354\beta _1 + 1413 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 15\beta_{5} + 47\beta_{4} + 603\beta_{3} + 85\beta_{2} + 4621\beta _1 + 8161 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.43164
−2.78292
−1.66630
1.00920
2.57233
9.29932
0 −6.43164 0 1.24483 0 −7.00000 0 14.3660 0
1.2 0 −2.78292 0 4.87953 0 −7.00000 0 −19.2554 0
1.3 0 −1.66630 0 −19.8041 0 −7.00000 0 −24.2234 0
1.4 0 1.00920 0 15.3947 0 −7.00000 0 −25.9815 0
1.5 0 2.57233 0 −15.3394 0 −7.00000 0 −20.3831 0
1.6 0 9.29932 0 −0.375542 0 −7.00000 0 59.4774 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 476.4.a.b 6
4.b odd 2 1 1904.4.a.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
476.4.a.b 6 1.a even 1 1 trivial
1904.4.a.m 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 2T_{3}^{5} - 71T_{3}^{4} - 32T_{3}^{3} + 547T_{3}^{2} + 268T_{3} - 720 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(476))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 2 T^{5} + \cdots - 720 \) Copy content Toggle raw display
$5$ \( T^{6} + 14 T^{5} + \cdots - 10668 \) Copy content Toggle raw display
$7$ \( (T + 7)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 2 T^{5} + \cdots - 535691520 \) Copy content Toggle raw display
$13$ \( T^{6} - 8 T^{5} + \cdots + 828823104 \) Copy content Toggle raw display
$17$ \( (T - 17)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 460173692160 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 1263050492928 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 2208540804288 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 19518292749312 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 2992856102080 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 9465604150500 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 189794389878288 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 760485049445376 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 858801202345260 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 289110890237952 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 352565997695100 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 818964002575152 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 27\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 40517894654932 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 69\!\cdots\!28 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 1324477391616 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 31\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 17\!\cdots\!60 \) Copy content Toggle raw display
show more
show less